Anthony Lee Zhang


I'm a PhD student in Economics at the Stanford Graduate School of Business. Using tools from industrial organization and microeconomic theory, I work on the design and analysis of markets. I'm on the job market in 2018-2019, and I'll be available for interviews at the ASSA 2019 Annual Meeting. My CV is here, and you can reach me at

Job market paper

Competition and Manipulation in Derivative Contract Markets, December 2018. Online appendix.

This paper develops metrics and methods for quantifying the manipulability of cash-settled derivative contract markets. Many derivative contracts, such as futures, options, and swaps, are settled based on price benchmarks, which are calculated based on trade prices of underlying assets. Derivative contract volume is often much larger than the volume of underlying trade used to construct price benchmarks, so these markets may be vulnerable to manipulation: contract holders may trade the underlying asset in order to move benchmarks and influence contract payoffs. I show that derivative contract markets can be much larger than underlying markets without creating large incentives for manipulation, as long as underlying markets are sufficiently competitive. I show how to estimate manipulation-induced benchmark distortions using commonly observed market data. I propose a simple manipulation index which can be used as a diagnostic metric to detect potentially manipulable contract markets, similar to the Herfindahl-Hirschman index (HHI) in antitrust. I apply my results to study contract market competitiveness using the CFTC Commitments of Traders reports, to measure the manipulability of the LBMA gold price benchmark, and to propose a less manipulable design for the CBOE Volatility Index (VIX).

Working papers

Depreciating Licenses, with Glen Weyl, January 2018. Previously circulated under the title "Ownership of the Means of Production." Online appendix.

A large body of work in economics studies optimally allocating assets using auctions; comparatively little work analyzes how to design use licenses for the assets that are auctioned. In this paper, we argue that license design faces a fundamental tradeoff. Long-term or perpetual licenses improve incentives for owners to invest to maintain and improve assets, but short-term licenses are better for allocative efficiency. We propose a new license, called the depreciating license, which improves on this tradeoff. Depreciating license owners periodically announce valuations at which they are willing to sell their licenses, and pay a percent of these valuations as license fees. This encourages reallocation while creating high and time-stationary investment incentives.

A Mechanism Design Approach to Identification and Estimation, with Brad Larsen, July 2018.

In many trading games, such as auctions and bargaining, agents take actions which affect the probability that they receive a good and monetary transfer payments they make or receive. In this paper, we show that agents' choices on a menu of probabilities and transfers available in equilibrium can be used to identify agents' values in many such trading games. This "empirical menu" approach can accomodate various extensions, such as certain kinds of unobserved heterogeneity and partially observed actions. We apply these results to study bargaining efficiency, competition and surplus division in used car bargaining.

Auctions with Liquidity Subsidies, November 2018.

This paper proposes liquidity subsidies for improving allocative efficiency and price discovery in multi-unit auctions. In the proposed subsidy scheme, the market administrator divides some amount of subsidy revenue between agents proportional to their marginal contribution to the slope of auction aggregate demand at the equilibrium price. These subsidies cause agents to bid more aggressively, increasing the slopes of their submitted bid curves. This decreases bid shading, increases allocative efficiency, and lowers the variance of auction prices.


Redesigning Spectrum Licenses, with Paul Milgrom and Glen Weyl, Regulation, 2017, 40(3): 22–26.

Implementability, Walrasian Equilibria, and Efficient Matchings, with Piotr Dworczak, Economics Letters, 2017, 153 pp. 57–60.

Work in progress

Thickness in the US Housing Market, with Nadia Kotova

A Machine Learning Approach to Bargaining Game Estimation, with Brad Larsen


Notes and derivations