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Abstract

Houses with higher value uncertainty receive less mortgage credit: mortgages backed
by these houses are more likely to be rejected, have higher interest rates, and have lower
loan-to-price ratios. The relationship between house value uncertainty and credit avail-
ability is driven partly by a classic channel in which uncertainty lowers debt recovery
rates, and partly by a novel channel where more uncertain appraisals make regulatory
constraints on loan size more likely to bind. We build a structural model to quantify
the effects of each channel, and show how a shift toward computerized asset appraisals
could influence credit access.
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1 Introduction

Households and firms often finance investments in durable assets using collateralized debt.

A sizable literature has shown that some assets are better collateral than others, are able

to sustain more debt, and thus are easier for households and firms to purchase (Titman

and Wessels, 1988; Shleifer and Vishny, 1992; Rampini and Viswanathan, 2010, 2013, 2020).

This paper analyzes how collateral values influence credit available in the US residential

mortgage market. Mortgages are essential for homeownership: first-time homebuyers in the

US borrow over 80% of house prices in mortgage credit on average.1 In this paper, we ask:

What kinds of houses are better collateral for debt? What kinds of households live in these

houses? How do housing collateral values influence credit availability: are the channels of

effect basically efficient, or do they reflect the effects of regulatory distortions?

Using rich residential property transaction data from 2000 to 2020 in the US, we show that

older and less standardized houses have higher price dispersion; that is, these houses’ sale

prices are harder to predict based on house characteristics. Mortgages backed by these houses

are more likely to be rejected, receive worse interest rates, and have lower loan-to-price ratios

(LTP). We propose that this relationship is driven by two main channels. One is a classical

collateral recovery channel: less standardized houses have lower expected recovery rates, so

lenders will offer less credit against these houses even in frictionless markets. The other

is a novel regulatory channel. Regulators impose loan-to-value (LTV) restrictions on most

US mortgages, limiting the borrowing amount to a fraction of the house’s estimated value.

The collateral value used in LTV calculations is set to the lesser of the house transaction

price and the house appraisal value. High-value-uncertainty houses have noisier appraisals,

making regulatory constraints on loan sizes more likely to bind for these houses. While its

effects qualitatively resemble the classical collateral recovery effects, the appraisal channel is a

potentially inefficient channel through which value uncertainty influences credit availability.

We build a structural model, illustrating quantitatively how each channel influences different

measures of credit availability, how value uncertainty affects consumer willingness-to-pay

for houses, and how policy interventions could influence mortgage credit availability and

consumer welfare.

1Source: CFPB report, Market Snapshot: First-Time Homebuyers.
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We begin by estimating value uncertainty for all individual houses transacted in the U.S.

from 2000 to 2020 by measuring what kinds of houses tend to have larger errors when priced

using a hedonic model (Case and Shiller, 1989; Giacoletti, 2021; Sagi, 2021; Hartman-Glaser

and Mann, 2017; Sklarz and Miller, 2016; Buchak et al., 2020). We document a number of

stylized facts, some of which have been demonstrated in prior literature. Price dispersion is

highly persistent over time at the zipcode level, suggesting that the cross-zipcode variation is

driven by persistent differences in the characteristics of local housing stocks, rather than time-

varying market conditions. Price dispersion is high for older and less standardized houses and

for houses that trade in thinner markets. High-dispersion houses also have noisier appraisal

values: they are more likely to under-appraise, and under-appraise by larger amounts on

average.

We find that value uncertainty is associated with mortgage credit provision on multiple

margins. The largest effects are on mortgage rejection rates: a 1SD increase in house price

dispersion is associated with a 25% increase in the prevalence of collateral-related mortgage

rejections, and a 10% increase in total rejection rates. We also find statistically significant,

but economically smaller, effects on mortgage interest rates and loan-to-price ratios: a 1SD

dispersion increase is associated with around 0.9bps higher interest rates, and around 20bps

lower loan-to-price ratios. The relationship between value uncertainty and credit provision

has important distributional consequences: value uncertainty tends to be high precisely in

areas with low-income and minority households, implying that value uncertainty may limit

mortgage credit availability to some of the households that are most dependent on credit for

homeownership.

Lenders could in principle lend less against high-dispersion houses, not because the houses

are worse, but because buyers of high-dispersion houses systematically have higher credit

risks. In the cross-section, we find that high-dispersion areas indeed have buyers with lower

incomes and FICO scores. To address this concern, we construct instruments for price dis-

persion, based on the heterogeneity of houses relative to their local housing stock. Intuitively,

when a zipcode has very nonstandardized houses, the market for any given house will tend

to be thin, and price dispersion will tend to be high. Our instrument is correlated with

price dispersion but is not correlated with ex-ante buyer creditworthiness. Moreover, buyers

of houses with high instrumented price dispersion are not ex-post more likely to default on
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mortgages. These results thus suggest that our findings are driven by houses being worse

collateral, rather than buyers of these houses having higher credit risks.

Why is house price dispersion associated with mortgage credit provision? We hypoth-

esize that there are two economic channels driving this relationship. The first is a classic

“collateral recovery” channel. The value of debt is concave in the sale price of the collat-

eral asset, since lenders cannot keep the upside if collateral sells for more than the value of

outstanding debt, but suffer a loss if collateral sells for less. Thus, lenders rationally offer

less credit against high-value-uncertainty houses. The second channel, which we believe is

novel to our paper, is a regulatory effect based on appraisals. Loan-to-value ratios are an

important factor that regulators use to determine the risk of lending. For loans held on

banks’ balance sheets, the amount of capital required by the regulators typically depends

on the LTV ratios.2 For securitized loans, there are LTV constraints on whether they can

receive government guarantees, and also the guarantee fees also depend on LTV ratios.3 In

both cases, houses backing mortgages undergo appraisals, and the lesser of the appraised

value and the transaction price is used as the collateral value in LTV calculations. Higher-

dispersion houses tend to have noisier appraisals, so these regulatory appraisal constraints

are more likely to bind, limiting mortgage credit availability for such houses.

These two channels both directionally imply higher value uncertainty should be associated

with less mortgage credit; however, they are driven by different economic forces. The first

channel is a result of the fair market pricing of collateralized debt and should in principle

function even in frictionless markets. The second channel, on the other hand, is a product of

regulation; it is not necessarily efficient, and in theory its incidence could vary depending on

the specifics of how appraisal regulation is implemented. It is thus important to disentangle

the extent to which each channel contributes to the outcomes we observe.

We thus build a structural model to quantify how each of the two channels influences

mortgage market outcomes. In the model, competitive lenders offer menus of interest rate-

LTP pairs to a borrower, such that lenders break even, given the exogenous risk of default

and expected recovery rates from the house upon foreclosure. The borrower chooses a target

loan size from the menu. The house then undergoes an appraisal. We model appraisals

2See, for example, the BIS document on bank capital requirements.
3See, for example, Fannie Mae loan eligibility requirements; and loan-level price adjustment matrix.
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as noisy, upward-biased signals of house prices, consistent with the distribution of house

appraisals in practice. If the house over-appraises, the borrower proceeds with the mortgage

as planned. If the appraisal is sufficiently low that the mortgage would violate regulatory

LTV constraints, the buyer must choose to either make a costly increase in her down payment

or pay a fixed cost to renege on the transaction and find a new house, which we interpret

as a mortgage rejection. The tradeoff homebuyers face is that larger mortgages improve

consumption smoothing, but increase the risk of under-appraisals. When price dispersion

is higher, lenders offer worse menus, and under-appraisal risk is larger, leading to more

mortgage rejections, higher interest rates, and lower LTPs.

We then calibrate the model to data, matching moments on how rate menus, appraisal

distributions, mortgage rejection rates, and loan size depend on house price dispersion. The

calibrated model suggests that the collateral recovery channel mainly drives changes in loan

interest rates, whereas appraisal risk is the main driver of increased mortgage failures and

lowered loan-to-price ratios. Our calibrated model also implies that price dispersion and

underappraisal risk present nontrivially large costs to consumers. To offset higher rates

and underappraisal risks, we find that consumers in the highest decile of counties by price

dispersion would have to face 1.679% lower prices for identical houses, to attain the same

expected utility as consumers in the lowest decile of counties.

The appraisal channel is a product of regulation, implying that shifts in the regulatory en-

vironment around appraisals could change the effects of value uncertainty on credit provision.

One such change is the ongoing transition toward automated appraisals.4 We estimate the

impact of automated appraisals in our model under two different sets of assumptions. First,

suppose appraisal software simply removed human appraisers’ tendency to upward bias ap-

praisals, so that appraisal were symmetrically distributed around transaction prices. In our

model, this would actually dramatically increase underappraisal risk: we find that naively re-

moving human appraises’ biases would lead mortgage failures to increase by roughly 10.540%

to 13.561%, and that prices would have to decrease substantially, by 5.347% to 6.262%, for

consumers attain the same expected utility as they would under human appraisers. On the

other hand, suppose automated appraisals were calibrated to maintain the status quo rate

of underappraisals, but were half as noisy than human appraisals. We find that underap-

4In 2021, the FHFA announced that banks and mortgage lenders could use automated appraisal software in the
place of human appraisals.
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praisal pressure would then be somewhat alleviated: mortgage failure rates would decrease

modestly, by up to 1.600%, and consumers would be willing to pay up to 0.694% more for

identical houses, relative to what they would be willing to pay under human appraisers.

Our results thus imply that automated appraisals can thus have both positive and negative

effects on mortgage credit availability, depending on how they are implemented.

A central theme in the study of financial institutions is that regulatory interventions

designed to address specific issue tend to produce other issues as side effects. Regulators

commonly impose LTV restrictions on collateralized debt contracts. In the US, for example,

the Fed’s Regulation T limits the leverage brokers and dealers can offer on margin loans;

regulators also impose LTV requirements on bank loans backed by land and commercial real

estate, as well as housing.5 LTV restrictions are relatively straightforwards to enforce for

debt backed by liquid financial assets with “live” prices, such as stocks and bonds. They

are more difficult to impose for real assets: no two houses are identical, and houses do not

have live prices, so LTV restrictions can only be imposed based on estimates of the mar-

ket value of these assets. Many approaches for conducting asset appraisals exist, based on

either comparable sales as in the US housing market, or other methods such as cash flow

or replacement-cost approaches.6 But asset appraisal can never be perfect: appraisals are

always noisy signals of asset values, so appraisal-based regulatory constraints will tend to

be differentially binding, and may limit credit provision more, for assets which are harder

to appraise. This effect qualitatively resembles the classic, and basically efficient, “collateral

recovery” effect, where higher-uncertainty assets are worse collateral for debt even in fric-

tionless markets. However, the “appraisal channel” is a different force driven by imperfect

regulation, which has distinct effects on credit market outcomes and has no particular reason

to be efficient.

Our paper fits into two main strands of literature. First, we relate to a number of

papers analyzing how collateral values affect the properties of debt contracts collateralized by

these assets (Titman and Wessels, 1988; Shleifer and Vishny, 1992; Kermani and Ma, 2020).

Conceptually, the literature has argued that illiquid assets are inferior collateral. Several

papers have tested this idea, and how collateral values affect financing and investment in

5For residential and commercial real estate, the Interagency Guidelines for Real Estate Lending Policies recom-
mends specific LTV limits for bank loans backed by various types of real estate collateral.

6The USPAP discusses appraisal standards for real estate in the US. For international valuation standards, see
the RICS Valuation Global Standards and the International Valuation Standards.
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general, in a variety of empirical settings (Benmelech and Bergman, 2008; Benmelech, 2009;

Benmelech and Bergman, 2009; Bian, 2021; Pan et al., 2024; Collier et al., 2021). Our

contribution to this literature is to propose that the collateral-liquidity link reflects a novel

“appraisal channel”, in addition to the classic “collateral recovery” channel, and to show

how these channels can be distinguished. To the best of our knowledge, this is the first

paper in any setting to argue that appraisal-based regulatory constraints play a role in the

collateral-credit relationship.

Second, we contribute to a literature on frictions that affect mortgage credit (Lustig

and Van Nieuwerburgh, 2005; Mian and Sufi, 2011; Greenwald, 2016; Agarwal et al., 2017;

Piskorski and Seru, 2018; Beraja et al., 2019; DeFusco et al., 2020; Adelino et al., 2020;

Buchak et al., 2018; Jiang, 2023) and the corresponding real effects of such frictions (Glaeser

and Shapiro, 2003; Di Maggio and Kermani, 2017; Agarwal et al., 2022; Di Maggio et al.,

2017; DeFusco, 2018; Dokko et al., 2019; Gupta et al., 2024; DeFusco and Mondragon,

2020; Kermani and Wong, 2021). Relative to this literature, we are the first to study the

effects of house value uncertainty on mortgage credit provision. We show that collateral

value has modest effects on outcomes such as LTV and interest rates but sizable effects

on mortgage rejection rates; our quantitative results imply that the effects of collateral

values on consumers’ expected utility from home purchasing can be nontrivial. The value

uncertainty channel also has interesting distributional implications: low-income and minority

households tend to live in areas with low collateral quality, implying that value uncertainty

limits mortgage credit availability to some of the households who are most dependent on

credit for homeownership.

Two older papers which discuss related effects of appraisal noise on mortgage credit are

Lang and Nakamura (1993) and Blackburn and Vermilyea (2007). Lang and Nakamura

(1993) propose a theoretical model in which, when sales volume is low, lenders are more

uncertain about house values, so mortgage payoffs are lower and lenders demand higher

down payments as a result. Though the paper frames this as an effect of appraisal noise,

this force is in fact more similar to the collateral recovery channel in our model. The

appraisal channel in our model is a distinct regulatory effect, which is not present in Lang

and Nakamura (1993). Blackburn and Vermilyea (2007) empirically tests the relationship

between market thickness and credit availability proposed in Lang and Nakamura (1993),
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by regressing mortgage approval rates on “market size” measures, such as sales volume.

Relative to Blackburn and Vermilyea (2007), we use a more direct measure of collateral

quality – value uncertainty – as well as being able to directly measure the effects of value

uncertainty on the distribution of appraisals, allowing us to construct our quantitative model

and to disentangle the two channels of effect.

The paper proceeds as follows. Section 2 describes our data, measurement strategy, and

stylized facts on our price dispersion measure. Section 3 studies the effect of price dispersion

on mortgage provision. Section 4 describes our model, and Section 5 calibrates the model

to the data. We estimate model counterfactuals and discuss implications of our results in

Section 6, and conclude in Section 7.

2 Measurement, Data, and Stylized Facts

2.1 Measuring Value Uncertainty

A number of recent papers have shown that house prices display nontrivial dispersion, likely

driven by the fact that houses trade in thin markets (Case and Shiller, 1989; Giacoletti, 2021;

Sagi, 2021; Hartman-Glaser and Mann, 2017; Sklarz and Miller, 2016; Buchak et al., 2020).

As in Buchak et al. (2020), we estimate house price dispersion at the level of individual house

sales, by measuring what kinds of houses have smaller errors when priced with a hedonic

regression. We first regress transaction prices on house characteristics:

pit = ηkt + fk (xi, t) + εit, (1)

We then regress the squared residuals, ε̂2it, from (1) on a flexible function of characteristics

and time to predict which house characteristics make them difficult to price:

ε̂2it = gk (xi, t) + ξit (2)

In (1) and (2), i indexes properties, k indexes counties, and t indexes months. pit is the

log transaction price of house i at time t. fk (xi, t) and gk (xi, t) are generalized additive
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models in observable house characteristics xi and time t, which we describe in Appendix

A.1. fk (xi, t) allows house characteristics to affect prices in a manner that varies over time.

gk (xi, t) allows the variance of price dispersion to vary with characteristics and over time. ηkt

is a county-month fixed effect. Intuitively, specification (1) estimates a hedonic specification

for house prices, and specification (2) projects the squared residuals ε2it from the hedonic

regression on house features and time, to predict which kinds of houses are difficult to value.

We use the square roots of the predicted values from specification (2) as our house-level

measure of idiosyncratic price dispersion:7

σ̂it ≡
√
ĝk (xi, t) (3)

Our main specification uses a hedonic model of house prices; one concern is that there are

house-level features which affect prices, which are observed by market participants but are

not in our dataset. To alleviate this concern, in Appendix A.2, we repeat the analysis using a

repeat-sales specification to predict prices in (1). This specification absorbs all time-invariant

components of house quality, whether or not they correspond to observable characteristics

in our data, into house fixed effects. The resultant price dispersion estimates are highly

correlated with our baseline specification, and our empirical results continue to hold.

When considering whether to lend against a house, lenders should care about the total

volatility of a house. Our measurement strategy focuses on the idiosyncratic component,

which Piazzesi and Schneider (2016) estimate to be approximately half of total house price

volatility. Most of our empirical analysis compares houses within region-years; these houses

should have similar local index exposures, so most of the differences in total volatility which

are relevant for our results should be driven by differences in idiosyncratic volatility.

7Note that it is important to use the predicted values of σ̂2
it in stage 2 rather than the residuals ε̂2it in stage 1

directly. This is because the expected value of idiosyncratic dispersion, σ2
it, is the analog of σ in our model, which is

relevant for the LTV. Each realization of ε̂2it is a noisy measure of σ2
it. If we regressed outcomes such as house-level

LTP on the regression residuals ε̂2it directly, the coefficients would be biased towards 0, relative to the first-best of
regressing LTPs on σit, due to measurement error bias.
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2.2 Data

Corelogic Deed & Tax Data: We obtain house transaction records in the entire US from

2000 to 2020 from the Corelogic Deed dataset. The dataset reports each house transac-

tion attached to a specific property and provides information on the sale amount, mortgage

amount, transaction date, and property location. We merge the transaction records with the

Corelogic Tax records, which contain property characteristics such as year built and square

footage. We estimate price dispersion for each house in this merged dataset. Appendix B

provides detailed description about data cleaning steps. To link our price dispersion esti-

mates with mortgage rates, loan rejections, and appraisals, we aggregate the price dispersion

estimates to the 5-digit zipcode level because the data usage agreement prohibits us from

linking the individual records across these datasets.

Corelogic Loan-Level Market Analytics (LLMA) Data: We obtain mortgage informa-

tion from 2000 to 2020 from the Corelogic LLMA data, which provides detailed information

on mortgage and borrower characteristics at origination – interest rates, down payments,

sale prices, credit score, and debt-to-income ratio – and monthly loan performance after

origination, including delinquency status and investor type. Importantly for our analysis,

the LLMA provides both transaction price and the house’s appraisal value. We use this

dataset to estimate the menu of LTP-interest pairs in any given market, to examine loan

performance, and to analyze appraisal values relative to prices.

Home Mortgage Disclosure Act (HMDA): The HMDA covers the near universe of U.S.

mortgage applications from 2000 to 2017, including both originated and rejected applications.

For all loan applications, we observe the application outcomes (whether a loan is approved or

rejected) and the borrowers’ locations. For rejected loans, we observe the rejection reasons,

from which we determine whether a loan is rejected due to collateral-related reasons. We

use the HMDA for extensive margin analysis on mortgage application rejections. We keep

all completed home purchase mortgage applications with non-missing key variables, such as

location, loan amount, income, and loan types.

Other Sources: We use the Booth TransUnion Consumer Credit Panel to calculate the

average credit score by county to measure the creditworthiness of the entire borrower pop-

ulation. We obtain zipcode level demographic data from the American Community Survey
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(ACS) 1-year and 5-year samples.

Table 1 provides summary statistics.

2.3 Stylized Facts

Price Dispersion is Persistent Over Time Figure 1 Panel (a) plots zipcode idiosyn-

cratic price dispersion in 2020 against zipcode dispersion in 2010. While there is large

cross-sectional variation in price dispersion, dispersion is very persistent over time. This

suggests that differences in price dispersion are driven by persistent characteristics of the

local housing stock, rather than time-varying factors such as local housing market conditions.

Price Dispersion and House Characteristics Table 2 presents the association between

estimated value uncertainty and house characteristics. Panel A analyzes house features.

Throughout, we control for linear and squared terms in log house prices, comparing houses

with similar prices and different characteristics. Older houses have higher price dispersion

(column 1). Controlling for building age, houses which were renovated within 5 years of

the transaction date (column 2) have lower price dispersion.8 Columns 3-4 present the

association between property size, measured by square-footage and number of bedrooms, and

price dispersion. There is a U-shaped relationship: price dispersion is low for moderately

large houses and higher for houses which are very large or very small. In terms of local

housing market conditions, Panel B of Table 2 shows that houses in zipcodes with larger

income inequality, less population density, and more vacancies tend to have higher price

dispersion. Together, Table 2 suggests that house price dispersion is essentially driven by

house standardization and market thickness. This finding is consistent with evidence from

other papers.9 In Appendix C, we discuss a number of factors and theoretical forces that

may drive dispersion, such as information asymmetry (Kurlat and Stroebel, 2015; Stroebel,

2016), search frictions, and so on.

8We can partially measure house renovations, as the Corelogic tax data contains an “effective year built” variable,
which tracks the last date at which a property was renovated.

9See, for example, Kotova and Zhang (2021) and Andersen et al. (2022).
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Price Dispersion and Appraisal Noise Figure 2 illustrates that high-dispersion houses

tend to have noisier appraisal values. Panel (a) shows the percentage absolute difference

between appraisals and transaction prices, |ai−pi|
pi

. This difference is around 1.5 percentage

points larger in high-dispersion areas.

Appraisals only constrain borrowing when appraisals are below the sale price. In Panel

(b), we define the “appraisal deviation” for each loan as |ai−pi|
pi

1(ai < pi), the product of the

under-appraisal percentage |ai−pi|
pi

and an indicator for under-appraisal, 1(ai < pi). This is a

summary measure of the downwards pressure on loan size induced by appraisals, combining

the probability of under-appraisal and the size of under-appraisals. The figure shows that

appraisal deviations are larger in high-dispersion areas.

The appraisal distribution is known to be very asymmetric: appraisals are often equal

to sale prices, and under-appraisals are rare. This may reflect a combination of selection of

successful sales, and human appraisers’ incentives to bias appraisal prices upwards towards

transaction prices. We will account for both effects in our model; however, to illustrate that

our results are not driven only by appraiser bias, in Panel (c), we analyze the average size

of the appraisal gap conditional on over-appraisal, ai > pi. Increasing the appraisal past the

transaction price does not increase the amount borrowers can borrow, so appraisers should

have no incentive to bias appraisals which are already above transaction prices.

Regional Variation: Zipcode Income and Race Price dispersion tends to be higher

in low-income and black-dominant zipcodes. Panel (b) of Figure 1 shows the relationship

between price dispersion and zipcode demographics. Comparing zipcodes with similar levels

of median income, price dispersion in Black-dominant zipcodes tends to be 0.03 (1/4 SD)

higher than in non-Black dominant zipcodes. Comparing zipcodes with similar racial com-

position, price dispersion in low-income zipcodes tends to be 0.06 (1/2 SD) higher than in

high-income zipcodes.
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3 Price Dispersion and Mortgage Credit Provision

We show a stylized depiction of how price dispersion can affect the home purchase and

mortgage application process in Figure 3; we will formalize this framework in our model

in Section 4. A homebuyer first decides to purchase a home. After the homebuyer’s offer

is accepted, she applies for a mortgage. The lender offers a menu of interest rate-LTV

pairs to the borrower. Debt which is backed by higher-dispersion houses has lower expected

recovery rates, because the value of debt is concave in the foreclosure price of collateral:

if the collateral sells for more than the outstanding debt amount, lenders do not keep the

upside, whereas lenders are responsible for some of the downside if the collateral sells for

less. Thus, when houses have higher price dispersion, lenders should offer worse rate menus:

higher interest rates for any given LTV, and vice versa. The buyer then chooses an option

from the menu: in high-dispersion areas, buyers are thus forced to choose either lower LTVs,

higher interest rates, or both. We call this effect of price dispersion the “collateral recovery”

channel; this is a classic effect documented in a number of other collateralized debt markets

(Benmelech and Bergman, 2008; Benmelech, 2009; Benmelech and Bergman, 2009; Bian,

2021; Pan et al., 2024; Collier et al., 2021).

After the buyer chooses her targeted mortgage LTV, the house is appraised, and the

value of the house for LTV calculation is set to the lesser of the transaction price and the

appraised value. If the house over-appraises – that is, the appraisal price is at least the

transaction price – the transaction proceeds as planned. If the house under-appraises, the

homebuyer may need to decrease her mortgage size to meet regulatory LTV constraints by

making higher down payments.10 If the buyer is unable to make the higher down payments,

she may have to renege on the transaction. We showed in Figure 2 that appraisals are noisier

when house price dispersion is high, resulting in higher under-appraisal in high-dispersion

areas. Thus, mortgages in high-dispersion areas are more likely to be rejected, and buyers

may decrease their targeted LTVs to lower the impact of under-appraisal risk. We refer to

this effect as the “appraisal risk” channel.

In summary, Figure 3 illustrates that, when house price dispersion is high, mortgage

10For loans held on banks’ balance sheets, the amount of capital required by the regulators typically depends on
the LTV ratios (See, for example, the BIS document on bank capital requirements). For securitized loans, there are
LTV constraints on whether they can receive government guarantees, and also the guarantee fees usually depend on
the LTV ratios (See, for example, Fannie Mae loan eligibility requirements; and loan-level price adjustment matrix).
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applications should have a higher mortgage rejection likelihood, receive higher interest rates,

and loan-to-price ratios should be lower. We now show that these relationships hold in a

variety of empirical specifications.

3.1 Effects on Mortgage Credit

3.1.1 Mortgage Rejection Rates

Figure 4(a) plots county-level mortgage rejection rate against price dispersion, in which

rejection rates are calculated as the number of rejected mortgage applications divided by total

completed mortgage applications in a county-year recorded in the HMDA data. The figure

shows that mortgage applications are more likely to be rejected in counties with higher price

dispersion. The HMDA data also records lender-reported reason for rejecting an application.

In Figure 4(b), we use this information to construct county-level rates of rejection due to

collateral-related reasons, calculated as the number of rejected mortgage applications that

are reported as due to collateral reasons, divided by total applications. The figure shows

that more applications are rejected for collateral-related reasons in high-dispersion counties.

We then exploit within county-year variation by estimating the following loan application-

level specification:

Rejectikt = βZipDispersionikt +XiktΓ + µkt + νlt + εikt (4)

Rejectikt is an indicator that equals 100 if the mortgage collateralized by property i in county

k in year t is rejected and 0 otherwise. ZipDispersionikt is the average price dispersion of

houses in property i’s zipcode that are transacted in year t.11 Xikt is a set of controls,

including zipcode house transaction price, credit score and its squared term, individual

income, loan-to-income ratio and its squared term, and mortgage type.12 µkt and νlt are

county-year and lender-year fixed effects, respectively.

Panel A of Table 3 reports the results. We first confirm the effect of local house price

11We aggregate property-level price dispersion measures estimated using Corelogic Deeds to zipcode level and assign
it to every loan application in HMDA based on borrowers’ location.

12We aggregate mortgage-level interest rates from Corelogic LLMA to zipcode level and assign it to every loan
application in HMDA based on borrowers’ location.
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dispersion on mortgage rejection rates using the full sample (column 1). Zipcode house price

dispersion is positively and significantly associated with mortgage rejections. This result

holds for both securitized loans (column 2) and portfolio loans (column 3). The rejection

rate increases by about 1.4 percentage-points for every standard deviation increase in house

price dispersion. The effect is economically significant: given the sample average rejection

rate of about 16 percentage points, the estimate amounts to about a 10% increase in rejection

likelihood.

In Panel B of Table 3, we focus on collateral-related rejections. A mortgage application

is about 50bps more likely to be rejected due to collateral reasons in a zipcode with one

standard deviation higher house price dispersion, which is about a 25% increase in the

likelihood of collateral-related rejections. Again, the result holds in the full sample (column

1) as well as sub-samples of securitized loans (column 2) and portfolio loans (column 3).

Mortgage Rejection Reasons As a robustness check, we examine the relationship be-

tween house price dispersion and different rejection reasons among rejected loans. We restrict

the sample to only rejected loans and estimate Specification 4 using various rejection reason

indicators as the outcome variables. Intuitively, this specification estimates, conditional on

a mortgage being rejected, whether rejections are more likely to be attributed to collateral-

related reasons in high-dispersion areas.

Table A1 reports the results. As the sample means indicate, the most common rejection

reasons in the entire sample are creditworthiness-related reasons (i.e., credit score and debt-

to-income ratios). However, as house price dispersion increases, the results show that the

mortgage rejections are significantly more likely due to collateral reasons, and less likely to

be due to creditworthiness reasons, thereby supporting our baseline findings.

3.1.2 Interest Rates

In high price dispersion areas, lenders offer worse rate menus, so mortgage interest rates

are higher for any given LTP ratio. To visually demonstrate this, we estimate the entire

menu of LTP-interest rate pairs available to borrowers in high- and low-dispersion areas.

We first residualize interest rates using borrowers’ credit scores, loan type, and time fixed
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effects; we then plot the residuals against LTP separately for zipcodes with above-median

and below-median dispersion in Figure 5. The figure shows that the entire menu of interest

rate-LTP pairs shifts upwards in high-dispersion zipcodes: for any given LTP, borrowers in

high-dispersion zipcodes can expect to pay higher prices. The difference is about 3bps for

loans with LTP below 80, and enlarges to 7bps for loans with LTP above 80.

We then estimate the following loan-level specification:

Rateikt = β1ZipDispersionikt + β2LTPikt +XiktΓ + µkt + νm + εikt (5)

Rateikt is the interest rate on mortgage i collateralized by house in county k in year t.

ZipDispersionikt is the average price dispersion of houses in property i’s zipcode that are

transacted in year t.13 Xikt is a set of controls, including house transaction price, credit

score and its squared term, LTV and its squared term, debt-to-income ratio and its squared

term, and loan type. µkt and νm are county-year fixed effect and loan origination month

fixed effect, respectively.

Table 4 presents the results. Column 1 uses the full sample. Higher loan-to-price ratios

are associated with higher interest rates: a one percentage point increase in LTP is associated

with an 69bps increase in interest rate. Controlling for LTP, houses in zipcodes with higher

house price dispersion have higher interest rates. The mortgage rate increases by 0.89bps

in zipcodes with one standard deviation higher average house price dispersion. Columns

2 to 3 show the results for securitized loans and portfolio loans; the results hold in both

samples. For every 1SD increase in zipcode average house price dispersion, the mortgage

rate of securitized loans increases by 1.31bps, and the rates on portfolio loans increases by

1.26bps.

3.1.3 Loan-to-Price Ratio

Lastly, we show that price dispersion is associated with smaller loan sizes, as measured by

loan-to-price ratios (LTP). Figure 4(c) illustrates the relationship by plotting county average

13We use zipcode dispersion instead of property-level dispersion because our price dispersion measure is estimated
using Corelogic Deeds, and the data vendor prohibited us from merging loan-level records in LLMA with property-
level records in Corelogic Deeds and Tax. We therefore aggregate property-level price dispersion measures to the
most granular geographic region in LLMA.
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LTP against average house price dispersion.14 Counties with higher price dispersion have

lower average LTPs. The pattern holds for all types of loans: GSE loans, FHA loans, and

jumbo loans (Figure A2).

We then exploit within county-year variation by comparing two properties that are bought

in the same county-year at the same price and by buyers with similar credit profiles and

incomes. To implement this strategy, we estimate the following property-level specification:

LTPikt = βDispersionikt +XiktΓ + µkt + νd + εikt (6)

LTPikt is the loan-to-price ratio of a mortgage, collateralized by property i in county k in

year t. Dispersionikt is the estimated price dispersion of the underlying property. Xikt is

a set of controls, including property transaction price, mortgage type, mortgage term, and

resale indicator.15 µkt and νd are county-year and transaction date fixed effects, respectively.

Table 5 presents the results. Column 2 corresponds to Specification 6. Column 1 includes

only transaction date fixed effects, and column 3 adds lender-year fixed effects. For two

houses in the same county that are transacted on the same date at the same price, the one

with higher estimated price dispersion tends to receive a smaller sized loan. In the most

saturated specification, the loan-to-price ratio is more than 20bps lower for houses with one

standard deviation higher estimated price dispersion across these specifications.

3.2 Identification

Mortgage outcomes could be worse for high-dispersion houses, not because the houses are

worse, but because borrowers purchasing these houses are systematically less creditworthy.

Lenders would then rationally lend less against these houses; however, the channel of effect

would be due to borrower quality rather than house quality. One indication that this does

not explain our results is that, in Subsection 3.1.1, we showed that lenders in high-dispersion

areas systematically indicate that they are rejecting more mortgages because the collateral

has low quality. To further alleviate this concern, we develop an instrument for house price

14To make this plot, we first remove the average LTP differences across levels of individual house prices and then
plot their county average value against county average price dispersion.

15Our results are not sensitive to the inclusion of transaction price, though we believe including price is the right
specification. We discuss this in detail in Appendix D.
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dispersion, show that the instrument is not correlated with ex-ante or ex-post buyer credit

characteristics, and show that all our baseline results hold using the instrument.

3.2.1 Instrumental Variables

Our estimates of house price dispersion are functions of house characteristics. House char-

acteristics could be confounded with buyer characteristics because, for example, less credit-

worthy buyers could tend to buy smaller houses in a region. However, it is plausible that the

relationship between buyer creditworthiness and house characteristics is mostly monotone:

it would intuitively be less likely that both buyers of very small and very large houses in a

region are less creditworthy than buyers of average-sized houses in that region. On the other

hand, the literature on house price dispersion has shown that the relationship between house

characteristics and price dispersion has a strong component that is quadratic around mean

house characteristics: houses that are either very large or very small tend to have higher

dispersion than average-sized houses. Thus, if we construct a measure of how “unusual” a

house’s characteristics are relative to other nearby houses, the measure may be associated

with price dispersion, but less related to buyer creditworthiness.16

Formally, we construct a set of house-level instruments for the price dispersion of each

individual house i in county c by measuring its heterogeneity relative to the local housing

stock. For all home purchases transacted in each county c in a given year, we first calculate

the average value of each key house features (X
m

c ), where

m ∈ {building age(age), size(sqft), bedrooms(bed), bathrooms(bath), geo-coordinates(geo)}.

For each house, we calculate the “distance” between its feature m and the average value of

m in county c in the same transaction year, denoted by Zm
i :

Zm
i = (Xm

i −X
m

c )2, ∀m ∈ {age, sqft, bed, bath, geo}, (7)

House features are not symmetrically distributed around their mean in the data, meaning

16The approach of using measures of house nonstandardization as instruments is not new to the literature: similar
ideas are used in Andersen et al. (2022), and the approach can be micro-founded in a search and matching framework
as done in Guren (2018).
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that the distances constructed in (7) may still be increasing or decreasing in house features.

To further alleviate this effect, we purge Zm
i of the variation that is linear in house features

by taking the residuals of the following linear regression:

Zm
i =

∑
k

αkX
k
i + µd + εmi , (8)

where Xk
i are the five house features and µd is house transaction date fixed effects. Our

instruments are the residuals in the above equation:

Z̃m
i = ε̂mi (9)

The instruments measure how locally thin the market is for a given house i, by bench-

marking it to other houses within the same county. Small houses, for example, will have

large Zsqft in a county with mostly large houses, but will have small Zsqft in a county with

mostly small houses. Since markets for small houses are thinner in the former than in the

latter, there are likely fewer buyers at any given point in time in the former.

Using the five instruments, we estimate the following 2SLS specification:

Stage 1: Dispersionit = β1Z̃
age
it + β2Z̃

sqft
it + β3Z̃

bed
it + β4Z̃

bath
it + β5Z̃

geo
it

+ ControlsiktΓ1 + µkt + νd + εikt

Stage 2: Yikt = γ ̂Dispersionikt + ControlsiktΓ2 + ηkt + ζd + ξikt,

(10)

where ̂Dispersionikt is the predicted value from stage 1, Xikt are control variables, and µkt,

νd (ηkt and ζd) are county-year and transaction date fixed effects, respectively.

For our analyses that use zipcodes, we take geographical averages of Z̃m
i . The aggregated

instrument is essentially a measure of the heterogeneity of the zipcode’s housing stock along

characteristic m. Zipcodes with more heterogeneous housing stocks tend to have higher price

dispersion, since they have thinner local markets for any individual house.

In order for the instruments to be valid, we must argue that they are relevant in the

sense that they are associated with house price dispersion and excluded in the sense that

they are not associated with other factors which may affect mortgage market outcomes, in
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particular, buyers’ observable and unobservable creditworthiness. For relevance, consistent

with the literature, Table A2 shows that our instruments are correlated with the raw price

dispersion measure in a statistically significant manner.

For exclusion, we show that the instrument is uncorrelated with house prices and ex-

ante measures of buyer creditworthiness and also that borrowers in areas with higher values

of the instrument are not ex-post more likely to default. We first conduct a balance test

on ex-ante characteristics in Table A3 by correlating raw or instrumented zipcode price

dispersion with house price, borrower FICO, and borrower income in that zipcode. Our

results suggest that the raw price dispersion measure is negatively correlated with house

prices, FICO, and income, but the instrumented price dispersion does not appear to be

statistically significantly correlated with these characteristics. If anything, borrowers in

zipcodes with higher instrumented dispersion tend to have higher, instead of lower, income.

While these results suggest that the instrument is not associated with ex-ante observable

measures of borrowers’ creditworthiness, a further concern is that borrowers in heterogeneous

zipcodes may be unobservably worse credit risks. To address this concern, we can further

do an ex post test, measuring whether borrowers in more heterogeneous zipcodes are more

likely to default on mortgages. Table 6 Panel A estimates specifications 5 (columns 1-3) and

the 2SLS version of it (columns 4-6), but sets the outcome variable equal to 100 for loans

that become 60 or more day-delinquent within 2 years after origination and zero otherwise.

Columns 1 and 4 include the full sample. Columns 2 and 5 restrict the sample to securitized

loans. Columns 3 and 6 restrict the sample to portfolio loans. All regressions include the

full set of borrower and loan characteristics as in our main regression specifications.

In these specifications, interest rates, FICO scores, DTI, and LTV are generally associated

with ex-post default rates as expected. Consistent with the results from Table A3, in the OLS

results, price dispersion is positively associated with default rates: buyers in high-dispersion

zipcodes are more likely to default, even after controlling for observable mortgage and buyer

features. However, instrumented price dispersion is not associated with default rates: buyers

in high heterogeneity zipcodes are not more likely to default on their mortgages. This lends

support for our exclusion restriction, that zipcode heterogeneity shifts house price dispersion

without shifting buyer creditworthiness.
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3.2.2 IV Results

We estimate specification 10 for every credit outcome in our baseline analyses in Section 3.1.

We confirm our baseline results qualitatively and get reasonably stronger estimated effects.

Approvals Table 3 reports the loan approval likelihood results. Zipcode house price dis-

persion is positively and significantly associated with mortgage rejections: the rejection rate

increases by more than 2 percentage points as house price dispersion increases by one stan-

dard deviation (Panel A columns 4-6). As shown in Panel B, a mortgage application is about

80bps more likely to be rejected due to collateral reasons in a zipcode with one standard

deviation higher house price dispersion (Panel B column 4-6). Both results — overall rejec-

tion or rejection due to collateral reasons — hold in the full sample as well as sub-samples

of securitized loans and portfolio loans.

Interest Rates Table 4 columns 4-6 present the interest rate results. For every one stan-

dard deviation increase in zipcode average house price dispersion, the mortgage rate increases

by 1.4bps in the full sample (column 4), increases by 1.7bps in the sample of securtized loans

(column 5), and increases by 3bps for portfolio loans (column 6).

LTP Lastly, Table 5 columns 4-6 present the LTP results, where column 5 corresponds to

Specification 10, and column 4 and 6 are less and more saturated specifications, respectively.

LTP decreases by 1.3 percentage points for every one standard deviation increase in the

estimated price dispersion in the most saturated IV specification.

The IV coefficient estimates are mostly larger than the OLS estimates. This is potentially

driven by the fact that the independent variable, price dispersion, is measured imperfectly

by our first-stage regression, causing the coefficients in the OLS specifications to be biased

toward 0. When instrumental variables alleviate measurement error in the independent

variable, they tend to lead to larger coefficient estimates; the pattern that IV estimates tend

to be larger than OLS estimates is common in empirical studies across many areas (Pancost

and Schaller, 2021).
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Economic Magnitudes The largest effects of price dispersion are on mortgage rejection

rates: according to our OLS estimates, a 1SD increase in house price dispersion is associated

with a 25% increase in the prevalence of collateral-related mortgage rejections, and a 10%

increase in total rejection rates.17 The effects on loan sizes and interest rates are statistically

significant but economically smaller. However, as we illustrate in Appendix E, a seemingly

small percentage change in the down payment requirement can in principle have moderate-

size effects on house affordability, considering the low level of annual savings by the marginal

home buyers in the US.

3.3 Distributional Consequences

The relationship between price dispersion and mortgage credit has important distributional

consequences: price dispersion tends to be higher in low-income zipcodes, so price dispersion

limits mortgage credit disproportionately to some of the households most reliant on credit

for homeownership.

To illustrate this point quantitatively, for each transacted house in our dataset, we calcu-

late how much rejection rate, down payment, and mortgage rate would decrease according

to our reduced-form estimates, if the house’s price dispersion decreased to be equal to the

bottom decile of price dispersion in our dataset. Specifically, we calculate the difference be-

tween a house’s price dispersion and the bottom decile of price dispersion, and then multiply

it respectively by the estimated effect of price dispersion on mortgage rejection (column 4

of Table 3), by the estimated effect on LTP (column 6 of Table 5), and by the estimated

effect on mortgage rate (column 4 of Table 4). We then analyze how these effects vary across

zipcodes with different income levels in Figure 6 by plotting the average changes in mortgage

rejection rate, LTP, and mortgage rates in each zipcode income quintile.

We find that, if the price dispersion of local housing stocks decreased to be equal to

the bottom decile of price dispersion in our dataset, mortgage failure rates would decline

by about 6 percentage points in the bottom quintile of zipcodes by income; this would be

about 1.5 times the magnitude of the impact in the top zipcode income quintile. While the

impact on loan sizes and interest rates would be economically smaller, there would still be

17The IV estimates are slightly larger: a 1SD increase in house price dispersion is associated with a 40% increase
in the prevalence of collateral-related mortgage rejections, and a 14.5% increase in total rejection rates.
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meaningful heterogeneity across zipcodes with different income levels: the increase in loan

size in the bottom zipcode income quintile would be 1.5 times the magnitude of the impact

in the top zipcode income quintile, while the decline in mortgage rates in the bottom zipcode

income quintile would be 60% higher than the magnitude of the impact in the top zipcode

income quintile.

3.4 Robustness Checks

We conduct two additional robustness checks. In Appendix F.1, we show that our results

hold in a subsample of transactions with sale prices below conforming loan limits, suggesting

that our results are not driven by homebuyers’ incentives to keep prices below conforming

loan limits. In Appendix F.2, we address the role of lender market power in three steps.

First, we show that our main findings survive controls for lender-county-year fixed effects

fixed effects when data permits, suggesting that the results are not driven by market power

at the lender-county level. However, a remaining concern is that only a small number of

lenders may be willing to lend against houses with high value uncertainty, giving these

lenders market power to extract rents from home buyers of such houses, but not from other

home buyers purchasing houses with lower value uncertainty.

To address this concern, we investigate whether the number of lenders serving high-value-

uncertainty market segments is indeed smaller than the number of lenders serving low-value

uncertainty market segments within the same county-year. In Table A5, we divide each

county-year into four market segments based on the price dispersion of transacted houses

recorded in the Corelogic Deed data, and examine the correlation between price dispersion

and lender concentration within a county-year. The results indicate a lack of significant

positive correlation between lender concentration and house price dispersion within a county-

year. In fact, in some specifications, lender concentration appears to be negatively correlated

with house price dispersion: we observe a higher number of lenders lending against houses

with higher price dispersion, yielding lower lender concentration in the higher price dispersion

segments within a county-year. Therefore, although suggestive, the evidence is not consistent

with the narrative that a lender can earn monopolist rents on buyers of high-dispersion houses

but not on buyers of low-dispersion houses in the same county-year.
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Finally, to further isolate the effect of collateral value uncertainty from the effect of lender

market power, we conduct subsample analyses for houses located in zipcodes with low lender

concentration level versus houses located in zipcodes with high lender concentration level.

The results suggest that the effects of price dispersion on loan rejection, loan sizes, and

interest rates remain significant and have similar magnitudes after controlling for mortgage

supply concentration and the effects are quantitatively similar across zipcodes with different

lender concentration levels. The results suggest that the main findings of this paper — the

effects of price dispersion on mortgage provision — are not driven by the correlation between

price dispersion and lender market power within a county-year.

4 Model

We build a structural model showing how price dispersion affects application failures, interest

rates, and mortgage loan-to-value ratios (LTVs) through the collateral recovery and appraisal

risk channels. The model follows the structure in Figure 3. A prospective homebuyer

chooses a targeted mortgage size to finance a house at an exogenous transaction price. By

choosing a larger mortgage, the buyer smoothens consumption more effectively, but also faces

higher interest rates and a greater risk of under-appraisal and mortgage rejection. When

idiosyncratic price dispersion is higher, lenders offer borrowers worse interest rate menus,

and under-appraisals are more likely; both forces push buyers towards choosing smaller

mortgages.

4.1 Setup

4.1.1 The Buyer’s Problem

A homebuyer attempts to finance a house that is sold at price P , by choosing a target loan

size L. The choice of L determines the buyer’s consumption in two time periods: the first

period is when the buyer purchases the house, and the second is when the mortgage loan

is paid back. The buyer has CRRA utility, discounting consumption at rate βT between
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periods:

U (c1, c2) =
c1−η

1 − 1

1− η
+ βTu′2c2 (11)

where u′2 is an exogenous constant. Hence, the buyer solves a consumption smoothing

problem, where utility is concave in the first period, and linear in the second. The buyer

receives exogenous labor income W1 in period 1, and W2 in period 2. Expression (11) can be

thought of as a reduced-form of a richer model in which a consumer smoothens consumption

between a single period, in which the house purchase is made, and a large number of future

periods in which the mortgage is paid down. The term βTu′2c2 can be thought of as a linear

approximation to the consumer’s value function over wealth in future periods after the house

purchase.18

The mortgage application process has two stages:

1. Lenders offer an interest rate menu r (L, σ), determining the mortgage interest rate if

the buyer targets loan size L and idiosyncratic price dispersion is σ. The buyer chooses

a target loan size L, receiving interest rate r (L, σ). We introduce how rate menu is

determined in the next section.

2. The house appraisal value A is determined. The collateral value used to calculate the

LTV of the mortgage takes the smaller of the appraisal value A and the transaction

price P :19

Lfinal ≤ φmin (P,A) . (12)

If A < P , the final loan amount Lfinal will be below the target size L, so the buyer will

need to make an additional down payment. Conditional on A, the buyer can choose to

continue the transaction, or to renege, pay a fixed penalty cost, and search for a new

house, returning to period 1.

18A similar linear approximation to utility in future periods is used in Jansen et al. (2022). The concavity of utility
over consumption in the single house purchase period is high relative to the concavity over the value function of wealth
in future periods, since there are many future periods to smooth consumption over, so assuming post-purchase utility
is linear in consumption is likely a reasonable approximation. In our setting, this modeling simplification is needed
in order to make the appraisal problem recursive, allowing us to use tools from the search literature to model the
buyer’s response to under-appraisals.

19This constraint is imposed by both bank regulators and mortgage securitizers in reality.
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In the following, we normalize final loan size, target loan size, and appraisal values:

lfinal =
Lfinal
P

, l ≡ L

P
, a ≡ A

P
(13)

Hence, the target LTV is l, the final LTV is lfinal, and the ratio of appraisals to transaction

prices is a. We will write r (l) to mean the interest rate if the target LTV is l. We proceed to

describe the buyer’s payoffs if she chooses to continue with a transaction, then if she decides

to renege.

Continuation From (12), if a < 1, the final loan size is capped at:

φmin (P,A) = φP min (1, a) = φaP (14)

Since we have restricted the target loan size to l < φP , the buyer’s final loan size is

P min (l, φa). If the buyer originally planned to borrow l, making down payment P (1− l),
the appraisal constrains loan size further whenever a < l

φ
. With appraisal a, the required

down payment is P (1− φa), which is P max [0, l − φa] larger than the targeted down pay-

ment. We assume that, if the buyer faces such a down payment gap, this decreases her

period-1 consumption c1 by ψP max [0, l − φa], where ψ > 1. That is, for every dollar in ad-

ditional downpayments she must make, the buyer’s period-1 consumption decreases by ψ > 1

dollars. This is a reduced-form modelling device, capturing the idea that an unanticipated

increase in down payments, induced by an under-appraisals, is more costly than an antic-

ipated increase, because it is harder to smooth consumption in response to unanticipated

shocks; we demonstrate this point quantitatively in Appendix G.1.

Given an appraisal a, the buyer’s consumption in period 1 is:

c1 = W1︸︷︷︸
labor income

− P (1− l)︸ ︷︷ ︸
target down payment

− ψP max [0, l − φa]︸ ︷︷ ︸
penalty term from under-appraisal

(15)

That is labor income less the target down payment for the house, less the penalty term from
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under-appraisal. Consumption in period 2 is:

c2 = W2︸︷︷︸
labor income

−
(
1 + r (l)

)T
P
(
l −max [0, l − φa]

)︸ ︷︷ ︸
mortgage principal and interest

(16)

This is labor income, minus the principal and interest on the mortgage, which we assume is

paid in a single lump sum in period 2. Since utility in period 2 is linear, the term W2 simply

increases the level of utility and does not affect any outcomes, so for notational simplicity

we will set W2 = 0 going forwards.

Reneging If the appraisal is too low, the buyer can renege on the transaction, paying a

cost ζ (as a fraction of house price), and then searching for a new house. For tractability,

to make the problem recursive, we think of ζ as being paid in period 2 dollars. We think of

this as capturing, for example, foregone deposits if there is no appraisal contingency in the

sales contract or hassle costs of searching for another house. They then revert to stage 1, to

purchase another house, and have continuation value:

−βTu′2ζP + Ea
[
V (a, l)

]
(17)

where V (a, l) is the value of choosing loan size l, when the appraisal is a.

4.1.2 Interest Rate Menus

We assume that the interest rate lenders offer depends on price dispersion and the size of the

mortgage. Mortgages which are larger, and which are in higher-dispersion areas, are riskier,

and lenders will thus charge higher interest rates as a result. In the main text, we assume a

simple reduced-form model of the rate menu:

r (l, σ) = r̄ + θll + θσσ (18)

where θl and θσ capture the dependence of the interest rate on loan size and price dispersion

respectively.20

20We adopt this reduced-form model of the rate menu in the model for simplicity; however, in Appendix G.2,
we construct a more detailed microfoundation of the interest rate menu. We assume competitive profit-maximizing
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4.1.3 The Distribution of Appraisal Values

It is known in the literature that house appraisals are systematically biased upwards, and

there is substantial bunching at house transaction prices. In our data, we find that large

over-appraisals are also rare, suggesting that appraisers largely only bias appraisals upwards

to the point where they are equal to sale prices. We model appraisals in a way that matches

these stylized facts. We assume that there is an unbiased appraisal value which is normally

distributed around the house transaction price, Araw ∼ N (P, σ). The appraisal value A

given to the borrower is then determined by:

A =


Araw + Pb Araw < P (1− b)

P P (1− b) ≤ Araw < P

Araw P ≤ Araw

(19)

Expression (19) states that, when Araw is above P , appraisers simply report the raw appraisal

price A = Araw. When Araw is below P but above P (1− b), the appraisers biases A just

enough so that it is equal to P , generating bunching at P . When Araw is below P (1− b),
appraisers still attempt to bias A upwards, but are only able to push the appraisal to Araw +

Pb. This is still useful to the buyer, since any upwards bias in appraisals still allows the

buyer to borrow more. We will estimate b based on the distribution of appraisal-to-sale

ratios in our data, as we describe in Subsection 5.1 below.21

lenders make loans, setting prices and LTPs such that they at least break even, given imperfect collateral recovery
rates. When price dispersion is higher, lenders must offer a worse rate menu to break even. In a simple calibration
of the model, the observed dependence of the interest rate menu on price dispersion in the data can be matched
fairly well, under reasonable assumptions for average foreclosure discounts. Since the dependence of the rate menu on
price dispersion is quantitatively consistent with this microfoundation in the data, we proceed with the reduced-form
model (18), as a simpler linear approximation to the microfounded model.

21In Appendix G.3, we show that (19) can be microfounded in a simple model based on Calem et al. (2021). In
the model, appraisers have a convex cost of biasing appraisals upwards, and receive some linear side benefit – for
example, from increased future business – to the extent that they are able to increase the amount that buyers can
borrow on the loan. In this model, appraisals bunch at sale prices, because appraisers face positive costs, but no
benefit, of biasing appraisals upwards past the transaction price, since the transaction price then binds in (12), and
further increases in A do not affect the amount that can be borrowed.
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4.2 Model Outcomes

Optimal behavior in the model is described by buyers’ optimal target loan size choice l and

buyers’ optimal decision about whether to continue or renege on the transaction for each

possible value of a. The following theorem characterizes optimal buyer behavior.

Theorem 1. For any parameter settings, and for any target loan size l, there is an optimal

appraisal cutoff ā (l), which is the unique value that satisfies:

ω (ā, l) = −βTu′2ζP +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (20)

where ω (a, l) is defined as:

ω (a, l) ≡ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
+ u′2β

T
(
1 + r (l)

)T
P max [0, l − φa]

(21)

The buyer optimally continues with the purchase for any a > ā (l), and reneges on the

transaction for any a < ā (l). The buyer chooses target loan size l to solve:

l∗ = arg max
l

(
−βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω

(
ā (l) , l

))
dFa (a)

)
(22)

The proof of Theorem 1, and further properties of the buyer’s choice problem, are de-

scribed in Appendix G.4. In words, Theorem 1 states the following. Conditional on any

target loan size l, buyers will continue the transaction if the house appraises to at least

ā (l), and will renege otherwise. The cutoff ā (l) is the value of the appraisal such that the

consumer is just indifferent between continuing with the transaction and making a higher

down payment, thus receiving the LHS of (20); and reneging, thus receiving the RHS of (20),

which is negative the cost ζ multiplied by house prices and period-2 marginal utility, plus

the expected value from buying a new house.

To find the optimal loan size target, (22) states that buyers simply maximize expected

utility from the second-stage problem over l. In Appendix G.5, we derive a first-order condi-

tion for optimal loan choice. The buyer faces a tradeoff: larger loan sizes smooth consumption

more effectively if the house over-appraises, but lead to higher interest rates, and also larger

under-appraisals and thus larger consumption penalties in period 1 upon under-appraisal.
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Buyers thus optimally choose a target loan size slightly smaller than they would if the house

never under-appraised, limiting consumption smoothing in order to decrease interest rates

and under-appraisal risk.

5 How Does Price Dispersion Affect Mortgage

Outcomes?

5.1 Calibration

We calibrate several parameters externally based on existing literature. We set the intertem-

poral elasticity of substitution (η) to 2, as chosen in standard lifecycle models. We set period

1 wealth to $60,000 and the house price to $200,000. We set β = 0.96. We set T = 7, ap-

proximately equal to the duration of a 30-year mortgage.22 The maximum LTV parameter

φ is set to 0.8, which is the most common regulatory threshold. We evaluate the sensitivity

of our estimates to varying some of these input parameters in Appendix H.1: while esti-

mated parameter values are somewhat sensitive to input choices, estimated counterfactual

quantities are relatively insensitive to using different inputs.

We then estimate the remaining parameters by matching model-implied moments to data

moments in the data, through a multi-step procedure.

Appraisal Distribution In our model, raw appraisal values araw are distorted only when

they are below the transaction price, araw < 1, since appraisers have no incentives to further

bias appraisals that are above the transaction price. Thus, the distribution of realized

appraisals, conditional on over-appraisal, should be identical to the distribution of araw.

Since we also assume raw appraisals have mean equal to the house price, we can thus estimate

σAi as:

σ̂a,i =

√
E
[
(ai − 1)2 | ai > 1

]
(23)

22Mortgages amortize and are prepayable, so their average duration is much lower than 30 years; see for example
Krishnamurthy and Vissing-Jorgensen (2011).
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That is, σ̂a,i is simply the square root of the conditional mean squared error of appraisals

around 1. Using expression (23), we calculate σ̂a,i for each decile of σ values.

Interest Rate Menu To calibrate the interest rate menu, r (l, σ) from expression (18),

we assume:

r (l, σ) = r̄ + θl (l − 0.8) + θσ (σ − σ̄) (24)

That is, the interest rate r (l) is equal to a constant r̄, plus θl times the target LTV, plus θσ

times idiosyncratic price dispersion. We set r̄, the interest rate for a mortgage with l = 0.8,

and σ = σ̄, to 1
β
− 1, which is approximately 4.17%. We set θl and θσ to their values in

Column 6 of Table 4.

Moment Matching There are four important parameters in the model that govern the

homebuyer’s tradeoff: the under-appraisal penalty (ψ), the cost of transaction failure (ζ),

the appraisal bias (b), and period-2 marginal utilty (u′2). We estimate these parameters by

matching three sets of data moments: transaction failure probabilities; “appraisal devia-

tions”, measuring the prevalence and magnitude of underappraisals which do not result in

failed transactions; and the relationship between final loan-to-price ratios and price disper-

sion.

We compute mortgage failure probabilities within each σ-decile of counties as the rate

of collateral-related mortgage failures.23 In the model, we calculate mortgage failure rates

as Fa (ā), the probability that the appraisal a falls below the boundary ā below which the

buyer reneges on the transaction.

We then compute average “appraisal deviations” within each σ-decile of counties:

ApprDevi = punderi E
[
1− ai | ai < 1

]
(25)

ApprDevi is the quantity plotted in Panel (b) of Figure 2: it is the product of the under-

appraisal probability and the expectation of the percentage deviation of appraisal prices to

sale prices conditional on under-appraisal. Figure 2 shows ApprDevi is strongly related to

23To be precise, we calculate the mortgage failure rate as collFailurec
mortgagec

, where collFailurec is the total number of

collateral-related mortgage failures in county c, from the HMDA data, and mortgagec is the total number of mortgage
applications in county c.
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price dispersion, since underappraisals are more likely to occur, and tend to be larger, in

high-σ areas. Since we only observe appraisals on successful transactions in the data, we

obtain the corresponding moment in the model by calculating ApprDevi in expression (25)

conditional on appraisal values that do not result in transaction failure.24

Finally, we use the implied relationship between LTP and price dispersion from Column

3 of Table 5 as a target moment. We compute this in the model by running a simple OLS

regression of the model-predicted average final loan size lfinal on price dispersion σ, where

one σ-decile is one data point.

Methodology and Identification With 10 σ-deciles, we have 21 moments in total: 10

failure probabilities, 10 appraisal deviations, and a single lfinal-to-σ regression coefficient.

The GMM problem is thus overidentified; so we choose parameters to minimize a weighted

sum of moment errors. We set relative weights on each of the failure probability moments

equal to the inverse of the approximate variances of each moment. For example, the ratio

of weights on the squared moment errors of the 2nd and 8th σ-deciles is equal to the ratio

of the estimated variances of these moments. Analogously, we use inverse variance relative

weights for the appraisal deviation moments. We show how these variances are calculated

in Appendix H.2.

We then manually increase the weight on the lfinal-to-σ regression coefficient target mo-

ment substantially, and increase the weights on the appraisal deviation moments, relative

to what would be implied by pure inverse variance weighting. We increase the regression

coefficient’s weight because, while it is estimated less precisely than the fail probability and

appraisal deviation moments, it is economically important in pinning down the level of the

costs facing buyers. We increase the appraisal deviation moments’ weights because, while

they are estimated around 10 times less precisely than fail probabilities, we judged the model

fit to be better economically when the relative errors on these two sets of moments are sim-

ilar, though this choice has a small quantitative effect on counterfactuals. Thus, our GMM

24In principle, we could target either ApprDevi, or the probability of under-appraisal, in each σ-decile. We cannot
target both, as the model has difficulty simultaneously matching both moments. This is because, as we show in panel
(c) of Figure 7, the distribution of appraisal values, conditional on under-appraisal, is fairly long-tailed in the data.
However, in the model, the consumer tends to renege on the transaction when appraisal values are too low, so the
conditional appraisal distribution in the model is truncated from below. Thus, if we match appraisal probabilities
in the model and the data, ApprDevi would tend to be much higher in the data than in the model. We choose to
target the conditional appraisal deviation, because this appears to be a better measure of the downward pressure
that under-appraisals generate for sale prices compared to the simple under-appraisal probability.
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procedure essentially requires the model to match the lfinal-to-σ relationship in the data

well, and conditional on this, finds parameters which minimize a weighted sum of squared

errors on the fail probability and appraisal deviation moments.

The intuition behind how these moments pin down the levels of our parameters is as

follows. The magnitude of ApprDevi depends on the shape of the appraisal distribution,

which is controlled largely by the appraisal bias parameter b. The relative magnitude of the

penalty parameter ψ, compared to the cost of transaction failure ζ, pins down the relative

prevalence of transaction failures, versus successful transactions with under-appraisals and

larger down payments. In particular, if the failure cost ζ is low relative to the under-appraisal

consumption penalty ψ, consumers have higher incentives to let transactions fail because re-

starting with a new house allows them to re-draw a new appraisal. The absolute levels of

the costs ψ and ζ determine the level of the model-predicted lfinal-to-σ relationship: when

the costs of underappraisal are high, consumers have a stronger incentive to precautionarily

lower loan size to alleviate underappraisal costs, so the lfinal-to-σ relationship is stronger.

Finally, the level of u′2 controls the relationship between σ and consumers’ demand for credit:

u′2 must be in a certain range to rationalize why consumers in high σ-deciles borrow less.

To calculate confidence intervals of estimated parameters and counterfactual quantities,

we run a parametric bootstrap of the moment inputs. We repeatedly resample moment values

from independent normal distributions centered at their baseline values, with analytical

approximations to variances calculated in Appendix H.2. In each bootstrap sample, we also

resample the σ̂a,i values, also using its approximated variance. For each bootstrap sample,

we then re-run the moment matching procedure to estimate bootstrapped moment values,

and re-run all counterfactual analyses.

5.2 Parameter Estimates and Model Fit

Table 7 presents the estimates of model parameters. Our point estimate of u′2 is 0.00243,

with relatively tight standard errors. This implies that the Euler equation ratio,

∂U

∂c1

1

βT (1 + r)T u′2
,
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has a point estimate of 1.030. That is, if the consumer could borrow more at rate r, she would

gain 2.99% more utility on the margin from borrowing a dollar in period 1 and repaying it

in period 2. Thus, the consumer in our model is liquidity constrained: she wants to increase

borrowing, but higher interest rates and underappraisal risk limit her ability to do so. Our

estimate of appraisers’ bias parameter (b) is 0.086, with fairly tight standard errors.

Our point estimate of the underappraisal consumption penalty (ψ) is 2.782, and the

transaction failure cost (ζ) is estimated to be 0.583. These parameter estimates have larger

standard errors than other parameter estimates because they are identified mainly based on

the lfinal-to-σ regression coefficient, which we estimate less precisely than other empirical

moments. In terms of the magnitude, we construct a microfoundation for ψ in Appendix

G.1 to show that a high value of ψ is defensible if we view underappraisal as a large, sudden

consumption shock to the consumer that cannot be saved for in advance.

The ζ estimate seems implausibly large. This is partly a modelling artifact driven by

our assumption that the cost of transaction failures is borne in the second period. Future

payments are more costly than present payments in the model, due to both discounting and

the curvature of current-period utility. Quantitatively, in our estimated model, a consumer

suffers the same utility loss from paying a fraction ζ of house prices in the future, and paying

a penalty of around $13,054, or around 6.53% of house prices, in the homebuying period.25

This number is still fairly large. The estimation infers high values of ψ and ζ because

underappraisals in the model must be fairly costly – that is, ψ must be large – in order to

rationalize the observed loan-size-to-dispersion relationship. But, since underappraisals are

fairly rare, consumers can avoid underappraisals with high probability if they are willing

to simply buy a different house when their current house underappraises. To rationalize

the fact that we observe many successful transactions with underappraisals empirically, the

estimated model thus infers that it must be quite costly for consumers to “redraw” appraisals

by choosing purchasing a new house. In our counterfactuals, our estimates of ψ and ζ

influence our “compensating variation” estimates of the dollar cost of price dispersion to

consumers: if the true values of ψ and ζ are lower than our estimates here, the inferred costs

of price dispersion to consumers will also be lower than our estimates.

25It is somewhat more intuitive to think of the failure penalty being charged in the present period in reality. We
charge the failure penalty in linear second-period consumption terms purely for model tractability: we cannot allow
the failure penalty to be incurred in the current model because this would cause the model to no longer be recursive;
the model would thus much less tractable.
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Figure 7 evaluates model fit. Panel (a) shows the estimated appraisal standard deviations

σ̂a,i. In the data, the standard deviation of appraisals is monotonically higher for higher σ-

deciles, and we feed this directly into the model. Panel (b) shows the CDF of appraisals in

the model and the data for the fifth σ-deciles. The appraisal distribution in the model has

slightly thinner left and right tails compared to the data, but matches the observed bunching

of appraisals at 1, the relatively low probabilities of under-appraisal, and the relatively large

probabilities of over-appraisal.

Panels (c) and (d) show, respectively, the values of the two sets of targeted moments,

mortgage failure probabilities and appraisal deviations, in the model and the data. Em-

pirically, both moments are monotone with respect to changes in σ: counties with higher

idiosyncratic price dispersion have monotonically higher collateral-related mortgage failures

and higher appraisal deviations. The fitted model matches the average level of both mo-

ments fairly well; the main difference is that the relationship between both outcomes and σ

is slightly stronger in the model than in the data.

Panel (e) shows the relationship between σ and average final loan size in the model,

alongside a line with slope equal to the lfinal-to-σ regression coefficient, normalized to have

the same mean as the model series. These two lines are very close to each other, due to the

fact that we set a high moment error weight on the the lfinal-to-σ coefficient in our moment

matching procedure.

5.3 Decomposition of Channels

Using our model, we evaluate how each of the two channels contributes to driving variation

in loan rejections, LTPs, and interest rates. Figure 8 presents our results. In short, we find

that the appraisal risk channel has a larger effect on loan-to-price ratios and rejection rates,

whereas the collateral recovery channel has a large effect on interest rates.

We evaluate the magnitude of the collateral recovery channel by allowing lenders’ rate

menus to vary according to σ but shutting down the appraisal risk channel by setting ap-

praisal noise constant across σ-deciles – Araw ∼ N(P, σ̄) for all deciles – and re-calculating

mortgage market outcomes. Analogously, to evaluate the magnitude of the appraisal risk

channel, we shut down the collateral recovery channel, making lenders’ rate menus constant
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across σ-deciles, but assuming that the appraisal distribution varies across σ-deciles.

Panel (a) shows results on the interest rate-price dispersion relationship. We find that

this relationship is mainly driven by the collateral recovery channel. Shutting down the

appraisal risk channel leaves the σ-to-interest-rate relationship quantitatively unaffected.

Shutting down the collateral recovery channel in fact causes the relationship to change sign:

consumers in high-dispersion areas receive lower interest rates. This is because, facing higher

appraisal noise, consumers lower target loan sizes, and as a result also receive lower interest

rates. However, this effect is more than 10 times smaller than compared to the collateral

recovery effect.

Panel (b) analyzes mortgage failures. We find that appraisal risk is the main driver, with

an effect more than 100 times the magnitude, and of opposite sign, to the collateral recovery

effect. Panel (c) analyzes loan-to-price ratios, which are also mostly driven by appraisal risk.

We further divide the effect of appraisals on LTP into two separate effects: an ex-ante effect

based on borrowers choosing lower-target LTPs, and another ex-post effect based on realized

appraisals. The ex-post effect captures the fact that, when appraisals are noisier, the gap

between lfinal and l tends to be larger, putting downward pressure on lfinal. We find that

ex-ante appraisal risk is the main driver, with ex-post appraisal pressure playing a negligible

role.

6 Policy Counterfactuals and Implications

6.1 Price Dispersion and Consumer Willingness-to-Pay: A Com-

pensating Variation Approach

How much does price dispersion affect consumers’ willingness-to-pay for houses? We can

give a partial answer to this question using an approach based on the idea of compensating

variation. In our model, a consumer in the ith σ-decile achieves expected utility equal to the

optimized objective value in (22), given price dispersion in her σ-decile. This optimized value

tends to be lower when σ increases, since the consumer then faces higher interest rates and

greater under-appraisal risk. The optimized value will increase if house prices P are lower,
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since consumers pay a lower amount for the same house. Thus, a natural way to quantify

the utility costs of price dispersion is to ask: if consumer A faces higher price dispersion

than consumer B, how much lower would consumer A’s house price have to be, relative to

consumer B, for A to achieve the same utility as B?

We apply this methodology to evaluate the cost of price dispersion in each σ-decile,

relative to the lowest-dispersion σ-decile. Formally, we first calculate homebuyers’ expected

utility in the 1st σ-decile. Then, in every other σ-decile, we calculate expected utility for

different values of the house price P , and find how much P would have to decrease for

these homebuyers to achieve the same utility as homebuyers in the first σ-decile. The

results, displayed in Figure 9, show that the utility costs of price dispersion are significant.

Households in the 5th σ-decile would need to face 0.658% lower house prices, and consumers

in the 10th σ-decile would need 1.679% lower prices, to attain the same expected utility as

consumers in the 1st σ-decile.

Liquidity discounts. Beyond consumer WTP, a natural question is how dispersion

affects house prices : if dispersion is higher in county X than county Y, and houses are

otherwise identical, how much lower would equilibrium prices for identical houses be in

county X? We refer to this price difference as a liquidity discount. Liquidity discounts are

much harder to estimate than consumer WTP differences. A decrease in price dispersion

increases consumer WTP, essentially shifting the housing demand curve outwards. How much

a demand shift impacts equilibrium prices depends on the elasticities of housing supply and

demand. Aggregate housing supply elasticity estimates exist in the literature (Saiz, 2010),

but this elasticity likely varies substantially across regions and over time. The elasticity of

housing demand is similarly difficult to estimate, and we do not believe the literature has

reached consensus even on an aggregate value of this quantity.26

Under some assumptions, however, WTP changes are an upper bound for liquidity dis-

counts. If house supply is perfectly elastic, house prices always equal production costs,

so liquidity discounts are 0. If house supply is perfectly inelastic, prices equal marginal

consumers’ WTP for houses, so WTP changes pass through one-to-one to prices. With im-

26Our model cannot produce a nontrivial housing demand elasticity because we assume a representative consumer.
If we assumed any fixed “outside option” level of utility the consumer would receive from not purchasing houses, house
demand would thus be perfectly elastic at the price which makes the consumer indifferent between house purchasing
and the outside option.

36



perfectly elastic supply and demand, liquidity discounts should thus fall between 0 and the

“compensating variation” amounts that we calculate in Figure 9.

6.2 Implications for Desktop Appraisals

Our findings have implications for the shift from human appraisals to automated appraisals.

In 2021, the FHFA announced that banks and mortgage lenders could use automated ap-

praisal software in place of human appraisals.27 There are a few different ways this could

affect mortgage market outcomes. Automated appraisals may not display human appraisers’

tendency to upwards bias under-appraisals towards the transaction price: this would tend

to increase the prevalence and size of under-appraisals. Automated appraisals may also be

less noisy than human appraisals, for example if they can more easily use a large amount of

historical sales data; this would tend to decrease underappraisal pressure. We evaluate both

potential effects within our calibrated model.

In Panel A of Table 8, we show results assuming that automated appraisals completely

remove human biases from appraisals, thus setting b = 0. This scenario has severe negative

effects on mortgage credit availability. Mortgage failures dramatically increase, by 10.540pp

in the first σ-decile, and 13.561pp in the tenth: this represents a 4-7x increase in the rate

of mortgage failures, relative to the human-appraiser status quo. Borrowers respond to

increased underappraisal risk by decreasing target loan size, by an amount ranging from

2.360pp to 2.773pp; as a result, interest rates in fact slightly decrease. In column 4, we apply

the “compensating variation” approach of Subsection 6.1: we find that house prices would

have to decrease by 5.347% in the first σ-decile to 6.262% in the tenth, in order for consumers

to be indifferent between automated appraisals and the human-appraiser status quo. Thus,

in this scenario, automated appraisals would have large utility costs for consumers.

Thus, naively implementing automated appraisals, without accounting for the human

tendency to cluster appraisals at the transaction price, could dramatically decrease mortgage

credit availability. This is in principle easy to account for; under the assumptions of our

model, if automated appraisals were simply uniformly shifted upwards by a fraction b of

27https://www.americanbanker.com/news/fhfa-will-make-desktop-home-appraisals-a-permanent-option
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transaction prices, then outcomes would be unchanged from human appraisals.28

On the other hand, if automated appraisals decreased appraisal variance, mortgage credit

availability would improve. We demonstrate this in another counterfactual, assuming that

automated appraisals have 50% lower variance than human appraisers, within each σ-decile.

To focus on the variance reduction effect, we continue to remove human biases by setting

b = 0, but also shift the mean of appraisals upwards in each σ-decile, to keep underap-

praisal probability unchanged from the baseline calibration. Thus, in this counterfactual,

automated appraisers produce underappraisals with equal probability to human appraisers,

but underappraisals are on average smaller when they occur.

The results are shown in Panel B of Table 8: this scenario modestly improves mortgage

credit availability. Mortgage failures decrease slightly, by 0.713pp in the first σ-decile and

1.600pp in the tenth. Buyers increase target loan size in response to reduced underappraisal

risk, by around 0.109pp to 0.166pp. Since buyers are better off with automated appraisals,

they are willing to pay slightly higher prices for identical houses; column 4 shows that this

“compensating variation” ranges from 0.364% to 0.694% of house prices.

Thus, automated appraisals may have positive or negative effects on mortgage credit

availability, depending on how they are implemented. Removing human biases, ceteris

paribus, would dramatically increase underappraisal pressure; reducing appraisal variance,

while compensating for human biases, would modestly reduce underappraisal pressure and

increase mortgage credit availability.

7 Conclusion

An important policy goal of housing regulators in the US is to increase housing affordability.

In this paper, we have shown that house value uncertainty affects mortgage credit provi-

sion in the US residential real estate market. Houses differ substantially in their degree

of idiosyncratic price dispersion, which affects their value as collateral and thus the avail-

28Note that if we simply shifted automated appraisals upwards uniformly, overappraisals would be more frequent
and larger when they occur. In our model, this has no effect on outcomes, because loan size is constrained by the small
of the transaction price and the appraisal price, so overappraisals do not affect outcomes. In practice, if systematic
overappraisals are viewed as undesirable, another policy which is equivalent within our model would be to add b to
appraisals only if they are originally below the transaction price, thus mimicking the behavior of human appraisers.
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ability of mortgage credit. This effect is partially due to a classical channel involving the

fair pricing of collateral recovery risk, and partly through a novel channel involving the ef-

fect of idiosyncratic price dispersion on appraisal noise and its interaction with regulatory

constraints.

An interesting implication of our results is that urban policy, in shaping characteristics

of the housing stock, may also influence mortgage credit availability. If urban policymakers

encouraged rebuilding and renovation, and set zoning rules in a way that promotes the

development of newer and more standardized housing, the aggregate value uncertainty of the

housing stock would decrease. Lenders would lend more against these houses, potentially

contributing to increasing homeownership rates for low-income households, even if these

policies do not decrease house prices. Interestingly, this is a channel through which housing

stock renewal disproportionately benefits low-income households and first-time homebuyers,

since these households tend to be most reliant on credit for homeownership.

39



References

Adelino, Manuel, William B McCartney, and Antoinette Schoar, 2020, The role of government and

private institutions in credit cycles in the us mortgage market, Technical report, National Bureau

of Economic Research.

Agarwal, Sumit, Gene Amromin, Itzhak Ben-David, Souphala Chomsisengphet, Tomasz Pisko-

rski, and Amit Seru, 2017, Policy intervention in debt renegotiation: Evidence from the home

affordable modification program, Journal of Political Economy 125, 654–712.

Agarwal, Sumit, Gene Amromin, Souphala Chomsisengphet, Tim Landvoigt, Tomasz Piskorski,

Amit Seru, and Vincent Yao, 2022, Mortgage Refinancing, Consumer Spending, and Competi-

tion: Evidence from the Home Affordable Refinance Program, The Review of Economic Studies

rdac039.

Albrecht, James, Pieter A. Gautier, and Susan Vroman, 2016, Directed search in the housing

market, Review of Economic Dynamics 19, 218 – 231, Special Issue in Honor of Dale Mortensen.

Andersen, Steffen, Cristian Badarinza, Lu Liu, Julie Marx, and Tarun Ramadorai, 2022, Reference

dependence in the housing market, American Economic Review 112, 3398–3440.
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Figures

Figure 1. Stylized Facts about Price Dispersion Estimates

(a) Zipcode Dispersion: 2010 vs 2020 (b) Dispersion by Demographics

Notes: Panel (a) plots zipcode dispersion in 2020 against zipcode dispersion in 2010. Panel (b)
shows the price dispersion difference between black-dominant zipcodes (black population share
greater than 50%) and non-black dominant zipcodes (black population share less than 50%) con-
ditional on income, as well as the price dispersion difference between high-income zipcodes and
low-income zipcodes conditional on race. High and low income zipcodes are defined as above and
below yearly median level, respectively. To obtain the values, we regress zipcode price dispersion on
dummy variables for a zipcode being black-dominant, and whether the zipcode has below-median
income; the figure shows the estimated coefficients and confidence intervals on these dummy vari-
ables. The sample includes annual zip level observations from 2000 to 2020. Zipcode demographic
information is obtained from the 2008-2012 American Community Survey.
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Figure 2. Price Dispersion and Appraisals

(a) Appraisal to Price Distance (b) Appraisal Deviation

(c) Over-Appraisal Deviation

Notes: Panel (a) of this figure shows a binned scatter plot, where the y-variable is Appraisal-

to-Price distance, defined as |ai−pi|
pi

. In panel (b), the y-variable is the appraisal deviation,

defined as the product of the appraisal gap, and a dummy for under-appraisal, |ai−pi|
pi

1(ai <

pi). In panel (c), the y-variable is the average over-appraisal percentage conditional on over-
appraisal. In all panels, the x-variable is zipcode price dispersion. We divide all loans into 50
buckets based on zipcode house price dispersion. The sample includes loan level observations
from 2000 to 2020. Appraisal values are obtained from the Corelogic LLMA data.
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Figure 3. Home Purchase - Mortgage Origination Diagram
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Figure 4. County Level House Price Dispersion and Credit Access

(a) Total Rejection (b) Rejection due to Collateral

(c) Loan-to-Price

Notes: This figure shows the correlation between county level house price dispersion and various
credit access outcomes. The y-variable in panels (a) and (b) are residualized county-level mortgage
rejection rates and county-level rates of rejection due to collateral-related reasons, respectively,
obtained from the HMDA data. We take the residuals of regressions of county-level rejection rates,
or rates of rejection due to collateral-related reasons on county average log house price, credit score,
and year fixed effects. In panel (c), the y-variable is the average county-level LTP residual from a
regression of county average LTP on county-level house prices. The y-variable is obtained from the
Corelogic LLMA data, and values are in percentage points. The underlying samples in all three
panels include annual county observations from 2000 to 2017.
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Figure 5. Property Level Mortgage Menu by House Price Dispersion

Notes: This figure shows the mortgage price menu (rate-LTP pair) by zip-level house price
dispersion. The y-values are interest rate residuals from a regression of mortgage rates
on borrower FICO, FICO-squared, DTI, DTI-squared conforming or jumbo indicator, and
origination month fixed effects. The dots represent the average mortgage rate in each LTP
bucket. The shaded area indicates a 95% confidence interval. The sample includes loan level
observations of conventional loans in the Corelogic LLMA from 2000 to 2020.
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Figure 6. Cross-Sectional Heterogeneity

(a) Rejection (b) LTP

(c) Interest Rate

Notes: This figure presents how rejection rate, down payment, and mortgage rate would
change if the house’s price dispersion decreased to be equal to the bottom decile of price
dispersion in our dataset. The x-axis are five equal-sized zipcode median income buckets,
where zipcode median income is obtained from 2008-2012 American Community Survey.
The y-variable is the impact on mortgage rejection rate in Panel (a), the impact on LTP in
Panel (b), and the impact on interest rate in Panel (c). To obtain these values, we calculate
the difference between a house’s price dispersion and the bottom decile of price dispersion,
and then multiply it respectively by the estimated effect of price dispersion on mortgage
rejection (column 4 of Table 3), by the estimated effect on LTP (column 6 of Table 5), and
by the estimated effect on mortgage rate (column 4 of Table 4). We find the average values
in each zipcode income quintile.
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Figure 7. Model Fit

(a) Appraisal Noise (b) Appraisal-to-Price (c) Probabilities of Mortgage Failure

(d) Appraisal Deviation (e) Model Predicted LTP

Notes: Panel (a) shows estimated appraisal standard deviations σa on the y-axis, and estimated idiosyncratic
price dispersion σ on the x-axis. Panel (b) shows the distribution of appraisal-over-price ratios a, in the data and
the fitted model, for the 5th σ-decile (that is, counties with values of σ between the 40th and 50th percentiles).
Panel (c) shows transaction failure probabilities in the data and in the fitted model. Panel (d) shows ApprDevi,

which is defined as punderi E
[
a
p
− 1 | under

]
, in the data and in the fitted model. Panel (e) shows average values of

lfinal from the model, along with a line with slope equal to the lfinal-to-σ regression coefficient we use as a target
moment, normalized to have mean equal to the model-predicted loan-to-price ratio.
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Figure 8. Decomposition of Channels

(a) Interest Rate (pp) (b) Mortgage Failure (pp)

(c) Loan-to-Price (pp)

Notes: Panel (a), (b), and (c) respectively decompose the effect of price dispersion on interest
rates, mortgage rejection rates, and loan-to-price ratios, into components attributable to the
collateral recovery channel, and the appraisal channel. In all panels, the y-axis is the change
in the outcome variable when sigma increases by 1. Note that the units differ from those in
our reduced-form results, which standardize sigma: to convert the results in this figure to be
comparable to the reduced-form results, all numbers should be multiplied by the standard
deviation of sigma, which is 0.11. To calculate the effect of the collateral recovery channel,
we shut off the effect of the appraisal channel by setting the appraisal standard deviation
parameter to a constant across σ-deciles, but allowing the interest rate menu to vary across
σ-deciles. Analogously, to calculate the effect of the appraisal risk channel, we shut off
the collateral recovery channel, by assuming the rate menu does not vary across σ-deciles,
allowing only appraisal standard deviations to vary. In Panel (c), we further decompose the
appraisal risk channel into an ex-ante effect, which measures how target loan size l varies
with interest rate buckets, due to buyers’ precautionary decisions to decrease loan size; and
an ex-post effect, which measures how the gap lfinal− l changes with σ, which measures how
realized under-appraisals limit loan size. Note that, in both panels (a) and (b), the y-axes
are not the same in the collateral recovery and appraisal risk panels.
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Figure 9. Price Dispersion and Compensating Variation in Prices

Notes: This figure presents the “compensating variation” in prices needed to offset the
costs of price dispersion; that is, in each σ-decile, we show how much prices would have to
decrease, in order for consumers to attain the same expected utility as in the first σ-decile.
Error bars show 95% confidence intervals, calculated from 200 bootstrap moment samples,
as we describe in Appendix H.2.1.
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Table

Table 1: Summary Statistics

This table reports summary statistics for the three main datasets: the property sample from the
Corelogic Deed and Tax datasets, the loan sample from the Corelogic LLMA dataset, and the
mortgage application sample from the HMDA. The Corelogic samples span the time period 2000
to 2020. The HMDA sample spans 2000 to 2017.

N Mean Stdev P25 Median P75

Property Level Sample

Loan to Price 29M 85.42 15.65 80.00 89.68 98.19
Price Dispersion 29M 0.24 0.11 0.17 0.23 0.30
Sale Price (Thousand) 29M 273.02 224.93 140.30 215.00 332.50
Mortgage Amount (Thousand) 29M 222.40 163.53 121.80 182.16 275.79
Building Age 29M 27.12 25.95 6.00 20.00 42.00
Square Footage 29M 1,961.57 2,982.11 1,363.00 1,774.00 2,365.00

Loan Level Sample

Loan to Price 4.8M 85.48 14.98 80.00 90.00 98.19
Zip Price Dispersion 4.8M 0.25 0.08 0.19 0.24 0.29
Sale Price (Thousand) 4.8M 280.83 242.84 143.50 218.00 340.00
Appraised to Price Ratio 4.8M 1.03 0.19 1.00 1.00 1.02
Mortgage Amount (Thousand) 4.8M 227.66 170.25 124.00 185.18 283.00
FICO 4.8M 725.35 61.39 681.00 735.00 778.00
Debt-to-Income 4.8M 37.23 11.28 29.85 38.00 44.69

Mortgage Application Sample

Rejection Rate 49M 15.86 36.53 0.00 0.00 0.00
Rejection due to Collateral Reasons 49M 1.95 13.83 0.00 0.00 0.00
Zip Price Dispersion 49M 0.26 0.08 0.20 0.25 0.31
Applicant Income (Thousand) 49M 102.35 193.47 47.00 72.00 114.00
Loan-to-Income 49M 242.18 6,896.19 135.83 227.78 316.51
County Credit Score 49M 667.19 22.16 650.30 666.18 684.14
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Table 2: Determinants of House Price Dispersion

This table presents the association between house price dispersion and house features (Panel A)
and zipcode market condition (Panel B). All continuous variables are normalized by their standard
deviations. We define a house as recently renovated if it has been renovated within 5 years before
the transaction year. The sample includes house transactions from 2000 to 2020. Standard errors
are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

Panel A: House Features

Estimated Price Dispersion
(1) (2) (3) (4) (5)

Building Age 0.04*** 0.04*** 0.04*** 0.04***
(0.002) (0.002) (0.002) (0.002)

Recent Renovation -0.01*** -0.01***
(0.003) (0.003)

Benchmark: Square-Footage < 1281
[1282,1601] -0.03*** -0.03*** -0.02***

(0.002) (0.002) (0.002)
[1602,1970] -0.03*** -0.03*** -0.02***

(0.003) (0.003) (0.003)
[1971,2544] -0.02*** -0.02*** -0.00

(0.004) (0.004) (0.003)
> 2544 0.01** 0.01** 0.03***

(0.005) (0.004) (0.004)
Benchmark: Bedrooms < 4

=4 -0.01*** -0.01***
(0.001) (0.001)

>4 0.01*** 0.01***
(0.002) (0.001)

Log House Price -0.48*** -0.48*** -0.51*** -0.51*** -0.37***
(0.028) (0.028) (0.025) (0.025) (0.021)

Log House Price Squared 0.50*** 0.50*** 0.51*** 0.51*** 0.38***
(0.029) (0.029) (0.025) (0.025) (0.022)

County-Year FE X X X X X
R2 0.33 0.33 0.26 0.27 0.35
Observations 29M 29M 29M 29M 29M

Panel B: Zipcode Market Conditions
Zipcode Price Dispersion

(1) (2) (3) (4)

Gini Index 0.01*** 0.01***
(0.001) (0.001)

Population Density -0.01*** -0.01***
(0.003) (0.002)

Vacancy Share 0.03*** 0.03***
(0.002) (0.002)

Year FE X X X X
R2 0.02 0.02 0.08 0.09
Observations 276,079 276,079 276,079 276,079
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Table 3: Mortgage Rejections and Zip House Price Dispersion

This table presents loan level regression results about mortgage rejections. The outcome variable
in Panel A is an indicator that equals 100 if a loan is rejected and 0 otherwise. The outcome
variable in Panel B is an indicator that equals 100 if a loan is rejected due to collateral reasons
and 0 otherwise. In both panels, columns 1-3 report OLS results, and columns 4-6 report 2SLS
results. The explanatory variable of interest is zipcode house price dispersion in columns 1-3
and is the predicted zipcode price dispersion in columns 4-6, all scaled by its standard deviation.
IV construction is described in Section 3.2.1. IV first stage results are presented in Table A2.
Borrower/Loan controls include zipcode house price, credit score and the squared term, log income,
loan type, and loan to income ratio and its square term. The sample includes loan level observations
from 2000 to 2017. Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and
10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Panel A: Rejection

Zip Price Dispersion 1.40*** 1.42*** 0.81*** 2.31*** 2.30*** 2.22***
(0.093) (0.103) (0.116) (0.221) (0.234) (0.433)

Local Controls X X X X X X
County-Year FE X X X X X X
Lender-Year FE X X X X X X

Rejection Mean 15.9% 16.4% 16.2% 15.9% 16.4% 16.2%
R2 0.16 0.18 0.17 - - -
Observations 47M 34M 3.6M 47M 34M 3.6M
Underidentification t-stat 77.87 74.65 19.77
Underidentification p-value 0.00 0.00 0.00
Weak identification t-stat 30.75 29.81 13.74

Panel B: Rejection Due to Collateral

Zip Price Dispersion 0.50*** 0.54*** 0.38*** 0.79*** 0.86*** 0.73***
(0.036) (0.038) (0.054) (0.065) (0.073) (0.095)

Local Controls X X X X X X
County-Year FE X X X X X X
Lender-Year FE X X X X X X

Rejection due to Collateral Mean 2.0% 2.0% 2.3% 2.0% 2.0% 2.3%
R2 0.05 0.05 0.09 - - -
Observations 47M 34M 3.6M 47M 34M 3.6M
Underidentification t-stat 77.87 74.65 19.77
Underidentification p-value 0.00 0.00 0.00
Weak identification t-stat 30.75 29.81 13.74
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Table 4: Price Dispersion and Cost Menu

This table presents loan-level regression results about the “cost menu”, that is, interest rates
controlling for LTPs. The outcome variable is loan-level interest rate, in bps. Columns 1-3 present
OLS results, and columns 4-6 present 2SLS results. Columns 1 and 4 use the full sample. Columns
2 and 5 use securitized conventional loans (i.e., non-FHA loans that are securitized). Columns
3 and 6 use portfolio conventional loans (i.e., non-FHA loans that are held on lenders’ balance
sheets). The explanatory variable of interest is zipcode house price dispersion in columns 1-3 and
is the predicted zipcode price dispersion in columns 4-6, all scaled by its standard deviation. IV
construction is described in Section 3.2.1. IV first stage results are presented in Table A2. Borrower
and loan controls include log house price, FICO score, FICO squared, LTV, LTV squared, DTI,
DTI-squared, and loan type. The sample includes loan level observations from 2000 to 2020.
Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance,
respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Zip Price Dispersion 0.89*** 1.31*** 1.26*** 1.42*** 1.68*** 3.03***
(0.123) (0.109) (0.372) (0.306) (0.331) (0.683)

LTP 0.69*** 0.58*** 1.89*** 0.69*** 0.58*** 1.88***
(0.090) (0.039) (0.186) (0.090) (0.039) (0.184)

Borrower and Loan Controls X X X X X X
Origination Month FE X X X X X X
County-Year FE X X X X X X
R2 0.87 0.88 0.87 - - -
Observations 4.8M 2.3M 1.1M 4.8M 2.3M 1.1M
Underidentification t-stat 68.08 71.05 60.10
Underidentification p-value 0.00 0.00 0.00
Weak identification t-stat 23.17 20.77 18.35
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Table 5: Property-Level House Price Dispersion and LTP

This table presents property-level regression results on the relationship between price dispersion
and mortgage LTPs. Columns 1-3 present OLS results. Columns 4-6 present IV results. In all
columns, the outcome variable is the loan level loan-to-sale-price ratio. The explanatory variable of
interest in columns 1-3 is property-level house price dispersion, scaled by its standard deviation, and
is the predicted price dispersion in columns 4-6. IV construction is described in Section 3.2.1. IV
first stage results are presented in Table A2. Controls include the transaction price of the property,
mortgage type, mortgage term, and resale indicator. The sample includes property transaction
level observations from 2000 to 2020. Standard errors are clustered at county level. ***, **, *
represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Price Dispersion -0.43*** -0.21*** -0.23*** -1.25*** -1.30*** -1.30***
(0.042) (0.036) (0.033) (0.118) (0.108) (0.104)

Controls X X X X X X
Transaction Date FE X X X X X X
County-Year FE X X X X
Lender-Year FE X X
R2 0.34 0.36 0.40 - - -
Observations 28M 28M 28M 28M 28M 28M
Underidentification test statistic 175.44 162.02 165.68
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 189.39 202.32 197.81
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Table 6: Ex-Post Performance

This table analyzes the relationship between price dispersion and the ex-post performance of mort-
gage loans. Columns 1 and 4 use full sample. Columns 2 and 5 use securitized conventional loans
(i.e., non-FHA loans that are securitized). Columns 3 and 6 use portfolio conventional loans (i.e.,
non-FHA loans that are held on lenders’ balance sheets). The outcome variable is an indicator for
default, which is equal to 100 if the loan defaults in two years since origination, and 0 otherwise.
The explanatory variable of interest is zipcode house price dispersion in columns 1-3 and is the pre-
dicted zipcode price dispersion in columns 4-6, all scaled by its standard deviation. Non-reported
controls include house price, loan type, and the squared-terms of FICO, DTI, and LTV. The sample
includes all loans originated from 2000 to 2018. Since we need at least two-year performance to de-
fine default, we remove loans originated after 2018 from the full sample for this analysis. Standard
errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Zip Price Dispersion 0.21*** 0.15*** 0.19*** 0.03 -0.05 0.06
(0.054) (0.036) (0.063) (0.119) (0.117) (0.141)

Interest Rate 2.18*** 2.39*** 1.68*** 2.18*** 2.40*** 1.69***
(0.125) (0.175) (0.131) (0.127) (0.178) (0.132)

FICO -65.97*** -60.93*** -56.81*** -65.97*** -60.92*** -56.81***
(0.703) (1.042) (1.639) (0.702) (1.040) (1.642)

DTI 0.37*** -0.06 0.33*** 0.36*** -0.07 0.32***
(0.056) (0.062) (0.055) (0.054) (0.060) (0.053)

LTV -3.76*** -3.63*** -2.49*** -3.76*** -3.62*** -2.48***
(0.155) (0.152) (0.166) (0.153) (0.149) (0.166)

Origination Month FE X X X X X X
County-Year FE X X X X X X
Property & Loan Controls X X X X X X
Observation 4.3M 2.1M 0.9M 4.3M 2.1M 0.9M
R2 0.15 0.13 0.19 - - -
Underidentification test statistic 68.56 71.39 61.46
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 22.84 20.17 18.62
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Table 7: Model Estimates

This table presents the estimates of model parameters. Panel A reports values of externally cali-
brated parameters. Panel B reports values of estimated parameters. The parentheses in Panel B
show 95% confidence intervals, calculated from 200 bootstrapped moment samples, as we describe
in Appendix H.2.1.

Panel A: Externally Calibrated Parameters

Description Parameter Value

Intertemporal elasticity of substitution η 2
Wealth at time of home purchase W1 $60,000
House price P $200,000
Discount factor β 0.96

T 7
Maximum LTV parameter φ 0.8

Panel B: Parameters Calibrated to the Data or through Moment Matching

Description Parameter Value

Appraisal Standard Deviation σ1, ..., σ10 See Figure 7
Search cost ζ 0.583

(0.306, 1.016)
Appraisal Bias b 0.086

(0.086, 0.088)
Penalty rate on consumption ψ 2.782

(2.022, 3.794)
Marginal utility of next period consumption u′2 0.00243

(0.00227, 0.00250)
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Table 8: Automated Appraisals Counterfactuals

This table shows how different versions of automated appraisals influence market outcomes, coun-
terfactually within our calibrated model. In Panel A, we show results assuming that automated
appraisals simply remove human biases from appraisals. In Panel B, we show results assuming that
human biases are removed, the appraisal mean is shifted within each σ-decile such that the proba-
bility of underappraisal is unchanged, and the variance of appraisals is halved, so underappraisals
are on average smaller when they occur. In each panel, the first two columns show the percentage
point changes in final loan-to-price ratios lfinal and interest rates, relative to the baseline outcome,
and the third column shows the net increase in mortgage failure probability. The last column shows
the “compensating variation” in prices, relative to the status quo of human appraisers, needed to
make the consumer indifferent to the shift to automated appraisers. Quantities in parentheses re-
flect 95% confidence intervals, calculated from 200 bootstrapped moment samples, as we describe
in Appendix H.2.1.

Panel A: Removing Bias

Loan-to-price Ratio (pp) Interest Rate (pp) Fail Probability (pp)
Required Compensating

Price Change (%)

1st σ-bucket -2.773 -0.052 10.54 -5.347
(-3.044, -2.367) (-0.057, -0.043) (9.188, 12.398) (-6.875, -3.914)

5th σ-bucket -2.616 -0.049 11.964 -5.786
(-2.827, -2.226) (-0.053, -0.04) (10.633, 13.905) (-7.463, -4.216)

10th σ-bucket -2.36 -0.044 13.561 -6.262
(-2.533, -2.035) (-0.048, -0.037) (12.145, 15.44) (-8.126, -4.536)

Panel B: Reducing Variance

Loan-to-price Ratio (pp) Interest Rate (pp) Fail Probability (pp)
Required Compensating

Price Change (%)

1st σ-bucket 0.166 0.003 -0.713 0.364
(0.062, 0.241) (0.001, 0.005) (-0.752, -0.66) (0.201, 0.595)

5th σ-bucket 0.105 0.002 -1.079 0.5
(0.052, 0.229) (0.001, 0.004) (-1.119, -0.997) (0.278, 0.81)

10th σ-bucket 0.109 0.002 -1.6 0.694
(0.023, 0.197) (0, 0.004) (-1.684, -1.496) (0.39, 1.086)
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A Measurement

A.1 fc and gc Functions

In order to estimate price dispersion, we need to model prices as a flexible function of

characteristics. We do this using generalized additive models, which are a class of flexible

nonparametric models; Wood (2017) describes the theory of GAMs. We use the mgcv

package in R to implement the GAMs. We use this class of functions because, in our

simulations, they provide a better fit to house prices than standard high-order polynomials.

We implement a two-stage regression using general additive model (GAM) on a county

level. Instead of a high order polynomial, GAM implements cubic spline basis (or tensor

product for multivariates) to fit the regressors. Therefore, to avoid overfitting, we first throw

out counties with less than 400 observations. In order to estimate the GAM, there needs

to be sufficient variation in characteristics; thus, we only keep counties with at least 10

unique values of each of the following characteristics: geographic information (latitude and

longitude), year built, square footage, and transaction date. We also normalize the months,

latitude, and longitude, building square feet, and year built. Furthermore, we winsorize

geographic information, year built and building square feet.

We then estimate the following generalized additive model:

fc (xi, t) = hf,latlongc (t, lati, longi) + hf,sqftc (t, sqfti) +

hf,yrbuiltc (t, yrbuilti) + hf,bedroomsc (t, bedroomsi) + hf,bathroomsc (t, bathroomsi)

The functions hf,latlongc , hf,sqftc , and hf,yrbuiltc are tensor products of 5-dimensional cubic

splines in their constituent components: hence, for example, the hf,latlongc (t, lati, longi) is a

three-dimensional spline tensor product, with a total of 53 = 125 degrees of freedom. To

combat overfitting, the spline terms also includes a shrinkage penalty term on the second

derivative of the spline functions, with the smoothing penalty determined through generalized

cross-validation. The functions hf,bedroomsc and hf,bathroomsc interact dummies for a given house

having 1, 2, 3 or more bedrooms and 1, 2, 3 or more bathrooms respectively with cubic spline

basis in time.
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The functional form for gc (xi, t) in (2) is exactly analogous to fc (xi, t):

gc (xi, t) = hg,latlongc (t, lati, longi) + hg,sqftc (t, sqfti) + hg,yrbuiltc (t, yrbuilti) +

hg,bedroomsc (t, bedroomsi) + hg,bathroomsc (t, bathroomsi)

A.2 Repeat-Sales Estimation and Results

One possible concern regarding our analysis is that our measure of value uncertainty relies

heavily on our hedonic model (1) for house prices. To alleviate this concern, in this appendix,

we construct an alternative measure of value dispersion using a repeat-sales model. We

estimate the following regression specification:

pit = ηkt + µi + εit (A1)

where i indexes properties, k indexes counties, and t indexes months. Equation (A1) is a

repeat-sales model for house prices: log prices pit are determined by county-month fixed

effects ηkt, time-invariant house fixed effects µi, and a mean-zero error term εit. Specification

(A1) thus models log house prices as following parallel trends, plus error terms: if house A

sells for twice the price of house B in June of 2011, house A should sell for twice as much as

house B in June of 2017, and any deviation from this is attributed to the error term εit.

There are two additional concerns with measuring idiosyncratic dispersion using a repeat-

sales specification. First, the number of data points used to estimate each house fixed effect is

very low; thus, the estimated residuals ε̂2it will tend to be larger for houses which are sold more

times, because the house fixed effect γi is estimated more precisely. Second, (A1) implicitly

assumes that idiosyncratic price dispersion does not depend on the house holding period; a

concern is that there is a idiosyncratic price dispersion behaves partially like a random walk,

so the error terms may be systematically larger for houses that are sold less frequently.29

To alleviate the concern that our estimates of ε̂2it are mechanically driven by sale frequency

and time-between-sales, we purge ε̂2it of any variation which can be explained by tbsi and

salesi. First, we filter to houses sold at most four times over the whole sample period, with

29Note that Giacoletti (2021) and Sagi (2021) show that a large component of idiosyncratic dispersion does not
scale with holding period, for both residential and commercial real estate transactions.

2



estimated values of ε̂2it below 0.25. We then run the following regression, separately for each

county:

ε̂2it = hk (salesi, tbsi) + ζit (A2)

hk (salesi, tbsi) interacts a vector of salesi dummies with a fifth-order polynomial in tbsi.

The residual ζ̂it from this regression can be interpreted as the component of the house’s

price variance which is not explainable by salesi and tbsi. We then add back the mean of ε̂2it

within county k:

ε̂2TBSadj,it = ζ̂it + Ek
[
ε̂2it
]

(A3)

ε̂2TBSadj,it can be interpreted as the baseline estimates, ε̂2it, nonparametrically purged of all

variation which is explainable by a smooth function of salesi and tbsi. We then project

ε̂2TBSadj,it onto house characteristics and time, as in (2) in the main text, and take the pre-

dicted values as our house-level measure of idiosyncratic price dispersion, which we will call

σ̂2
RS,it.

In comparison to the hedonic model, the repeat-sales model in (A1) is able to capture ob-

servable and unobservable features of houses that have time-invariant effects on house prices.

Moreover, house fixed effects allow us to capture time-invariant house quality components

in a fully nonparametric way, alleviating concerns that the specific functional form we use in

(1) is driving our results. A weakness of specification (A1) are that it is unable to capture

any features of houses which have time-varying effects on house prices.

Figure A1 shows a binscatter of σ̂2
RS,it against our baseline estimates σ̂2

it. There is a

very strong positive relationship. The repeat-sales and hedonic methodologies for measur-

ing house value uncertainty are econometrically quite different; the fact that they produce

very correlated results at the house level suggests that both measurement strategies are

picking up fundamental value uncertainty among properties, rather than simply reflecting

misspecification in the model we use for house prices.

Next, we repeat our regression specifications utilizing σ̂2
RS,it as our measure of house price

dispersion. Table A9 shows the results; all of our baseline results continue to hold, using

σ̂2
RS,it as our measure of house price dispersion.
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B Data Cleaning

Corelogic tax & deed data. We clean the datasets using a number of steps. First,

we use only arms-length new construction sales or resales of single-family residences, which

are not foreclosures, which have non-missing sale price, date, APN, and county FIPS code

in the Corelogic deed data, and which have non-missing year built and square footage in the

Corelogic tax data. We use only data from 2000 onwards, as we find that Corelogic’s data

quality is low prior to this date. Even after throwing out pre-2000 data, we find that some

counties have very low total sales for early years, suggesting that some data is missing. To

address this, we manually filter out some early county-years for which the total number of

sales is low.

We also filter out “house flips”, as well as instances where reported sale price seems

anomalous. If a house is ever sold twice within a year, we drop all observations of the

house. Most of these kinds of transactions appear to be either flips, which are known to be

a peculiar segment of the real estate market (Bayer et al., 2020; Giacoletti and Westrupp,

2017), or duplication bugs in the data, where a single transaction is recorded twice or more.

To filter for potentially anomalous prices, if we ever observe a property whose annualized

appreciation or depreciation is above 50% for any given pair of sales, we drop all observations

of the property. Finally, if a house is ever sold at a price which is more than 5 times higher

or lower than the median house price in the same county-year, we drop all observations of

the house from our dataset.

Our model of prices involves a fairly large number of parameters, so we filter to counties

with a fairly large number of house sales in order to precisely estimate the model. Thus, we

filter to counties with at least 1,000 house sales remaining, and with at least 10 sales per

month on average, after applying the filtering steps described above.

Corelogic LLMA data. We filter to only purchase loans, excluding refinancing loans.

As in the Corelogic Deed data, we calculate the loan-to-price ratio as the mortgage loan

amount, divided by the house transaction price. We dropped observations with empty prop-

erty zipcode, FICO score, initial interest rate, mortgage amount, origination date, sale price,

and back-end ratio. We divide the market into conforming and non-conforming loans, using

a flag provided by corelogic. We dropped all observations with balloon loans, and with loan
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to price ratio > 100. We kept observations with full documentation and fixed interest rates.

We dropped observations with outliers. Specifically, we dropped all observations lower than

the 1st percentile and higher than the 99th percentile with respect to loan to price and initial

interest rate.

C Drivers of Idiosyncratic Price Dispersion

We discuss a number of factors and theoretical forces that may drive dispersion, and explain

why these theories have similar implications for mortgage credit provision.

Information asymmetry. Lenders of secured loans must be concerned about adverse

selection. This is especially the case in the consumer credit market, where houses and used

cars, for example, have diverse characteristics, some of which are difficult to measure, and

homeowners have better information about these characteristics (Kurlat and Stroebel, 2015;

Stroebel, 2016). Houses with more hard-to-measure characteristics tend to have higher value

uncertainty. Thus, lenders who lend against houses with higher value uncertainty may worry

more about adverse selection because the owners have more information advantage about

the house than the lenders.

Search frictions. The housing search literature has argued that house transaction

prices are not determined in a fully competitive and frictionless market. Prices appear to

depend not only on house characteristics: the transaction price of a house appears to be

causally influenced by characteristics of the buyer and seller. Sellers who are more patient

achieve higher sale prices, by setting higher list prices and keeping houses on the market for

longer; this has been shown using instruments for seller patience, such as homeowners’ equity

position (Genesove and Mayer, 1997; Guren, 2018) and homeowners’ nominal losses since

purchase (Genesove and Mayer, 2001). Dispersion in different buyers’ values for the same

house may also drive house price dispersion: using data from Norwegian housing auctions,

Anundsen et al. (2020) shows that the standard deviation of the ratio between buyers’ bid

prices and appraisal values is approximately 7.9%. Other factors, such as the experience of

the realtor selling the house, also appear to affect house sale probabilities and prices (Gilbukh

and Goldsmith-Pinkham, 2024).
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Other factors. We also note that there are other possible housing market frictions

which generate price dispersion. The literature has studied many different models, such as

random search (Wheaton, 1990), directed search (Albrecht et al., 2016), and price posting

(Guren, 2018).

We do not take a stance on this paper on the particular theoretical microfoundation

of price dispersion, since it is not crucial for studying the effects of dispersion on credit

provision. Price dispersion decreases credit provision by increasing lenders’ expected losses

upon foreclosure, and by making appraisals noisier and thus appraisal constraints more

binding. Both effects occur regardless of the particular theoretical microfoundation of prices

dispersion.

If we observed all characteristics of houses that market participants observed, and our

functional forms for house prices were fully flexible, our measurement strategy would fully

filter out the effects of house characteristics, capturing only price dispersion generated by

housing market frictions. In practice, in addition to frictional price dispersion, our estimates

are likely to be confounded by two main factors. First, our estimation cannot account

for the effects of house characteristics unobserved in our data, but observed by market

participants. Second, our functional forms in (1) may not be flexible enough to capture

the true conditional expectation function; model misspecification will thus contribute to our

estimates of price dispersion. Both of these effects serve as confounds we would like to

filter out from our analysis, since if lenders use the correct price model with the full set

of observables, frictional price dispersion should affect mortgage lending decisions, but not

errors attributable to unobservables or model misspecification.

We believe these confounds are unlikely to drive our main results, for the following rea-

sons. We observe a rich set of characteristics, which are essentially all the features that mort-

gage lenders observe for houses. A limitation of our data is that we only have time-invariant

characteristics and do not observe renovations and time variation in house characteristics.

However, Giacoletti (2021) uses data on remodeling expenditures for houses in California and

finds quantitatively small effects on estimated price: accounting for renovations decreases

the estimated standard deviation of returns by only around 2% of house prices.
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D Implications of Controlling for House Prices

We briefly discuss the implications of controlling for house prices in our main empirical

specifications. Conceptually, when we control for prices, β is identified by comparing, for

example, zipcode A to zipcode B, which have similar average prices, but B has higher price

dispersion. However, in most models, price dispersion affects the level of house prices: if

two zipcodes have similar house quality, but one has higher price dispersion, average prices

should be lower in the high-dispersion zipcode. Thus, in our example, if zipcode A and

B have identical average prices, zipcode B should have higher average house quality than

zipcode A.

Regressing LTP on price dispersion controlling for prices, and not controlling for house

quality, makes sense in a model in which the distribution of house prices captures all features

of houses that are relevant for lenders’ decision problem. We construct a simple model which

links lending decisions to the mean and variance of house prices in Appendix G.2. Since

lenders do not directly interact with the house they lend against, in principle they should

only care about house characteristics to the extent that they change the level or dispersion

of house prices. Controlling for house prices alleviates the possibility that lenders may have

a preference to have systematically higher or lower LTPs for high-priced houses. It is not

necessary to control for house quality in addition to house prices, since any two houses

with the same mean and variance of house prices are equivalent to lenders, regardless of the

particular characteristics of the two houses.

A simpler reason why controlling for prices should not substantially matter for our results

is that, when house prices are higher, loan size should increase, but it is not obvious whether

loan-to-price ratios should increase or decrease. In most lending models, such as our model

in Appendix G.2, the overall level of prices has no effect on loan-to-price ratios. To test that

our results are not driven by this choice, in Table A10, we estimate our main specifications

without controls for prices; all results are qualitatively and quantitatively similar to the main

text.
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E Economic Magnitude of the Effects on Loan Size

In this appendix section, we illustrate that a small percentage change in the down payment

requirement can lead to material impacts on homeownership, considering the low level of

annual savings by the marginal home buyers in the US. To do this, we assume that young

people between age 25 to 35 with income levels in the bottom quartile among their peers in

the same state are the marginal home buyers facing down payment constraints; and assume

that they save 20% of their annual income.

We calculate the additional down payments required based on the estimated impact of

price dispersion on LTP in column 6 of Table 5, house prices and price dispersions of all

transacted houses recorded in the Corelogic Deeds data, and households incomes obtained

from the 2015 US census microdata. In particular, for each transacted house, we calculate its

“excess price dispersion” (∆σ) as its price dispersion relative to the bottom decile of house

price dispersion in the US. We use the bottom decile house price dispersion in the US as a

convenient proxy for the lowest price dispersion a house could achieve in the US. We then

find the state average excess price dispersion and house prices and use them to calculate the

additional down payment needed for households living in each state:

∆Down Payments = 1.3%× ∆σs
0.11

× House Prices (A4)

where ∆σs
0.11

is the state-average excess price dispersion expressed in terms of the number of

standard deviations and 1.3% is the estimated impact of one standard deviation higher price

dispersion on LTP.

Finally, we express the impact of price dispersion on loan size as the share of annual

savings required to cover the additional down payments, ∆Down Payments. We approximate

the level of annual savings of marginal home buyers in each state using 20% of the annual

income level of individuals between age 25 to 35 in a state.

In Figure A3, we plot ∆Down Payments divided by our approximated annual savings of

the marginal home buyers for each state. As shown in this figure, the required additional

down payment exceeds twice the annual savings in several states and are above 80% of

annual savings in most states. This simple numerical example implies that the impact of
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price dispersion on loan size plausibly delays homeownership by a half to a full year.

F Robustness Checks

F.1 Bunching Below Conforming Loan Limits

We test whether the effect of price dispersion on mortgage LTP and cost menu is driven by

home buyers lowering the loan-to-price ratio to be eligible for securitization with the par-

ticipation of government-sponsored enterprises (GSEs). Specifically, conforming mortgages

must be below the conforming loan limits, which vary across regions and time. Conforming

loans are much easier to sell than non-conforming loans, also known as jumbo loans, because

of the participation of GSEs. GSEs insure default risks of loans they purchase and securitize,

providing subsidized credit to GSE mortgage borrowers.

We test if our main findings are robust to the sub-sample of house transactions with sale

prices below local conforming loan limits. These house transactions are not subject to the

concern about bunching below conforming loan limit as the transaction prices are already

below the conforming loan limit. Table A4 reports the results. The results show that our

main finding is not driven by home buyers’ incentive to keep their loan amount below the

conforming loan limit. Among houses with prices below the conforming loan limit, houses

with higher price dispersion are financed with smaller loans given the same interest rates

than houses with lower price dispersion. The result holds in both OLS and IV settings.

F.2 Lender Market Power

Our main results in Tables 3, 4, and 5 are unlikely to be driven by lender market power

because our empirical analysis exploits within county-year variation. If lenders essentially

compete at the county level, buyers within a given county-year likely face roughly the same

degree of lender market power, so within-county-year variation in outcomes we observe is

unlikely to be driven by lender market power.

However, a concern is that only a smaller number of lenders are willing to lend against
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houses with high value uncertainty, giving these lenders market power to extract rents from

home buyers of such houses but not from other home buyers purchasing houses with lower

value uncertainty. To address this concern, we first investigate whether the market seg-

ment for houses with high value uncertainty indeed has fewer lenders than the low-value

uncertainty market segment, within the same county-year.

In Table A5, we examine the correlation between price dispersion and lender HHI (columns

1-4) as well as the number of lenders (columns 5-8). We divide each county-year into four

market segments based on the price dispersion of the underlying properties in Corelogic Deeds

transaction records and collapse the sample into county-year-price dispersion bin level. In

this sample, we have four observations in each county-year that indicate the average price

dispersion, the number of lenders, and the lender HHI index for each price dispersion bin in

a given county-year. We drop county-year-price dispersion bins with less than 50 transac-

tions. We find that there is not a statistically significant positive correlation between market

power and house price dispersion within county-years. In fact, in some specifications, lender

market power appears to be negatively correlated with house price dispersion: we observe

more lenders lending against houses with higher price dispersion, yielding lower lender con-

centration in the higher price dispersion segments within a county-year. Therefore, although

suggestive, the evidence is not consistent with the hypothesis that lenders are able to earn

monopolist rents on buyers of high-dispersion houses but not on buyers of low-dispersion

houses in the same county-year.

To further isolate the effect of collateral value uncertainty from the effect of lender market

power, in Tables A6-A8, we conduct subsample analyses for houses located in zipcodes with

more lenders willing to lend to versus houses located in zipcodes with fewer lenders willing to

lend to. In column 1 and 4 of these tables, we construct zipcode lender HHI index and include

it as a control. In Tables A6 and A8, we further include lender-county-year fixed effects.30

The inclusion of lender-county-year fixed effects allows us to compare houses financed by the

same lender in a given county-year.

The results suggest that lender market power indeed reduces credit supply at the extensive

margin: within the same county-year, mortgage rejection rates are higher in zipcodes with

30In the HMDA and the Corelogic Deeds records, we observe lender identities. But we do not observe lender
identity in the Corelogic LLMA dataset. Thus, we cannot control for lender-related information for the cost menu
analysis in Table 4.
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more concentrated mortgage supply, and loan sizes tend to be smaller in these zipcodes.

However, the effects of price dispersion on loan rejection, loan sizes, and interest rates remain

significant and have similar magnitudes in these tables after controlling for mortgage supply

concentration.

We then classify zipcodes as high or low concentration based on their lender HHI indexes

compared to the median value among all zipcodes within a county-year. Columns 2 and 5

report the subsample analysis results using transactions in low HHI zipcodes, and columns 3

and 6 report the subsample analysis results using transactions in high HHI zipcodes. In all

these tables, we confirm that the effects of price dispersion on loan rejection, loan sizes, and

interest rates are quantitatively similar across zipcodes with different lender concentration

levels. The results suggest that the main findings of this paper — the effects of price

dispersion on mortgage provision — are not driven by the correlation between price dispersion

and lender market power within a county-year.

G Proofs and Supplementary Material for Section 4

G.1 Microfounding the Penalty Cost Parameter ψ

This appendix constructs a microfoundation for the “penalty cost” parameter ψ, which

implies that increases in down payments caused by under-appraisals decrease consumption

more than one-for-one. We do a simple calculation to illustrate that the penalty cost can

be fairly large in reasonable models. Suppose an agent lives for T periods, and maximizes

discounted CRRA utility over consumption:

T∑
t=1

βt
c1−η
t − 1

1− η

s.t. at+1 + ct = yt + at (1 + r)

Income yt is exogeneous and nonrandom. As is standard in the lifecycle literature, we set

η = 2. We set β = 0.95, r = 1
β
− 1, so that the optimal solution without uncertainty involves

consuming equal amounts in every time period. We set T = 10, so a time period can be
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thought of as representing a year, and consumers can be thought of as have 10 years to save

for a home purchase at time T . We set yt = 10 for each period.

We compare two cases. The first is an anticipated shock to income in period T , whose

realization is known in period 1. The anticipated shock can be thought of as the homebuyer

choosing a lower target loan size: since she plans to make a larger down payment, she

can consumption-smooth for this in advance. The second is an unanticipated shock, whose

realization is only known in period T . This can be thought of as the homebuyer targeting a

large loan size and anticipating that under-appraisals may force her to borrow less than the

target loan size. This kind of shock is more costly because the consumer can consumption-

smooth the first kind of shock in expectation, but cannot condition her consumption on the

under-appraisal. We will show that the second kind of shock decreases total utility more

than the former.

For both cases, we suppose that yT = 10 and yT = 0 with equal probability, and yt = 10

for all periods t 6= T . In the anticipated case, we assume yT is known when the buyer

makes consumption decisions in earlier periods. Thus, to solve this problem, we simply solve

a zero-uncertainty finite-horizon dynamic program for the consumer for each value of yT ,

and then take the average lifetime value at t = 0 from each case. In the unanticipated

case, the consumer’s value function in period T − 1 is the average of her value if yt = 10

and if yt = 0. The rest of the consumer’s problem can be solved with standard backwards

induction. We solve both cases using the standard endogenous gridpoint method for solving

lifecycle problems.

We compare the consumer’s lifetime value in both the anticipated and unanticipated

income decrease cases to the baseline case where yt = 10 for all time periods. In the

anticipated case, lifetime value drops by 0.0361, whereas in the unanticipated case lifetime

value drops by 0.050. Hence, under these parameter settings, an unanticipated shock is

roughly 40% more costly, in utility terms, than an anticipated shock of the same magnitude,

due to the inability to condition early-period consumption on the realization of the shock.

Thus, unanticipated shocks to consumption can have much larger effects on utility than

equally sized anticipated shocks. Our consumption penalty parameter ψ is a reduced-form

way to capture this effect.
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G.2 Microfounding the Mortgage Rate Menu

In this appendix, we construct a microfounded model showing how mortgage interest rates

depend on targeted loan size and price dispersion. We assume mortgage rates arise from

competition between profit-maximizing lenders. Suppose that, once a homebuyer has pur-

chased the house with a mortgage, the buyer will default on the mortgage at rate δ. If the

buyer defaults, the lender incurs a proportional cost Pc to foreclose the house, reflecting

foreclosure discounts and other hassle costs of foreclosing. The foreclosure price is a function

of the initial transaction price and a random component, εF , which has standard deviation

σF that depends on idiosyncratic price dispersion. Thus, the final recovery value is as follows:

F = P (1− c+ εF ) (A5)

Thus, for a non-recourse mortgage, lender’s expected loss conditional on default is:31

Loss = E
[
P
(
l −max [l, 1− c+ εF ]

)]
= PE

[
max

[
0, l − (1− c+ εF )

]]
(A6)

Lender’s expected loss is increasing in σF because the lender can recover at most l and bears

the cost when the foreclosure price is less than l.32 Thus, when the variance of the foreclosure

price is larger, the lender’s expected losses on loans is higher.

Now, suppose lenders have cost of funds ρ, and let r represent the mortgage interest

rate. Lenders’ profit if buyers do not default is Pl (r − ρ). In a competitive equilibrium, the

menu of interest rates and loan size must be set such that the lender will break even on any

mortgage-rate pair:

Pl (1− δ) (r − ρ) = δPE
[
max

[
0, l − (1− c+ εF )

]]
(A7)

The LHS of (A7) is lenders’ expected profit, which is the product of mortgage size l, the re-

payment probability (1− δ), and the mortgage spread (r − ρ). The RHS is lenders’ expected

31Mortgages are recourse in some states, but wage garnishment and other methods for collecting debt from buyers
after the house has been sold are expensive, and buyers cannot be collected from if they file Chapter 7 bankruptcy.

32We assume that if the borrower defaults, it happens before Period 2. This assumption is reasonable because buyers
are more likely to default in early stage when they have less equity in the house. If we relax this assumption, the loss

function will be as follows, which will result in similar results: Loss = E

[
P
(
l(1 + ρ) − max

[
l(1 + r), 1 − c+ εF

])]
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losses conditional on default, multiplied by the default probability δ.

Expression (A7) defines a menu of (l, r) pairs available to buyers. As we increase idiosyn-

cratic price variance, thus increasing the variance of prices upon foreclosure σF , the menu of

(l, r) pairs shifts to be worse for the borrower. Formally, when εF is normally distributed,

the RHS of (A7) is always increasing in σF .33 Thus, holding l fixed, increasing σF must

cause r to increase. This rationalizes our observations in Figure 5 and Table 4. Expression

(18) in the main text can be thought of as a linear approximation to this menu.

G.2.1 Mortgage Rate Menu Calibration

We next do a simple calibration, to show that this microfoundation can also quantitatively

rationalize the relationships between interest rates, loan size, and price dispersion observed

in the data. Essentially, in the calibration, we will group the data into buckets with different

default rates δ. We will estimate σF based on price dispersion in the data, and we will choose

a foreclosure discount c to minimize the distance between the model and data interest rate

menus. We will then show that the fitted model, optimizing over a single parameter, can

fit the empirical relationships between loan size l, price dispersion σF , and interest rates r,

simultaneously for many levels of default rates.

We restrict the sample to all portfolio loans. We first group the data into four FICO

score bins, Excellent (800-850), Very Good (740-799), Good (670-739), and Fair (580-669),

indexed by f . We split each FICO score bin into high- and low-dispersion counties, indexed

by d, and also split loans into LTP bins, from 60-65, 65-70, up to 80. For each FICO score

bucket f , dispersion case d, and LTP bin l, we estimate average residualized interest rates

rfld in our sample of loans. Since the level of rfld is meaningless after residualization, we

normalize by subtracting the mean rate r̄f within each FICO bucket f :

r̃fld = rfld − r̄f (A8)

Since we normalize within FICO buckets, we preserve the relationships between r̃fld, loan

size l, and price dispersion d within each FICO bucket. The residuals r̃fld are essentially the

33Note that the RHS of (A7) is equal to δ times the value of a European call option on l− (1 − c+ εF ) with strike
0; the value of such a call option is always increasing in volatility.
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points in the interest rate menu of Figure 5, separate for each of the four FICO buckets.

Next, we describe how we simulate value of model-predicted interest rate menu points

r̃modelfld (c), given the foreclosure discount c. We assume that εF is normally distributed, with

mean 0 and variance σF . In each FICO score bin, we calculate a homogeneous value of δ

as the average delinquency rate across all loans. To determine σF in the high- and low-

dispersion areas, we calculate the average repeat-sales residual, as described in Appendix

A.2, separately for high-dispersion and low-dispersion counties.34 We find σF = 0.0941 for

low-dispersion areas, and σF = 0.131 for high-dispersion counties. Given δ, σF , and loan

size l, for any value of the foreclosure discount c, we can calculate the interest rate spread

rmodelfld − ρ using (A7):

rmodelfld − ρ =
δE
[
max

[
0, l − (1− c+ εF )

]]
l (1− δ)

(A9)

where the expectation on the RHS of (A9) can be analytically calculated, since we assumed

εF is normally distributed. We can then calculate the model counterpart of the interest rate

residuals (A8), by subtracting the mean interest rate in each FICO bucket f :

r̃modelfld (c) = r (l, δ, c, σF )−
∑

l

∑
f r (l, δ, c, σF )∑
l

∑
f 1

=

(
r (l, δ, c, σF )− ρ

)
−
∑

l

∑
f r (l, δ, c, σF )− ρ∑

l

∑
f 1

(A10)

Note that (A10) implies that r̃modelfld does not depend on the choice of ρ, so we set an arbitrary

value of ρ in calculating r̃modelfld (c). We then choose a value of the foreclosure discount c

through generalized method of moments, to minimizes the squared distance between the

34We use repeat-sales residuals to estimate σF , rather than the hedonic model residuals in the main text, because
repeat-sales are closer to the thought experiment in the collateral recovery model. We are interested in, when a house
forecloses, how variable its price is relative to its purchase price, which is captured in a repeat-sales specification. If
a house has large errors in the hedonic model, but not the repeat-sales model – that is, a house has persistently high
values relative to its characteristics – this does not affect the variability of the house price relative to loan value upon
foreclosure, so this should not be included in εF .
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data residuals r̃fld, and the model residuals r̃modelfld :

c∗ = arg min
c

∑
l

∑
f

∑
d

wfd

(
r̃fld − r̃modelfld

)2

where, we set the weights wfld equal to the inverse of the standard deviation of residuals r̃fld

within each FICO and dispersion bucket; this is useful since, without weights, the errors in

the low-FICO buckets would dominate the GMM objective function, since rates are higher

and more variable when FICO scores are lower.

Our GMM estimate of the foreclosure discount c∗ is 0.2018. This is within the range

of foreclosure discounts estimate in the literature; for example, Pennington-Cross (2006)

estimate a foreclosure discount of 22%, and Zhou et al. (2015) estimate discounts ranging

from 11% to 26%.

Figure A4 illustrates the fit of the model. In the top two panels, we show the data and

model rate residuals, r̃fld and r̃modelfld , on the y-axis, against the LTP on the x-axis, separately

for low-dispersion (top left) and high-dispersion (top right) areas. Different colors represent

different credit score bins. In the data, the interest rate menu is steeper when FICO scores

are lower; the model is able to quantitatively match this feature of the data, with some errors

from the model-predicted interest rate menus being slightly too flat for low FICO bins. This

shows that the collateral recovery model is able to quantitatively explain the relationship

between interest rates and loan size.

To focus on the effect of price dispersion of credit, in the bottom panel of Figure A4, we

show the difference in interest rates between high- and low-dispersion cases, for each FICO

bucket and LTP; that is, each point in the bottom panel shows:

rlf,d=H − rlf,d=L (A11)

This is the difference between interest rates in high-dispersion and low-dispersion areas. In

other words, the solid green line in the bottom panel is equal to the difference between the

solid green line in the top right panel (rates for high-dispersion areas in FICO bin 4) and the

solid green line in the top left panel (rates for low-dispersion areas in FICO bin 4). In the

data, (A11) is larger when FICO scores are lower: dispersion affects mortgage credit more
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when default rates are higher. The model lines are very close to the data lines in Figure

A4, implying that the model produces a surprisingly good fit of the relationship between

default rates, and the relationship of price dispersion with mortgage interest rates: we are

able to match the average level of each of the lines, as well as the slope for the green line,

representing the lowest FICO scores.

Thus, we have shown that the interrelationships between interest rate residuals, LTP,

default rates, and price dispersion in the portfolio segment of our data are quantitatively

consistent with a simple collateral recovery model, under realistic parameter settings. The

simple model fits the data surprisingly well, given that we only optimize a single parameter,

the foreclosure discount c, in the model fitting.

G.3 Appraiser Incentives

This appendix constructs a microfounded model of appraiser behavior, which rationalizes our

assumptions on how appraisers bias appraisal prices in (19) of Subsection 4.1. Our model

is essentially a special case of Calem et al. (2021). The model also shares some similarities

with Conklin et al. (2020), but does not model competition between appraisers. Our model

is simplified and disregards some stylized facts shown in the literature: for example, we rule

out the possibility that house prices are renegotiated downwards when appraisals fall below

sale prices, a phenomenon which is analyzed in Fout et al. (2021).

From (12), the max loan the borrower can take out is:

Lmax = φmax (P,A)

Suppose that the house appraiser receives utility χLmax if the loan size is Lmax; that is, the

appraiser receives some side benefit χ, for every unit they can increase the borrower’s max

loan size by. This could capture, for example, possible repeat business incentives to produce

high appraisals, relationships with lenders (Eriksen et al., 2019), and other such forces.

We also assume that appraisers have some convex cost of biasing appraisals. If the “true”

raw appraisal price is Araw, and the appraiser generates appraisal A, then the appraiser incurs
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a cost:

c (A,Araw) = γ (A− Araw)2 (A12)

This cost is a reduced-form way to capture the fact that it is more costly for appraisers to

generate larger distortions in appraisal prices. The literature has documented that appraisers

have a number of methods to shift appraisal prices, such as misreporting certain house

attributes (Eriksen et al., 2024) and changing the weights on comparable sales used to

calculate appraisals (Eriksen et al., 2019). Appraisers would have to misreport attributes or

shift weights more to bias appraisals by larger amounts, which may be more costly to the

appraiser in terms of legal and reputational risk, or psychological costs.

Appraisers thus solve:

max
A

Uappr (A) = χLmax (A)− γ (A− Araw)2 (A13)

The optimization problem in (A13) has three distinct regions. First, if Araw > P , then the

appraiser cannot increase Lmax; it is thus optimal to set A = Araw.

Second, suppose Araw is very low. Conjecture that the optimal A is below P , so that the

first-order condition for optimality holds:

χ
∂Lmax
∂A

= 2γ (A− Araw)

This gives A− Araw = χφ
2γ

. Define b ≡ χφ
2γP

. We then have:

A− Araw = bP

Third, suppose that:

P (1− b) ≤ Araw ≤ P

In this range, we have that:
∂Uappr
∂A

> 0 ∀A < P

Hence, it is optimal for the appraiser to set A=P.
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We have thus shown that the appraiser’s optimal appraisal A∗ satisfies:

A∗ =


Araw + bP Araw ≤ (1− b)P

P (1− b)P < Araw ≤ P

Araw P < Araw

which is exactly (19) in the main text.

G.4 Proof of Theorem 1

Conditional on the appraisal value a, the buyer can choose to proceed with the loan and

purchase the property (continue), or renege on the offer and search for a new house and

loan (renege). Let the value of each option, with loan size l and appraisal a, be respectively

V (a, l, continue) and V (a, l, renege). The maximized value at any a and l is:

V (a, l) ≡ max
[
V (a, l, continue) , V (a, l, renege)

]
(A14)

We proceed to characterize V (a, l, continue) and V (a, l, renege).

G.4.1 Characterizing V (a, l, continue)

If the buyer proceeds with appraisal a, her utility is:

V (a, l, continue) =
c1−η

1 − 1

1− η
+ βTu′2c2 (A15)

From (15) and (16) in the main text, we have:

c1 = W1 − P (1− l)︸ ︷︷ ︸
Targeted consumption

−ψP max (0, l − φa)︸ ︷︷ ︸
Appraisal shortfall

(A16)

c2 = −
(
1 + r (l)

)T
P
(
l −max [0, l − φa]

)
(A17)
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where, as we discussed in the main text, we have set W2 = 0, since second-period wealth only

linearly shifts buyers’ utility and does not interact with any of the buyer’s decisions. In words,

(A16) states that the buyer’s consumption in period 1 is equal to her targeted consumption

W1 − P (1− l), minus an “appraisal shortfall” term max (0, l − φa). If a < l
φ
, then the

buyer must decrease her borrowing from l to φa; this decreases her period-1 consumption

by l − φa, multiplied by the price, and the penalty term ψ > 1. Since the final loan size

lfinal is smaller, this also decreases the amount that the buyer must pay back in period 2 by(
1 + r (l)

)T
P max [0, l − φa]. Substituting (A16) and (A17) into (A15), we have:

V (a, l, continue) =u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
− u′2βT

(
1 + r (l)

)T
Pl

+ u′2β
T
(
1 + r (l)

)T
P max [0, l − φa]

(A18)

where, u1 (c) ≡ c1−η−1
1−η . Recall that, in (21), we defined:

ω (a, l) ≡ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
+ u′2β

T
(
1 + r (l)

)T
P max [0, l − φa]

Using this definition, we have:

V (a, l, continue) = −u′2βT
(
1 + r (l)

)T
Pl + ω (a, l) (A19)

G.4.2 Characterizing V (a, l, renege)

If the buyer reneges, she receives:

V (a, l, renege) = −βTu′2ζP + Ea
(
V (a, l)

)
(A20)

In words, she pays a cost ζP in period 2 consumption, which costs −βTu′2ζP in utility terms.

She then returns to the beginning of the game, and thus receives the expectation of V (a, l)

over uncertainty in a. Expanding Ea
(
V (a, l)

)
, we have:

Ea
(
V (a, l)

)
=

∫ ∞
0

max
(
V (a, l, continue) , V (a, l, renege)

)
dFa (a) (A21)
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Now, note that V (a, l, renege), is independent of a, whereas from (A18), V (a, l, continue)

is increasing in a. Thus, there is some cutoff value ā (l), such that continuing is optimal for

all a > ā (l). At the boundary ā (l), continuing and reneging have equal value:

V (ā, l, renege) = V (ā, l, continue) (A22)

Substituting for V (ā, l, continue) using (A19), we have:

V (ā, l, renege) = −βT
(
1 + r (l)

)T
u′2Pl + ω (ā, l)

Substituting into (A21), we have:

Ea
(
V (a, l)

)
=∫ ∞

0

max
(
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l) ,−βT

(
1 + r (l)

)T
u′2Pl + ω (ā, l)

)
dFa (a)

Ea
(
V (a, l)

)
= −βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A23)

Substituting into (A20), we have:

V (a, l, renege) =

− βTu′2ζP − βT
(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A24)

G.4.3 Solving For ā

Having characterized V (a, l, renege) and V (a, l, continue), we now solve for ā. Plugging in

expressions for V (ā, l, renege) and V (ā, l, continue) into (A22), we have:

− βT
(
1 + r (l)

)T
u′2Pl + ω (ā, l) =

− βTu′2ζP − βT
(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a)
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Rearranging, and deleting the shared term βT
(
1 + r (l)

)T
u′2Pl, we have:

ω (ā, l) = −βTu′2ζP +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A25)

This is (20) of Theorem 1. Equation (A25) characterizes ā (l). In words, the LHS of (A25)

is the period-1 utility from continuing with the appraisal ā, suffering the cost from under-

appraising. The RHS is the expected value from reneging, which is the utility cost −βTu′2ζP ,

plus the expected period-1 utility from drawing a new appraisal. At ā, these must be equal.

We can rearrange (A25) to:∫
a>ā

(
ω (a, l)− ω (ā, l)

)
dFa (a) = βTu′2ζP (A26)

Since ω is increasing in a, the LHS of (A26) is strictly decreasing in ā, hence for any param-

eters, there is at most one value of ā which solves (A26). Note also that (A26) shows that

the optimal ā must satisfy:

ā <
l

φ

that is, the optimal cutoff ā must be low enough that it constrains the amount that can be

borrowed. To see this, note that from (21), we have:

ω (a, l) = u1

(
W1 − P (1− l)

)
∀a > l

φ

That is, when a > l
φ
, so the appraisal is high enough that it does not constrain borrowing,

then ω (a, l) is constant in a. As a result,∫
a>ā

(
ω (a, l)− ω (ā, l)

)
dFa (a) = 0 ∀ā ≥ l

φ

Hence, the LHS of (A26) is 0 for all ā > l
φ
; the RHS is positive, so it can never be optimal

to set ā > l
φ
.
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G.4.4 Optimal Loan Choice

Repeating (A23), we have that, given the optimal appraisal cutoff ā (l), the expected value

attained by the buyer, in expectation over uncertainty in a, is:

E
(
V
(
ā (l) , l

))
= −βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω

(
ā (l) , l

))
dFa (a) (A27)

The buyer picks l to maximize (A27); this is (22).

G.5 Comparative Statics: Optimal Loan Choice

To do comparative statics, we will apply the envelope theorem to the optimization framing

of the buyer’s choice problem. Define:

Γ (l) ≡ E
(
V
(
ā (l) , l

))
We can write Γ as:

Γ (l) =

max
ā

[∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l)

]
dFa (a) + Fa (ā)

[
Γ (l)− PβTu′2ζ

]]
(A28)

In words, the buyer receives −βT
(
1 + r (l)

)T
u′2Pl + ω (a, l) in the range [ā,∞] where the

buyer continues, and Γ (l) − PβTu′2ζ in the range [0, ā] where she reneges. In this framing,

since ā is chosen optimally given any l, we have:

∂

∂ā
max
ā

[∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2Pl + ω (a, l) dFa (a) + Fa (ā)

[
Γ (l)− PβTu′2ζ

]]
= 0

Hence, the envelope theorem applies; we have:
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dΓ

dl
=

∂

∂l

∫ ∞
ā∗
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l) dFa (a) + Fa (ā∗)

[
Γ (l)− PβTu′2ζ

]
Now, we can write Γ (l) substituting for ω (a, l) using (21), to get:

Γ (l) = max
ā

∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2Pl

+ βT
(
1 + r (l)

)T
u′2P max [0, l − φa]

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)]
dFa (a)

+ Fa (ā)
[
Γ (l)− PβTu′2ζ

]
(A29)

Now, note that:

l −max [0, l − φa] = min [l, φa]

Hence, we can write (A29) as:

Γ (l) = max
ā

∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)]
dFa (a)

+ Fa (ā)
[
Γ (l)− PβTu′2ζ

] (A30)

Differentiating with respect to l, we have:

dΓ

dl
=
∂

∂l

[ ∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a)

]
+ Fa (ā∗)

dΓ

dl

(A31)

dΓ

dl

(
1− Fa (ā∗)

)
=
∂

∂l

[ ∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a)

] (A32)
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Now, we can separately analyze the RHS, in the under-appraisal region a ∈
[
ā, l

φ

]
and the

over-appraisal region a ∈
[
l
φ
,∞
]
. In the over-appraisal region, we have min (l, φa) = l and

max (0, l − φa) = 0, hence:

∂

∂l

∫ ∞
l
φ

−βT
(
1 + r (l)

)T
u′2P min (l, φa)+u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =

∂

∂l

∫ ∞
l
φ

−βT
(
1 + r (l)

)T
u′2Pl + u1

(
W1 − P (1− l)

)
dFa (a) =

(
1− Fa

(
l

φ

))−TβT (1 + r (l)
)T−1

r′ (l)u′2Pl︸ ︷︷ ︸
Rate Change

+Pu′1
(
W1 − P (1− l)

)
− PβT

(
1 + r (l)

)T
u′2︸ ︷︷ ︸

Consumption Smoothing


−
[
−βT

(
1 + r (l)

)T
u′2Pl + u1

(
W1 − P (1− l)

)]
f

(
l

φ

)
︸ ︷︷ ︸

Nuisance Term

(A33)

The “rate change” term in (A33) represents the increase in interest payments in period 2 from

increasing r (l). The “consumption smoothing” term represents gains from more effectively

smoothing consumption over the two periods. The intuition is that, if the house over-

appraises, targeting a larger loan allows the buyer to borrow more, smoothing consumption,

and gaining on the margin the gap between period-1 and period-2 marginal utilities. The

“nuisance term” will cancel once we consider the under-appraisal region.

In the underappraisal region, we have min (l, φa) = φa and max (0, l − φa) = l − φa,
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hence:

∂

∂l

∫ l
φ

ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)+u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =

∂

∂l

∫ l
φ

ā

−βT
(
1 + r (l)

)T
u′2Pφa+ u1

(
W1 − P (1− l)− ψP (l − φa)

)
dFa (a) =∫ l

φ

ā

−TβT
(
1 + r (l)

)T−1
r′ (l)u′2Pφa︸ ︷︷ ︸

Rate Change

+ (1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
︸ ︷︷ ︸

Under−Appraisal Penalty

dFa (a)

+

−βT (1 + r (l)
)T
u′2Pφ

(
l

φ

)
+ u1

W1 − P (1− l)− ψP

(
l − φ

(
l

φ

))
 f ( l

φ

)
︸ ︷︷ ︸

Nuisance Term

(A34)

The “rate increase” term is analogous to (A33). The intuition behind the “under-appraisal

penalty” term is that, if the house eventually under-appraises, targeting a larger loan does

not increase the eventual borrowing amount, but increases the size of any under-appraisal,

causing the buyer to have to pay a penalty ψ − 1 > 0 of the incremental loan amount. The

“nuisance term” simply cancels with the corresponding term from (A33) once we add the

two components.

Combining (A33) and (A34), we have:

∂

∂l

∫ ∞
ā

u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =(

1− Fa (ā)
) (
−TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
+(

1− Fa
(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
−

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a) (A35)
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Finally, combining (A35) with (A32), we have:

dΓ

dl
=
(
−TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
+

1(
1− Fa (ā∗)

)[(1− Fa
(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
−

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a)

]

Setting dΓ
dl

to 0 and rearranging, we can write the FOC for optimal loan choice as:

(
1− Fa

(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
︸ ︷︷ ︸

Consumption Smoothing

=

(
1− Fa (ā∗)

) (
TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
︸ ︷︷ ︸

Rate Change

+

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a)︸ ︷︷ ︸

Under−Appraisal Penalty

(A36)

The LHS of (A36) captures the effect of increasing loan size on consumption smoothing. If

the house eventually appraises successfully, increasing targeted loan size by a dollar moves

consumption from period 2, where marginal utility is lower, to period 1, where it is higher.

The RHS captures the two costs of increasing l: first, the interest rate paid increases; second,

conditional on under-appraisal, increasing l does not change the final loan size, but increases

the consumption penalty from under-appraisal, since under-appraisals are larger. Hence, at

the optimal choice of l, the LHS is positive: the buyer would prefer to increase loan size

slightly, to shift consumption from period 2 to period 1, but is deterred from doing so by

the rate change and under-appraisal penalty effects.
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H Proofs and Supplementary Material for Section 5

H.1 Sensitivity Analysis

Our calibration takes strong stances on a number of parameters; a natural question is how

sensitive our quantitative conclusions are to these input values. To address this, we re-

calibrate our model varying various inputs, and show how results change. We consider

sensitivity to three parameters: η, the coefficient of relative risk aversion in the first period;

T , the assumed duration of the mortgage; and β, the annual discount rate. We test the

results from setting η equal to 1.5 or 3; from T equal to 5 or 10; and from β equal to 0.94

or 0.98. In each case, we re-estimate the model, rerunning the moment matching procedure

for the baseline moments, as well as all counterfactuals.

Table A11 shows how these alternative settings influence our parameter estimates. Other

than the bias parameter b, the precise parameter estimates are somewhat sensitive to the

calibrated values. However, Table A12 then shows how counterfactual outcomes vary across

these alternative settings: counterfactual outcomes in fact vary surprisingly little across

the different parameter settings. The first column shows the “compensating variation” for

consumers in the 5th σ-decile, as in Subsection 6.1. The second and third columns show

the change in mortgage failure probability, and compensating variation in prices, under the

version of the automated appraiser counterfactual in Panel A of Table 8, where we assume

automated appraisals remove human biases, but do not change appraisal variance. The

fourth and fifth columns show the change in failure probability, and compensating variation

in prices, under the counterfactual in Panel B of Table 8, in which automated appraisals are

calibrated to maintain the same failure probability, but reduce the variance by half. The

fail probability changes are very stable across specifications; the “compensating variation”

numbers vary, but by less than a factor of 2, across all specifications we have tried.

We interpret these results as showing that, while the values of our estimated parame-

ters vary somewhat with calibrated parameters, the estimated counterfactual quantities –

fail probability changes and “compensating variation” amounts – are in fact linked to our

input moments in a manner which is not very sensitive to the choices of calibrated model

parameters.
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H.2 Analytical Expressions for Variances of Empirical Moments

In order to derive our inverse-variance moment error weights for our GMM parameter esti-

mates, as well as to resample moments for our parametric bootstrap, we require estimates

of the sample variances of each of the moments we use as inputs to our GMM procedure; we

derive analytical expressions for these variances here.

Failure probabilities. Transaction failures are binary outcomes, so we think of the

number of transaction failures within each σ-decile as binomial, where we estimate the mean

to be p̂i. A consistent estimator of the variance of p̂i is thus:√
p̂i (1− p̂i)

n

Appraisal deviations. Calculating the standard error of appraisal deviations is some-

what more involved, and we construct an approximate upper bound for the variance. We

can write the appraisal deviation, (25), as:

ˆApprDevi = punderi E
[
1− ai | ai < 1

]
(A37)

Expression (A37) is a function of the empirical CDF of appraisals, F̂i (a), as:

ˆApprDevi =

∫ 1

0

(1− a) dF̂i (a) (A38)

We can use the “layer cake” representation of (A38) to facilitate standard error calculation.

Note that:
d

da
(1− a) F̂i (a) = −F̂i (a) + (1− a) f̂i (a)

Hence, by the fundamental theorem of calculus, we have:

0 = (1− a) F̂i (a) |10 =

∫ 1

0

(1− a) dF̂i (a)−
∫ 1

0

F̂i (a) da
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where we used that appraisals cannot be negative, so F̂i (0) = 0. This implies that:

ˆApprDevi =

∫ 1

−∞
(1− a) dF̂i (a) =

∫ 1

0

F̂i (a) da (A39)

The RHS of expression (A39) facilitates calculating the standard error of F̂i (a), since the

RHS is more directly a function of the empirical CDF F̂i (a). Approximating (A39) as a

Riemann sum, we have:
ˆApprDevi ≈

∑
a<1

F̂i (a) ∆a (A40)

for some grid of points a and interval lengths ∆a. Now, (A40) expresses the estimator
ˆApprDevi as a sum of the empirical CDF F̂i (a) on a grid of points a. This allows us to

upper-bound the standard deviation of ˆApprDevi, as follows. For any given a, F̂i (a) is a

Bernoulli random variable, with standard deviation asymptotically equal to:

SD
(
F̂i (a)

)
=

√√√√ F̂i (a)
(

1− F̂i (a)
)

n
(A41)

Now, since (A40) is a sum, its standard deviation is maximized when all F̂i (a) variables, for

different values of a, are perfectly correlated. We will thus construct an upper bound of the

standard deviation of ˆApprDevi by assuming perfect correlation between F̂i (a) at different

values of a. While the correlation is obviously not perfect in practice, since ˆApprDevi is

based mostly on tail observations of a, the correlations between F̂i (a) , F̂i (ã) will all be

positive, and will be fairly high when a and ã are close to each other.

Under the perfect-correlation assumption, we have that:

SD

∑
a<1

F̂i (a) ∆a

 =
∑
a<1

SD
(
F̂i (a)

)
∆a (A42)

Combining expressions (A41) and (A42), an estimator for the standard deviation of ˆApprDevi
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is:

SD
(

ˆApprDevi

)
≈
∑
a<1

√√√√ F̂i (a)
(

1− F̂i (a)
)

n
∆a (A43)

In words, (A43) is just the integral of the Bernoulli standard deviation formula, over a. We

thus estimate SD
(

ˆApprDevi

)
by evaluating the RHS of (A43) on a fine grid of a values.

Appraisal variance, σ̂a,i. From (23) in the main text, we use the sample standard

deviation formula from over-appraisals data to estimate σ for each bin. We can then estimate

the standard deviation of the sample variance, in general, as:√
1

n

(
µ4 −

n− 3

n− 1
σ4

)
where µ4 is the 4th central moment of appraisals, which we calculate in each σ-decile simply

using the unbiased right-tail data, as:

µ4 =

√
E
[
(ai − 1)4 | ai > 1

]
Then, using the delta method, the standard deviation of σ̂a,i is asymptotically:

1

2σ

√
1

n

(
µ4 −

n− 3

n− 1
σ4

)

lfinal-to-σ regression coefficient. For the variance of this moment, we use simply the

regression standard error, from Column 3 of Table 5.

H.2.1 Parametric Bootstrap

Using the standard deviations of our moments, we generate 200 bootstrap samples of the

failure probabilities, the appraisal deviations ˆApprDevi, the loan size-regression coefficient

moment, as well as σ̂a,i values; in each sample, we draw each parameter independently

from a normal distribution with mean equal to the full-sample value of the moment, and

standard deviation equal to the expressions derived above. We thus assume independence
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and normality of moments in this procedure. Normality should hold asymptotically as N is

large. Since the moments for different σ-bins come from different counties, the assumption

of independence across σ-deciles is arguably justified. The assumption of independence

within σ-deciles is stronger; however, estimating correlations of these moments empirically

is difficult since, for example, the fail probability and appraisal deviation moments come

from different datasets, which we could not find an internally consistent way to resample

from. Note also that the manual weights we impose on the different moment errors in our

estimation process play no role in our bootstrap resampling procedure.
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I Appendix Figures and Tables

Figure A1. Repeat-Sales Estimates and Hedonic Estimates

Notes: This figure compares our repeat-sale estimates and our hedonic estimates of price
dispersion. The points are results from a binned scatterplot, where each data point is a single
property. The x-axis shows repeat-sale estimates of price dispersion, described in Appendix
A.2, and the y-axis shows our hedonic-regression estimates used in the main analysis. The
sample includes property-level observations from 2000 to 2020 from the Corelogic Deeds.
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Figure A2. County Level House Price Dispersion and LTP

(a) GSE (b) FHA

(c) Jumbo

Notes: This figure shows the correlation between county level house price dispersion and
residualized county average LTP. Panels a-c plot GSE loans, FHA loans, and jumbo loans,
respectively. The sample includes annual county observations from 2000 to 2020. County
house price dispersion is estimated using Corelogic Deeds records. Mortgage data are from
Corelogic LLMA.
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Figure A3. Additional Down Payment to Annual Savings Ratio

Notes: This figure presents additional down payment to annual savings ratio by state. To
calculate additional down payment associated with house price dispersion, we use the bottom
decile house price dispersion in the US as a benchmark for the lowest price dispersion a
house could achieve in the US. The calculation of additional down payment is based on price
dispersion of transacted houses in each state relative to the benchmark and the estimated
coefficient in column 6 of Table 5, as described in Appendix E. We assume that young people
between age 25 to 30 save 20% of their annual income levels reported in the Census. We
then take the average annual saving level of young people with income levels in the bottom
quartile among their peers in the same state, obtained from 2015 U.S. Census Microdata.
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Figure A4. Rate Menu Model Fit

Notes: This figure shows how well our calibration in Appendix G.2 is able to fit the rate menu in
the data. The top two panels show empirical interest rate residuals r̃fld (solid lines), from (A8), and
model-predicted rate residuals r̃modelfld (c) (dashed lines), from (A10), in the fitted model. LTP ratios
are shown on the x-axis, and different FICO buckets are shown as different colors. The top left
plot shows results for low-dispersion areas, and the top right plot shows results for high-dispersion
areas. The bottom plot shows the differences rlf,d=H − rlf,d=L in the data (solid) and in the model
(dashed). In other words, each line in the bottom panel is the difference between the corresponding
line in the top right panel (the high-dispersion menu) and the line in the top left panel (the low
dispersion menu).
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Table A1: Mortgage Rejection Reasons

This table presents loan level regression results about mortgage rejection reasons. We restrict the
sample to only rejected loans, and estimate Specification 4 using various rejection reason indicators
as the outcome variables. The explanatory variable of interest is zipcode house price dispersion,
scaled by its standard deviation. Borrower/loan controls include zipcode house price, credit score
and the squared term, log income, loan type, and loan to income ratio and its squared term. The
sample includes loan level observations from 2001 to 2017. Standard errors are clustered at county
level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

(1) (2) (3) (4) (5)
Collateral Down Payment Debt-to-Income Employment Credit Score

Panel A: OLS

Zip Price Dispersion 1.34*** -0.07*** -0.31*** -0.12*** -0.35***
(0.138) (0.021) (0.062) (0.021) (0.052)

Local Controls X X X X X
County-Year FE X X X X X
Lender-Year FE X X X X X
R2 0.16 0.10 0.18 0.05 0.24

Panel B: IV

Zip Price Dispersion 2.45*** -0.02 -0.28 -0.11*** -0.95***
(0.229) (0.054) (0.183) (0.039) (0.166)

Local Controls X X X X X
County-Year FE X X X X X
Lender-Year FE X X X X X
Underidentification t-stat 64.49 64.49 64.49 64.49 64.49
Underidentification p-value 0.00 0.00 0.00 0.00 0.00
Weak identification t-stat 44.27 44.27 44.27 44.27 44.27

Sample mean 12.23 4.90 17.08 2.76 21.12
Observations 7.5M 7.5M 7.5M 7.5M 7.5M
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Table A2: IV Relevance Condition

This table tests the relevance condition for our instruments. The outcome variable is house price
dispersion, scaled by its standard deviation. The explanatory variables are the five instruments,
introduced in Section 3.2. The three columns correspond to column 1 in Table 3, column 1 in Table
4, and column 3 in Table 5. Standard errors are clustered at county level. ***, **, * represent 1%,
5%, and 10% significance, respectively.

Price Dispersion
(1) (2) (3)

Rejection
Sample

Cost Menu
Sample

LTP
Sample

IV: Square Footage 0.02 0.02 0.17***
(0.027) (0.025) (0.007)

IV: Number of Bedrooms 0.11*** 0.08 0.07***
(0.043) (0.049) (0.004)

IV: Number of Bathrooms 0.18*** 0.18*** 0.05***
(0.033) (0.033) (0.006)

IV: Building Age 0.07*** 0.05*** 0.08***
(0.020) (0.015) (0.008)

IV: Geo-coordinates 0.05*** 0.06*** 0.06***
(0.015) (0.015) (0.010)

Controls X X X
Origination Month FE X
Transaction Date FE X
County-Year FE X X X
Lender-Year FE X X
R2 0.50 0.49 0.29
Observations 47M 4.8M 28M

Table A3: IV Balance Test

This table presents the balance test results. The underlying sample contains zipcode-year level
observations. The outcome variables in column 1 and 2 are log transaction prices obtained from
the Corelogic Tax and Deeds data, in columns 3 and 4 are FICO score of transacted mortgages
in the Corelogic LLMA data, and in columns 5 and 6 are log applicant income obtained from the
HMDA data. Columns 1, 3, and 5 report the OLS results, in which the explanatory variable is the
raw price dispersion measures. Columns 2, 4, and 6 report the 2SLS results, in which the raw price
dispersion is instrumented using the five IVs introduced in the main text. In all the columns, we
include year fixed effects. Standard errors are clustered at county level. ***, **, * represent 1%,
5%, and 10% significance, respectively.

Log Price FICO Log Income
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Price Dispersion -0.20*** -0.00 -0.21*** 0.10 -0.04*** 0.11**
(0.018) (0.065) (0.027) (0.107) (0.012) (0.043)

Year FE X X X X X X
R2 0.12 - 0.15 - 0.04 -
Observation 129,003 129,003 129,003 129,003 129,003 129,003
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Table A4: Robustness Tests — Not about Bunching ( SalePrice
ConformingLimit

< 1)

This table presents robustness test for bunching below conforming limit. The outcome variable
is loan-to-price ratio. We restrict the sample to house transactions with non-missing mortgage
interest rates from Corelogic Deeds and further restrict the sample to houses whose transaction
price is smaller than the local conforming loan limit. Standard errors are clustered at county level.

OLS 2SLS
(1) (2) (3) (4)

Price Dispersion -0.21*** -0.17*** -1.11*** -0.95***
(0.024) (0.022) (0.086) (0.070)

Interest Rate 0.94*** 0.72*** 0.95*** 0.73***
(0.071) (0.049) (0.072) (0.050)

Loan Controls X X X X
Origination Month FE X X X X
County-Year FE X X
Lender-Year FE X X
R2 0.43 0.50 - -
Observations 4M 4M 4M 4M
Underidentification test statistic 128.45 126.17
Underidentification test p-value 0.00 0.00
Weak identification test statistic 102.39 98.83
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Table A5: Price Dispersion and Lender Market Power

This table presents the correlation between price dispersion and lender market power. We divide
each county-year into four market segments based on the price dispersion of the underlying proper-
ties in Corelogic Deeds transaction records and collapse the sample into county-year-price dispersion
bin level. In this sample, we have four observations in each county-year that indicate the average
price dispersion, the number of lenders, and the lender HHI index for each price dispersion bin
in a given county-year. We drop county-year-price dispersion bins with less than 50 transactions.
The outcome variable in columns 1-4 is lender HHI index, ranging from 0 to 10000. The outcome
variable in columns 5-8 is the number of lenders. Price Dispersion is expressed in terms of the
number of standard deviations in columns 1, 3, 5, and 7. Standard errors reported in parentheses
are clustered at county level.

Lender HHI Number of Lenders
(1) (2) (3) (4) (5) (6) (7) (8)

Price Dispersion 4.41 1.86 1.70*** 0.70***
(11.933) (8.597) (0.476) (0.120)

Price Dispersion Quartiles (Benchmark Category: First Quartile)

Second Quartile -22.20*** -22.42*** 0.25 0.37**
(6.705) (6.494) (0.183) (0.160)

Third Quartile -24.56** -19.58* 0.72*** 0.79***
(10.082) (10.477) (0.220) (0.205)

Fourth Quartile -16.15 -1.57 1.87*** 2.11***
(18.381) (21.198) (0.371) (0.311)

Outcome Variable Mean 701 701 701 701 68 68 68 68
Controls X X X X X X X X
County-Year FE X X X X
Observations 17,045 17,045 17,015 17,015 17,045 17,045 17,015 17,015
R2 0.13 0.13 0.89 0.89 0.79 0.79 0.99 0.99
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Table A6: Robustness Tests — Lender Market Power, Rejection

This table presents robustness tests related to lender market power for the loan rejection results
in Table 3. The outcome variable in Panel A is an indicator for whether the loan application is
rejected and in Panel B is an indicator for whether the loan application is rejected due to collateral
reasons. In both panels, Columns 1-3 are OLS results, and columns 4-6 are 2SLS results. To isolate
the effect of lender market power, we construct zipcode lender HHI index and include it as a control
in columns 1 and 4. We then classify a zipcode as high (low) HHI if its lender HHI index is above
(below) the median value among all zipcodes within a county-year. Columns 2 and 5 report the
subsample analysis results using transactions in low HHI zipcodes, and columns 3 and 6 report the
subsample analysis results using transactions in high HHI zipcodes. Standard errors are clustered
at county level.

Panel A: Rejection

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full

Sample
Low
HHI

High
HHI

Full
Sample

Low
HHI

High
HHI

Price Dispersion 1.30*** 1.29*** 1.31*** 2.42*** 2.40*** 2.43***
(0.089) (0.115) (0.081) (0.175) (0.225) (0.197)

Zip Lender HHI 0.21*** 0.12**
(0.043) (0.048)

Loan Controls X X X X X X
Lender-County-Year FE X X X X X X
Observations 47M 29M 17M 47M 29M 17M
R2 0.21 0.22 0.22 - - -
Underidentification stat 80.40 85.02 60.68
Underidentification p-value 0.00 0.00 0.00
Weak identification stat 61.03 61.09 33.88

Panel B: Rejection Due to Collateral

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full

Sample
Low
HHI

High
HHI

Full
Sample

Low
HHI

High
HHI

Price Dispersion 0.49*** 0.50*** 0.50*** 0.79*** 0.79*** 0.82***
(0.035) (0.042) (0.034) (0.061) (0.081) (0.064)

Zip Lender HHI 0.05*** 0.03**
(0.009) (0.012)

Loan Controls X X X X X X
Lender-County-Year FE X X X X X X
Observations 47M 29M 17M 47M 29M 17M
R2 0.09 0.10 0.11 - - -
Underidentification stat 80.40 85.02 60.68
Underidentification p-value 0.00 0.00 0.00
Weak identification stat 61.03 61.09 33.88
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Table A7: Robustness Tests — Lender Market Power, Cost Menu

This table presents robustness tests related to lender market power for the cost menu results in
Table 4, using a subsample of house transactions with non-missing mortgage rate information
recorded in the Corelogic Deeds and Tax records. Columns 1-3 are OLS results, and columns 4-6
are 2SLS results. To isolate the effect of lender market power, we construct zipcode lender HHI
index and include it as a control in columns 1 and 4. We then classify a zipcode as high (low) HHI
if its lender HHI index is above (below) the median value among all zipcodes within a county-year.
Columns 2 and 5 report the subsample analysis results using transactions in low HHI zipcodes, and
columns 3 and 6 report the subsample analysis results using transactions in high HHI zipcodes.
Standard errors are clustered at county level.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full

Sample
Low
HHI

High
HHI

Full
Sample

Low
HHI

High
HHI

Zip Price Dispersion 0.84*** 1.25*** 1.25*** 1.27*** 2.04*** 2.04***
(0.135) (0.136) (0.136) (0.331) (0.278) (0.278)

Zip Lender HHI -0.23*** -0.24***
(0.061) (0.064)

Loan Controls X X X X X X
Origination Month FE X X X X
County-Year FE X X X X X X
Observations 4M 2.3M 2.3M 4M 2.3M 2.3M
R2 0.86 0.86 0.86 - - -
Underidentification stat 64.15 62.11 62.11
Underidentification p-value 0.000 0.000 0.000
Weak identification stat 20.43 23.77 23.77
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Table A8: Robustness Tests — Lender Market Power, LTP

This table presents robustness tests related to lender market power for the loan size results in Table
5. Columns 1-3 are OLS results, and columns 4-6 are 2SLS results. To isolate the effect of lender
market power, we construct zipcode lender HHI index and include it as a control in columns 1 and
4. We then classify a zipcode as high (low) HHI if its lender HHI index is above (below) the median
value among all zipcodes within a county-year. Columns 2 and 5 report the subsample analysis
results using transactions in low HHI zipcodes, and columns 3 and 6 report the subsample analysis
results using transactions in high HHI zipcodes. Standard errors are clustered at county level.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full

Sample
Low
HHI

High
HHI

Full
Sample

Low
HHI

High
HHI

Price Dispersion -0.17*** -0.14*** -0.18*** -1.19*** -1.09*** -1.24***
(0.031) (0.034) (0.031) (0.117) (0.130) (0.108)

Zipcode Lender HHI -0.11*** -0.12***
(0.018) (0.015)

Loan Controls X X X X X X
Transaction Date FE X X X X
Lender-County-Year FE X X X X X X
N 19M 9M 9M 19M 9M 9M
R2 0.46 0.47 0.48 - - -
Underidentification stat 144.29 155.42 140.07
Underidentification p-value 0.00 0.00 0.00
Weak identification stat 190.55 177.35 183.64
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Table A9: Property-Level House Price Dispersion and LTP - Repeat Sales

This table presents the results of property-level regressions with repeat sale sigma estimates. The
outcome variable is loan-to-sale price ratio. The explanatory variable of interest is property-level
house price dispersion estimated using repeat sales, scaled by its standard deviation. Controls
include the mortgage rate, transaction price of the property, mortgage type, mortgage term, and
resale indicator. The sample includes property transaction level observations from 2000 to 2020.
Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance,
respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Price Dispersion -0.77*** -0.36*** -0.36*** -1.67*** -1.54*** -1.41***
(0.090) (0.038) (0.036) (0.135) (0.089) (0.080)

Interest Rate 0.83*** 0.91*** 0.69*** 0.88*** 0.94*** 0.71***
(0.073) (0.058) (0.042) (0.076) (0.059) (0.043)

Log House Price -3.29*** -3.41*** -3.07*** -3.40*** -3.53*** -3.19***
(0.112) (0.119) (0.119) (0.113) (0.110) (0.109)

Loan Controls X X X X X X
Transaction Date FE X X X X X X
County-Year FE X X X X
Lender-Year FE X X
R2 0.44 0.47 0.54 - - -
Observations 3M 3M 3M 3M 3M 3M
Underidentification test statistic 84.09 93.32 93.69
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 28.77 46.36 47.66
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Table A10: Property-Level House Price Dispersion and LTP — Without House Price as a
Control

This table presents property-level regression results without house price as a control. Columns 1-2
present OLS results. Columns 3-4 present IV results. In all columns, the outcome variable is the
loan level loan-to-sale price ratio. The explanatory variable of interest in columns 1-2 is property-
level house price dispersion, scaled by its standard deviation, and is the predicted price dispersion
in columns 3-4. Controls include mortgage type, mortgage term, and resale indicator. The sample
includes property transaction level observations from 2000 to 2020. Standard errors are clustered
at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4)

Price Dispersion -0.30*** -0.33*** -1.62*** -1.65***
(0.055) (0.046) (0.197) (0.183)

Controls X X X X
Transaction Date FE X X X X
County-Year FE X X X X
Lender-Year FE X X
R2 0.32 0.37 - -
Observations 28M 28M 28M 28M
Underidentification test statistic 161.57 164.72
Underidentification test p-value 0.00 0.00
Weak identification test statistic 205.21 201.16
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Table A11: Parameter Estimate Sensitivity to Input Moments

This table shows estimated parameters for the baseline model (row 1), along with 6 alternative
specifications in which we consider low and high η, the coefficient of relative risk aversion in the
first period (rows 2 and 3); low and high β, the annual discount rate (rows 4 and 5); and low and
high T , the assumed duration of the mortgage (rows 6 and 7).

Case ζ ψ b u′2

Baseline 0.583 2.782 0.086 0.00243
Low Eta 0.400 3.001 0.087 0.01078
High Eta 1.148 2.448 0.086 0.00012
Low Beta 0.644 2.764 0.087 0.00250
High Beta 0.449 2.514 0.087 0.00236
Low T 0.554 2.666 0.085 0.00234
High T 0.653 2.961 0.086 0.00248
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Table A12: Counterfactual Estimate Sensitivity to Input Moments

This table shows estimated counterfactual magnitudes for the baseline model (row 1) along with
6 alternative specifications in which we consider low and high η, the coefficient of relative risk
aversion in the first period (rows 2 and 3); low and high β, the annual discount rate (rows 4 and
5); and low and high T , the assumed duration of the mortgage (rows 6 and 7). Column 1 shows
the “compensating variation” for consumers in the 5th σ-decile, as described in Subsection 6.1 in
the main text. Column 2 and 3 show the change in mortgage failure probability, and compensating
variation in prices, under the version of the automated appraiser counterfactual in Panel A of
Table 8, where we assume automated appraisals remove human biases, but do not change appraisal
variance. Column 4 and 5 show the change in failure probability, and compensating variation in
prices, under the counterfactual in Panel B of Table 8, in which automated appraisals are calibrated
to maintain the same failure probability, but reduce the variance by half.

Removing Bias Reducing Variance

(1) (2) (3) (4) (5)
Required Compensating Fail Required Compensating Fail Required Compensating

Price Change (%) Prob (pp) Price Change (%) Prob (pp) Price Change (%)

Baseline -0.658 11.964 -5.786 -1.079 0.500
Low Eta -0.540 11.443 -4.479 -1.023 0.349
High Eta -0.948 12.717 -8.417 -1.072 0.890
Low Beta -0.630 12.019 -5.601 -1.054 0.476
High Beta -0.624 12.347 -5.511 -1.052 0.446
Low T -0.626 11.895 -5.941 -1.104 0.534
High T -0.740 12.002 -5.678 -1.065 0.498
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