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1. Introduction

A frequent goal of the growing empirical literature studying mechanism and market design

is to compare outcomes of a mechanism that is used in practice to outcomes under a theo-

retical counterfactual benchmark, such as some benchmark notion of efficiency, optimality,

or equity. In order to make such counterfactual comparisons, the econometrican must first

estimate primitives (principally, distributions of players’ valuations) under the mechanism

used in practice. Given advances in the methodological literature over the past twenty years,

such an exercise is straightforward for certain types of real-world mechanisms, such as first

price auctions. A number of games observed in the real world, however, are quite complex

and do not have clear-cut equilibrium characterizactions from which the researcher can infer

valuations with off-the-shelf tools. Examples of such complex incomplete-information trad-

ing games include alternating-offer bargaining games, simultaneous-move bargaining games,

non-standard auctions (such as median-price or average-price auctions), auctions preceded

by a knockout auction (as in cases of collusion), and auctions followed by bargaining (or

the reverse). In such settings, analytically solving for equilibria is difficult, and general

proposals for identification and estimation have been scarce.

The theoretical mechanism design literature tackles analysis of such games by abstracting

away from the particular rules of the game or extensive form of the game and instead

focusing on the direct mechanism corresponding to an equilibrium of the original game

(following the celebrated Revelation Principle, Myerson 1979). In this paper, we adopt a

similar approach for empirical analysis, abstracting away from the rules or extensive form

of the game and instead focusing on revealed preference arguments to develop a unified

approach to identification and estimation of players’ valuations in such trading games.

We focus on a class of single-unit, transferable utility trading games in which players

have independent private values and their utilities are linear in these values. This nests a

number of games, such as various kinds of auctions and bargaining games. In such a setting,

a player with valuation v who plays action a (such an action could be a bid in an auction

or an offer in bargaining) receives an expected payoff of vP(a) − T(a), where P(a) is the

probability of winning the good and T(a) is the transfer paid by the player in expectation

when choosing action a. Our identification argument is simple: An agent’s action can be

considered to be a choice from a convex menu of possible (P, T) pairs, and subgradients of

this menu provide bounds on the agents value. When the action space is continuous, the

derivative of this menu, evaluated at the action chosen by the agent, corresponds precisely

to the agent’s value. The data requirements for identifying an agent’s value are thus that

the econometrician observe the final allocation, the final transfer, and the agent’s action

from many independent instances of the same underlying game; the objects P(·) and T(·)
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are then essentially observed in the data, and subgradients of the menu identify agents’

values.

This is a simple revealed preference argument, and it is by no means new to the theoretical

mechanism design literature. The novelty of our paper is to exploit this argument to obtain

a general identification—and accompanying estimation—approach that applies to a broad

class of games regardless of the specific rules of the game, which is applicable even in

cases where the econometrician may be unaware of the actual rules of the game, such as

when prices arise from some unknown negotiation process. Furthermore, our approach

can apply to games in which, even if the rules are known, equilibrium outcomes may not

be uniquely predicted by the model (due to the possibility of multiple equilibria) or may

simply be difficult to characterize analytically. Each of these features of our approach are

not particularly advantageous in a well-understood setting such as a first price auctions,

where the theoretical model has a unique, simple-to-characterize equilibrium and where the

rules of the game are known. In a number of other settings, however, our approach can be

useful.1

A particular novel feature of this paper is the application of these identification and

estimation concepts to cases where actions are imperfectly observed by the econometrician.

This can include settings where only a portion of an agent’s actions are observed, such as a

multistage auction mechanism where the econometrician observes an indicative (first-stage)

bid and the final allocation and price, but not intermediate-stage actions; or a bilateral

bargaining setting where the econometrician may observe a seller’s list price and an indicator

for whether or not a sale occurs and (if a sale does occur) the final negotiated price, but

not the full sequence of intermediate bargaining actions. The imperfectly observed action

case can also include cases where the action is not observed at all but the econometrician

observes a variable in the data that is correlated with that agent’s action and not with other

agents’ actions, similar to an instrumental variable. We provide conditions under which our

identification and estimation approach can be used to approximate equilibrium menus and

players’ values, and we provide conditions under which this approximation will work well.

We derive nonparametric estimation procedures to accompany these identification argu-

ments. We consider both continuous- or discrete-action settings. For the continuous action

case, we propose a local polynomial regression procedure. The general trading game model

imposes the restriction that equilibrium menus must be convex, and therefore we also pro-

pose empirical ironing procedures that enforce menu convexity during estimation through

flexible shape-constrained splines.

1Our approach can be thought of as a generalization of the first price auction approach of Guerre, Perrigne,
and Vuong (2000) to settings where the rules of the game or equilibrium of the game are unknown.
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We analyze the performance of our estimation procedure in simulations of first price

auctions relative to the approach of Guerre, Perrigne, and Vuong (2000). While our esti-

mator performs well in terms of finite-sample mean squared error, the approach of Guerre,

Perrigne, and Vuong (2000) clearly outperforms our estimator, as it exploits the knowledge

that the game is indeed a first price auction. We then simulate the bilateral bargaining

game studied in Satterthwaite and Williams (1989) and tie our hands, treating the simu-

lated data as though it came from a bargaining game with an unknown extensive form, as

is this case with bargaining data in many real-world settings.2 We demonstrate that our

method again performs well. We emphasize that if a researcher is analyzing a game with

known rules and an existing, well-established estimation approach, as in the case of first

price auctions, existing tools should be used. The advantage of our approach is in analyzing

settings which, in spite of being quite common forms of trade—such as bargaining—do not

have well-established tools or well-understood equilibrium characterizations.

The tools we propose can be extended in a number of ways. First, we demonstrate that

in certain games our identification and estimation approach can accommodate observed as

well as unobserved game-level heterogeneity; that is, a component of player valuations that

is common to all players. Second, we show that independence of agents’ values can be

relaxed when the equilibrium is assumed to be separating in agents’ types.

We apply our estimation approach to data from the wholesale used-car market, a large

market fueling the supply side of US used-car industry. The market involves individual cars

sold through a game of a secret reserve price auction followed by alternating-offer bargaining

between the seller and high bidder when the high bid falls short of the reserve price. This

game has multiple equilibria and no complete theoretical characterization. In the data,

we observe the final transaction price, an indicator for whether or not trade occurred (the

allocation), and the secret reserve price of the seller. We combine our imperfectly observable

actions case with our unobserved heterogeneity correction procedure to estimate the menu

of expected payoffs sellers choose from. We then estimate the mapping from reported secret

reserve prices to sellers’ true values by evaluating the derivatives of this menu.

With the estimated valuations we perform a number of counterfactual exercises. First, we

evaluate how close this real-world mechanism (the auction followed by post-auction bargain-

ing) lies to the first-best efficient mechanism and the second-best (information-constrained)

efficient mechanism for this setting of N > 1 buyers and 1 seller. We then evaluate the

mechanism that would be optimal for the seller in this setting (an auction with a public

2Fudenberg and Tirole (1991) refer to the choice of a particular extensive form as a “thorny issue” when
modeling bargaining, as the actual extensive form in many real-world negotiations is unknown to the re-
searcher.
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reserve price) and the mechanism that would be optimal for the buyer (an auction fol-

lowed by a take-it-or-leave-it offer by the high bidder to the seller). We find that the

auction-plus-bargaining mechanism used in practice only has a small efficiency loss relative

to the first-best or second-best, and it outperforms the seller-optimal and buyer-optimal

mechanisms, both in terms of total surplus and the volume of trade. We also examine

distributional implications of mechanism choice: who gets what share of the surplus. We

find that the mechanism favors sellers, in the sense that it gives them a larger share of the

surplus, but we find that it favors sellers less-so than the second-best mechanism would. We

also examine the implications of the Myerson and Satterthwaite (1983) Theorem for this

setting. We find that second-best efficiency is very close to first-best efficiency in our setting,

largely because competition between buyers decreases losses from asymmetric information.

We see the results presented in this paper as having potential to be used to identify

and estimate agents’ preferences from complex games or mechanisms in a variety of set-

tings, such as wage bargaining (Cramton and Tracy 1992), pre-trial settlement (Silveira

2017; Prescott, Spier, and Yoon 2014), bargaining in developing countries (Keniston 2011),

state-run procurement mechanisms (Best, Hjort, and Szakonyi (2017)), international trade

negotiations (Bagwell, Staiger, and Yurukoglu 2014), bargaining between hospitals and

suppliers (Grennan and Swanson 2016), public housing allocation mechanisms (Waldinger

2017), and others.

Related Literature. Our identification and estimation approach is related to existing

approaches for specific types of games, such as Guerre, Perrigne, and Vuong (2000) for

first price auctions. Similar approaches have since been applied to many other specific set-

tings. For example, the ad auctions literature (Varian, 2009; Athey and Nekipelov, 2010;

Nekipelov, Syrgkanis, and Tardos, 2015) discusses value identification in a manner that is

close to ours. Related two-step approaches have also been applied to treasury auctions

(Hortaçsu and McAdams, 2010), auctions for bundles of goods (Gentry, Komarova, and

Schiraldi, 2014), assignment mechanisms (Agarwal and Somaini, 2018), demand curve esti-

mation in e-commerce (Einav, Kuchler, Levin, and Sundaresan, 2015), and general dynamic

games (Bajari, Benkard, and Levin, 2007).

In a related, contemporaneous study, Kline (2016) focuses on identification, but not es-

timation, in a class of games that overlaps with the class we study: trading games with

monotone equilibria and perfectly observable actions. We see his study as complementary to

ours; whereas his results apply to settings with correlated values, we only discuss correlated

values briefly in Section 7. Our study instead focuses primarily on the case of indepen-

dent values, deriving additional identification results regarding menu convexity, imperfectly
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observable actions, and unobserved game-level heterogeneity, and presenting estimation ap-

proaches for each of these cases. Our results for handling heterogeneity relate to arguments

in Krasnokutskaya (2011), which have previously been applied primarily to particular auc-

tion settings and not incomplete information trading games more broadly. Our extension to

correlated private values settings relates to arguments from Li, Perrigne, and Vuong (2002).

Our exposition aims to emphasize several key points. First, while our identification

arguments in the case of perfectly observable are related to ideas that have been applied to

other specific settings in the past, we illustrate here that these identification results largely

only require taking a stance on the structure of agents’ utility functions, not the specific

rules of the game being played. These approaches can be applied in any kind of trading

procedure with observed actions, so long as agents’ utility functions are assumed to be affine

in expected trade probabilities and transfers. We hope that our general exposition can help

to conceptually unify the many independent identification results derived in specific settings

in the literature. We also highlight that our approach in the observed actions case can apply

in games without unique equilibria and that are currently understudied empirically, such

as median- or average-price auctions (Cramton, Ellermeyer, and Katzman 2015; Chang,

Chen, and Salmon 2014; Decarolis 2018) or double auctions (Chatterjee and Samuelson

1983; Satterthwaite and Williams 1989; Li and Liu 2015).

Our approach to identification and estimation with imperfectly observed actions in Sec-

tion 4 is new and unrelated to previous approaches. It can allow the econometrician to

avoid modeling a complex game and instead use a partially observed action vector or a

characteristic of an agent not observed by other agents to identify payoff menus and infer

underlying valuations. This can particularly useful in many complex games that do not

immediately fit the mold of existing empirical frameworks and tools, such as sequential bi-

lateral bargaining (Keniston 2011; Ambrus, Chaney, and Salitskiy 2018), auctions followed

by bargaining (Elyakime, Laffont, Loisel, and Vuong 1997; Larsen 2014; An and Tang 2016),

auctions with collusion (Asker 2010; Kawai and Nakabayashi 2015), or other multi-stage

games of incomplete information.

Furthermore, as we show in Section 3, the general trading game model imposes a simple

empirical restriction, independently of the extensive-form game being played: equilibrium

menus {(Pi (ai) , Ti (ai))} must be convex. This unifies a number of known restrictions

on equilibrium outcomes in specific settings: menu convexity is exactly equivalent to the

restrictions on first-price auction equilibrium outcomes in Guerre, Perrigne, and Vuong

(2000), and the condition that marginal revenues are monotone in the ad auctions (Varian,

2009; Athey and Nekipelov, 2010; Nekipelov, Syrgkanis, and Tardos, 2015) and e-commerce

(Einav, Kuchler, Levin, and Sundaresan, 2015) literatures. Our paper demonstrates how to
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exploit this restriction. We propose estimation procedures in Section 5 below that enforce

convexity of equilibrium menus, and our methodology for handling imperfectly observed

actions in Section 4 also relies on menu convexity. In principle, menu convexity could

be used as a test of the utility and equilibrium assumptions of the trading game model,

independently of the particular rules of the game.

2. Model

Throughout, agents will be indexed by i. Uppercase Xi will denote random variables or

vectors, lowercase xi will denote realizations, and bold xi (·) will denote functions. We will

use a −i subscript to denote the vector of objects for all agents other than i. For example,

X−i ≡ (X1 . . .Xi−1,Xi+1 . . .Xm), where m is the number of agents.

We consider an incomplete information trading game with asymmetric independent pri-

vate values. Each agent i ∈ {1, 2, . . .m} has a value Vi for a single indivisible good, where

each Vi is drawn independently from a continuous bounded distribution Fi (·), supported

on [vi, v̄i]. Agent i’s value is observed only by i. All agents are risk-neutral. Let xi be

an indicator representing i attaining the good, and ti ∈ R any net payment made by i. If

agent i has value Vi = vi, her utility for the pair (xi, ti) is linear in her value:

vixi − ti.

Agents play trading game G . We assume that agents play according to a single Bayes-

Nash equilibrium; if there are multiple equilibria of the game, we assume the same equilib-

rium is played across all observations. We will analyze G in normal form (thus, we do not

require refinements such as perfection).

First, values Vi are drawn from Fi (·) and observed by each agent i. Having observed

their types Vi, agents choose (potentially mixed) strategies: si : R→ ∆Ai, mapping values

vi ∈ [vi, v̄i] into probability distributions over actions ai ∈ Ai, where Ai is the space of

actions available to i. The outcome allocation and transfers for all agents,

(x1, t1) , (x2, t2) . . . (xm, tm) ,

are calculated as a function of all agents’ actions a1 . . .am. We will denote the individual

allocation and transfer functions as xi (a1 . . .am) , ti (a1 . . .am). These functions are what

constitute the rules of the game; they determine the outcome for each player given the full

set of agent actions. We assume that each agent i has some outside option āi which leads to

some outcome x̄i, and transfer normalized to t̄i = 0, independently of the actions of other

agents a−i. We assume nothing else about the structure of G .
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For a given strategy si, we define Σi (vi) as the set of all actions ai ∈ Ai played by type

vi with positive probability under strategy si (·). Let

vi (ai) ≡ s−1
i (ai) = {vi : ai ∈ Σi (vi)} ,

that is, vi (ai) is the set of types vi which play ai with positive probability under strategy

si.

Example 1. Auction: Agents {1 . . .m} participate in an auction. Actions ai belong to a

space that depends on the rules of the auction. For example, in a sealed-bid auction, the

actions are sealed bids in R. In an ascending or multi-round auction, actions are history-

contingent bidding strategies. Agents’ outside options are to leave without participating in

the auction, leading to x̄i = 0.

Example 2. Bargaining : A seller (player 1) and a buyer (player 2) bargain over an indi-

visible good. The seller’s outside option is x̄1 = 1, and the buyer’s outside option is x̄2 = 0.

Once again, the form of the actions ai depends on the specific rules of the bargaining

game; for example, the game could consist of a take-it-or-leave-it offer by one party or an

alternating-offer bargaining game, or could follow any other bargaining protocol.

If player i plays action ai when her value is vi, she attains some expected outcome

(Pi (ai) , Ti (ai)), defined as

Pi (ai) ≡ E [xi (ai,A−i)] , Ti (ai) ≡ E [ti (ai,A−i)] ,

that is, the expectation of the allocation xi (ai,A−i) and transfer ti (ai,A−i) over the

actions A−i of players −i (which, from i’s perspective, is a random vector). The expected

utility that agent i attains where her value is vi and she plays action ai, relative to her

outside option, is

viPi (ai) − Ti (ai) − vix̄i. (1)

In Bayes-Nash equilibrium, each agent i must be optimally choosing actions with respect

to the distributions of opponents’ actions A−i. This implies that, for all i, vi, the following

incentive compatibility conditions must hold:

ai ∈ Σi (vi) =⇒ ai ∈ arg max
a′
i

viPi
(
a′i
)
− Ti

(
a′i
)
− vix̄i, (2)

Or, equivalently,

vi ∈ vi (ai) =⇒ viPi (ai) − Ti (ai) > viPi
(
a′i
)
− Ti

(
a′i
)
∀a′i. (3)

In addition to incentive compatibility, we require individual rationality: if the outside

option is not chosen, the action that is chosen must yield a better outcome than the outside
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option, so the total utility maxa′
i
viPi

(
a′i
)
− Ti

(
a′i
)
− vix̄i must be nonnegative. This

condition will not play a major role in our identification and estimation arguments, with

the exception of the unobserved heterogeneity correction in Section 7.2.

Equation (3) is a necessary and sufficient condition for strategies si (vi) to constitute a

Bayes-Nash equilibrium. Importantly, (3) does not directly reference either the rules of the

game—that is, the functions xi (a1 . . .am) , ti (a1 . . .am)—or the distribution of opponents’

actions A−i. This is because neither of the objects xi (a1 . . .am) and ti (a1 . . .am) enter

directly into the expected utility function of type vi of agent i. From the perspective of agent

i, the equilibrium of G defines a menu of feasible expected outcomes {(Pi (ai) , Ti (ai))},

indexed by action choices ai. This menu is a sufficient statistic for i’s choice in equilibrium:

given her type vi, each agent i chooses the item (Pi (ai) , Ti (ai)) from the equilibrium menu

that affords her the highest utility. The equilibrium menu is also sufficient for characterizing

agents’ welfare gains from participating in trade; the expected welfare gain of type vi is the

maximized value of (2).

In what follows, we will assume that the econometrician observes data from many inde-

pendent realizations of the same underlying trading game. As mentioned above, we will

further assume that all realizations of the game represent play from the same Bayes-Nash

Equilibrium. While this assumption is common in the structural empirical literature, it is

certainly strong. We emphasize here, however, that this assumption does not imply that

the underlying game need only have a single equilibrium, only that the data represents play

from a single equilibrium. This therefore allows the data to speak as to the equilibrium

selection from a (potentially infinite) set of equilibria rather than requiring the researcher to

impose an equilibrium refinement. This is particularly useful in the settings we seek to ana-

lyze, as many of these are cases with multiple equilibria that are qualitatively very different

and where theoretical equilibrium refinements do not always yield a unique equilibrium.3

Moreover, all of our results in this paper still hold if the assumption of a single equilibrium

in the data is relaxed to instead assume that, if the equilibrium does indeed differ from

one realization of the game to another, then which equilibrium is selected depends only on

features in the data that are observable to the econometrician and can thus be controlled

for. We discuss this further in Section 9.4.

By allowing all value distributions Fi and action sets Ai to be distinct, we allow agents

to be completely asymmetric. This is important for games in which players play different

roles, such as in bilateral bargaining settings, as in Example 2. In some cases below, we

will use the subscripts i to denote a particular role played by the agent, such as using

3For example, in the case of bilateral bargaining, proposed equilibrium refinements often fail to exist or
result in equilibria that predict immediate agreement. See discussion in Ausubel, Cramton, and Deneckere
(2002) or results in Perry (1986).
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i ∈ {S,B} indexing whether the player is a seller or buyer in bargaining. In practice, each

instance of the trading game may involve classes of agents who are indistinguishable. For

example, different bidders in an auction may be indistinguishable to the econometrician,

or only distinguishable based on certain observables; an example is the case of loggers vs.

mills bidding in timber auctions (Athey, Coey, and Levin 2013). In such settings, the

econometrician may wish to model all players from a certain class as drawing valuations

from a single distribution. All of our identification and estimation results can be thought

of as applying to such cases as well.

3. Identification with Fully Observed Actions

In this section, we derive identification results for the model described above, assuming

that the econometrician fully observes agents’ actions from many instances of equilibrium

play of the trading game G . We first analyze the case where the equilibrium is not necessarily

increasing or in pure strategies. We then demonstrate stronger results that can be obtained

when such an increasing, pure-strategy equilibrium does exist. In each instance of the game,

values Vi, for each agent i ∈ {1, ...,m}, are independently drawn from Fi (and these actions

are independent across instances of the game). Agents then take actions corresponding to

a set of equilibrium strategies (s1 (·) , . . . , sm (·)). We assume in this section that in each

instance of the game, the econometrician observes xi (the allocation for agent i), ti (the

transfer for agent i), and agent i’s action ai.

Examples of cases in which the econometrician might observe agents’ actions are any

sealed-bid trading game or any simultaneous-move trading game. This includes not only

first-price or second price auctions, where the structure of equilibria is well-known in the

theoretical and empirical literature, but also any arbitrary sealed-bid trading game where

such properties may be less well-known or strategies less well-behaved, such as the median-

price auction used in Medicare durable good equipment auctions, which is known to poten-

tially yield equilibria that are non-increasing (Cramton, Ellermeyer, and Katzman 2015); or

sealed-bid bilateral bargaining games, such as the k double auction, which are known to have

multiple, qualitatively different equilibria (Chatterjee and Samuelson 1983; Satterthwaite

and Williams 1989; Li and Liu 2015). Another example is the average-bid auction, which

Chang, Chen, and Salmon (2014) and Decarolis (2018) demonstrate can have multiple equi-

libria and, in some cases, no equilibria in increasing strategies. Decarolis (2018) highlights

that this mechanism is used for public procurement by state agencies in Florida and New

York, as well as in Chile, China, Colombia, Italy, Japan, Peru, Malaysia, Switzerland, and

Taiwan.
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3.1. Fully Observed Actions: General Case. In Section 2, we argued that the expected

outcome functions (Pi (ai) , Ti (ai)) are sufficient to summarize agents’ choices in equilib-

rium, without requiring knowledge of the full functions xi (a1 . . .am) and ti (a1 . . .am).

These expected outcome functions are simply conditional expectations of outcomes xi, ti

with respect to actions ai. Hence value identification follows from a revealed preference

argument: for any given action value ai, the econometrician can use the incentive compat-

ibility conditions in (3) to bound the values of any type vi ∈ vi (ai), that is, any type vi

that plays ai with positive probability in equilibrium. We state this result as the following

theorem:

Theorem 1. For any ai, all vi ∈ vi (ai) satisfy:

vi >
Ti (ai) − Ti

(
a′i
)

Pi (ai) − Pi
(
a′i
) ∀a′i : Pi (a′i) < Pi (ai)

vi 6
Ti
(
a′i
)
− Ti (ai)

Pi
(
a′i
)
− Pi (ai)

∀a′i : Pi
(
a′i
)
> Pi (ai) .

Proof. Follows immediately from (3). �

Agents’ values are inferred from the points they choose on the menu of expected outcomes

{(Pi (ai) , Ti (ai))}. In Figure 1, we illustrate a hypothetical equilibrium menu in a setting

where agent i’s possible actions are a′i ∈
{
a1
i , ...,a5

i

}
. Indifference curves in this figure

correspond to straight lines, with higher utility achieved by the agent on curves lying more

to the southwest of the figure.

Suppose we observe an agent choosing point a3
i . Compared to a3

i , points a4
i and a5

i have

higher probability Pi (ai) of receiving the good, in exchange for higher transfers Ti (ai). If

the agent prefers point a3
i to a4

i and a5
i , her value must be lower than the average cost of

purchasing the additional probability when moving from a3
i to a4

i and a5
i ; that is,

vi 6
Ti
(
a′i
)
− Ti

(
a3
i

)
Pi
(
a′i
)
− Pi

(
a3
i

) ,

for items a′i ∈
{
a4
i ,a

5
i

}
with Pi

(
a′i
)
> Pi

(
a3
i

)
. Similarly, compared to point a3

i , points a1
i

and a2
i have lower probability of receiving the good in exchange for lower transfers. If the

agent prefers point a3
i , her value must be higher than the average cost of purchasing the

additional probability of getting the good when moving from a1
i or a2

i to a3
i ; that is,

vi >
Ti
(
a3
i

)
− Ti

(
a′i
)

Pi
(
a3
i

)
− Pi

(
a′i
) ,

for items a′i ∈
{
a1
i ,a

2
i

}
with Pi

(
a′i
)
< Pi

(
a3
i

)
. Thus, the value of any agent type choosing

point a3
i must lie between the slopes of the green lines labeled v

(
a3
i

)
, v̄
(
a3
i

)
respectively.
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Since any action played in equilibrium must be optimal for some type, the inequalities

in Theorem 1 must have nonempty intersection; in particular, this implies that the menu

{(Pi (ai) , Ti (ai))} of actions played with positive probability in equilibrium must be convex,

ruling out the existence of points such as a6
i in Figure 1. This is a known restriction on the

structure of incentive-compatible revelation mechanisms from the theoretical mechanism

design literature; we formalize this observation and its implications in Proposition 1 below.

Let {(Pi (ai) , Ti (ai))} denote the set of all (Pi (ai) , Ti (ai)) pairs. A subgradient of a set

{(Pi (ai) , Ti (ai))} at point ai is any value ν such that

Ti
(
a′i
)
> Ti (ai) + ν

(
Pi
(
a′i
)
− Pi (ai)

)
∀a′i,

that is, a value ν such that a line in R2 of slope ν passing through (Pi (ai) , Ti (ai)) lies

weakly below all points in {(Pi (ai) , Ti (ai))}. The graph of {(Pi (ai) , Ti (ai))} is the function

obtained by joining the points in order of increasing Pi (ai) values.

Proposition 1. (1) The graph of {(Pi (ai) , Ti (ai))} is convex.

(2) For any ai, vi (ai) for any ai is the collection of subgradients of {(Pi (ai) , Ti (ai))}

at Pi (ai). Each vi (ai) is a closed interval, and the union of all vi (ai) contains

the interval of values [vi, v̄i].

(3) If we order actions ai by the values of Pi (ai), vi (ai) is setwise increasing in ai.

For any ai,a
′
i, the intervals vi (ai) , vi

(
a′i
)

intersect at at most one point.

The proof of Proposition 1 and all other involved proofs are found in the Appendix. Part

1 of Proposition 1 states that the menu is convex. Part 3 states that vi (ai) is higher for

values of ai with higher probabilities Pi (ai). This is related to the classic fact in mechanism

design that implementable allocation rules must be monotone, assigning higher bundles to

higher types. Intuitively, under our “convex menu” interpretation of equilibria, convex

menus have monotonically increasing slopes, where the slope represents the average cost of

additional probability. Agents who choose bundles with higher Pi (ai) pay higher average

costs per unit probability, and thus must have higher values.

Together, parts 2 and 3 also state that each vi (ai) is an interval, and distinct intervals

vi (ai) , vi
(
a′i
)

intersect at no more than a single point. This implies that the bounds of

Theorem 1 partition the interval of values [vi, v̄i]. While in general this does not allow us to

identify the exact types of each agent, this identification result is the best possible, in the

sense that different types in the same interval vi ∈ vi (ai) are observationally equivalent

if the econometrician only observes xi, ti,ai for different agents i in each instance of the

game (and does not observe, for example, actions that are never chosen in equilibrium or the

probabilities with which agents mix across actions in a mixed-strategy equilibrium). Thus,

the bounds in Theorem 1 capture the full empirical content of the incomplete information
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trading game model; in other words, the structure of the game only matters for value

identification insofar as it affects the equilibrium menu {(Pi (ai) , Ti (ai))}.

3.2. Pure Strategy or Increasing Equilibrium. We can derive stronger results than

those in Theorem 1 if we assume that the equilibrium of G is in pure strategies, so that the

strategy si (vi) is a function mapping values to actions ai ∈ Ai. The informativeness of the

bounds in Theorem 1 depends on the degree to which different types play different actions

in game G . Specifically, suppose agents with types δ apart play strictly different actions, so

that si (vi + δ) 6= si (vi) ∀vi, and that distinct actions lead to distinct expected outcomes

(Pi (ai) , Ti (ai)). Then, we have, for any vi,

vi 6
Ti (si (vi + δ)) − Ti (si (vi))

Pi (si (vi + δ)) − Pi (si (vi))
6 vi + δ, (4)

vi − δ 6
Ti (si (vi)) − Ti (si (vi − δ))

Pi (si (vi)) − Pi (si (vi − δ))
6 vi. (5)

Hence, for any ai, vi (ai) is an interval with length at most 2δ. In particular, if si (·)
fully separates types, the interval vi (ai) for any ai collapses to a single point, leading to

the following result:

Corollary 1. If, in game G , each type vi has a distinct best response action si (vi), the

inverse mapping vi (ai) from actions to types is pointwise identified.

Proof. Follows immediately from (4) and (5). �

Under corollary 1, we also have:

vi = lim
δ→0

Ti (si (vi)) − Ti (si (vi − δ))

Pi (si (vi)) − Pi (si (vi − δ))
. (6)

If the problem is sufficiently smooth, as described in the following corollary, this expres-

sion simplifies further.

Corollary 2. If ai ∈ R, Pi and si (·) are both increasing and continuous, and Pi, Ti are

both differentiable, then

vi (ai) =
T ′i (ai)

P′i (ai)
.

In Section 5, we will describe an estimation strategy based on Corollary 2.

As highlighted above, one example of an incomplete information trading game that fits

into our framework is a first-price auction. We now demonstrate that the standard identi-

fication argument for first-price auctions, derived in Guerre, Perrigne, and Vuong (2000),

is analytically equivalent to our approach; however, theirs relies explicitly on knowing that

the game is indeed a first-price auction whereas ours does not.
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Example 3. Consider an m-bidder first-price auction in an independent private values

environment. Assume for simplicity that bidders are symmetric. Bidder i’s action ai is a

bid. Let the distribution of bids be written G(·), with density g(·). In a first-price auction,

the expected probability of winning, (P), and expected transfer (T) are given by

P (ai) = G (ai)
m−1 , T (ai) = aiG (ai)

m−1 ,

where i subscripts are omitted from P and T because of symmetry. Player i’s value is then

given by

dT(ai)
dai
dP(ai)
dai

=
ai(m− 1)G(ai)

m−2g(ai) +G(ai)
m−1

(m− 1)G(ai)m−2g(ai)

= ai +
G(ai)

(m− 1)g(ai)
.

This expression is equivalent to that derived in the identification argument of Guerre, Per-

rigne, and Vuong (2000).

4. Identification with Imperfectly Observed Actions

In many contexts, it is impossible for the econometrician to observe all elements of a

realization of the action ai. For example, in a multiple-offer bargaining game, observing

ai would entail observing a vector of all of i’s actions contingent on all possible sequences

of offers from other agents, or in an ascending auction, all of i’s bid strategies over all

sequences of opponent bids, within a single instance of the game. Thus, observing ai would

not simply mean observing what actions i took, but what actions i would have taken in every

history of the game, including those not reached; this would be equivalent to observing a

set of instructions player i would have given to a third-party agent to play on her behalf.

However, in many of these cases where the action is a multidimensional vector, the

econometrician will be able to observe some portion of an agent’s action vector or will

be able to observe some other feature in the dataset that is correlated with an agent’s

unobserved action vector. We refer to such an object—either a partially observed action

or a separate feature in the dataset correlated with an agent’s action—as an action shifter,

defined as follows:

Definition 1. Zi is an action shifter if Zi and Ai are not independent, but Zi and A−i

are independent.

We now provide several examples in which this condition is satisfied. The first three

pertain to a partially observed action.
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Example 4. First Offer in Bargaining : Suppose that Ai specify strategies in a multiple-

round bargaining game. If i always makes the first offer in the game, the first offer will

generally depend on i’s value Vi in equilibrium, but it cannot depend on other agents’

values V−i. Since actions Ai are functions of values Vi in equilibrium, this first offer is a

Zi satisfying the conditions of Definition 1.

Example 5. Knockout Bid in Bidding Ring Auction Followed by Target Auction: In the

stamp auction case of Asker (2010), members of a bidding ring participate in a sealed-bid

knockout auction. The winning bid from the knockout auction then becomes the cartel’s

bid in the target (English) auction. Asker (2010) provides a full model of this game. The

knockout bid of an agent, which comes from a first, sealed-bid stage of the game, would be

a Zi satisfying Definition 1.

Example 6. Indicative Bid : In many procurement settings with auctions or bargaining,

interested bidders are required to first submit an indicative bid (Ye 2007; Quint and Hen-

dricks 2018). This indicative bid only represents a portion of an agent’s full action vector to

be played in the full game, but can satisfy Definition 1 as a shifter Zi for that unobserved

action vector.

The arguments provided in this section can allow the researcher to identify objects of

interest using the above action shifters Zi without a full model of the (potentially complex)

game agents play. The next two examples pertain to other observables in the data that are

arguably correlated with one agent’s action but not with other agents’ actions.

Example 7. Agent Characteristics in Bargaining : In the setting of Ambrus, Chaney, and

Salitskiy (2018), Spanish ransom parties haggle with North African pirates to buy back

Spanish captives. In the data, the authors observe the amount of earmarked money raised

by a given captive’s family back home. This amount is known to the econometrician and to

the buyer (the rescue party) but is unobserved to the seller (the pirates). This earmarked

money is arguably correlated with the buyer’s valuation and thus with his action and can

serve as a shifter Zi for the rescue party’s action.4

Example 8. Assets in Auctions: In many auction datasets, such as auto auctions or real

estate auctions, the econometrician may observe information about an agent’s assets that

is only known to that agent and not to opponents, and that may be correlated with that

agent’s willingness to pay. For example, in auto auctions, the data may contain information

on previous cars purchased by that agent or credit constraints of that agent. In real estate

4Ambrus, Chaney, and Salitskiy (2018) estimated buyer’s private valuations by instead imposing the struc-
ture of a one-sided-offers bargaining game from Fudenberg, Levine, and Tirole (1985). Through our approach,
such structure could potentially be tested, as it would allow the researcher to identify certain objects without
imposing a particular bargaining model.
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auctions, the data may contain information on the size of the loan the potential buyer has

been approved for, known to the buyer but not the seller. In each case, the level of these

assets may serve as a Zi satisfying Definition 1.

We now prove several properties of our menu approach in imperfectly observed action

cases. These properties can be used to identify objects of interest without a complete model

of the full underlying (potentially multi-stage) game.

4.1. Bounds on Utility with Imperfectly Observed Actions. Suppose that Zi satis-

fies our Definition 1. Let H (ai, zi) be the joint distribution of actions and action shifters,

which is unobserved by the econometrician, and let P̆i(zi) and T̆i(zi) represent conditional

expectations of xi, ti with respect to zi, given by

(P̆i(zi), T̆i(zi)) ≡ E [(xi (Ai,A−i) , ti (Ai,A−i)) | Zi = zi]

= E [E [(xi (Ai,A−i) , ti (Ai,A−i)) | Ai,Zi = zi] | Zi = zi]

= E [E [(xi (Ai,A−i) , ti (Ai,A−i)) | Ai] | Zi = zi]

= E [(Pi (Ai) , Ti (Ai)) | Zi = zi] .

The equality on the second line follows by the law of iterated expectations and the equality

on third line follows by the fact that Zi is independent of A−i, so the inner conditioning on

Zi can be ignored. The final equality follows by the definition of Pi and Ti, the expected

outcomes defining the menu. The above argument shows that conditional expectations of

xi, ti with respect to zi recover convex combinations of (Pi (ai) , Ti (ai)) pairs. Since the

graph of {(Pi (ai) , Ti (ai))} is convex, any such convex combinations lie above the graph

of {(Pi (ai) , Ti (ai))}. In other words, for any zi that satisfies Definition 1, the graph

of {(P̆i (zi) , T̆i (zi))} lies strictly above the graph of {(Pi (ai) , Ti (ai))}. This allows us to

obtain a lower bound on the utility of any given type vi in equilibrium, or, equivalently, an

upper bound on the graph {(Pi (ai) , Ti (ai))}:

Corollary 3. For any Zi satisfying Definition 1, maxzi viP̆i (zi) + T̆i (zi) is a lower bound

on the equilibrium utility of type vi.

While we can thus derive an upper bound for the menu, in general, neither the true

menu {(Pi (ai) , Ti (ai))} nor the joint distribution of action shifters and values G (z, v) are

identified. In Figure 2, we show the imperfectly observed menu {(P̆i (zi) , T̆i (zi))} generated

from a true menu {(Pi (ai) , Ti (ai))}, where we generate action shifters such that Vi =

Zi+εi, where εi > 0 is a uniformly distributed error term. The imperfectly observed menu is

convex; thus, if we were to only observe {(P̆i (zi) , T̆i (zi))}, we would be unable to distinguish
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the true data generating process from an alternative process in which Zi = Vi, and the menu

{(Pi (ai) , Ti (ai))} were exactly the imperfectly observed menu {(P̆i (zi) , T̆i (zi))}.

4.2. One-to-one Shifters. In some cases, the econometrician may be willing to assume

that Zi is a one-to-one function of type Vi, that is, Vi = z−1
i (Zi) .5 For example, suppose

the game G is a multiple-round bargaining game, with a first sealed-bid stage in which the

optimal bid is a strictly increasing function of type vi. In this case, the mapping zi (·) is

fully identified from the data.

If zi is a one-to-one function of the type vi, then (P̆i (zi) , T̆i (zi)) is exactly the expected

outcome attained by the unique type z−1
i (zi). Moreover, for any other z′i, the expected

outcome (P̆i
(
z′i
)

, T̆i
(
z′i
)
) is attainable by type z−1

i (zi). Also, there are types vi+ δ, vi− δ

playing different actions zi (vi + δ) , zi (vi − δ). As in Section 3, this implies the following

bounds for any δ:

vi 6
T̆i (zi (vi + δ)) − T̆i (zi (vi))

P̆i (zi (vi + δ)) − P̆i (zi (vi))
6 vi + δ, (7)

vi − δ 6
T̆i (zi (vi)) − T̆i (zi (vi − δ))

P̆i (zi (vi)) − P̆i (zi (vi − δ))
6 vi. (8)

One-to-oneness implies that these bounds will collapse to a single point, and the entire

mapping zi (·) is identified, which we state as the following extension of Corollary 1:

Corollary 4. If, in game G , each type vi is one-to-one with zi, the inverse mapping

vi = z−1
i (zi) from action shifters to types is pointwise identified.

Proof. Follows immediately from (7) and (8). �

Corollary 2 also immediately extends to the imperfectly observed actions case, as follows:

Corollary 5. If each type vi is one-to-one with zi, zi ∈ R, the functions P̆i, zi (·) are

increasing and continuous, and the functions T̆i, P̆i are differentiable, then

vi =
T̆ ′i (zi)

P̆′i (zi)
.

As with Corollary 2 in the fully observed action case, we see Corollary 5 as particularly

useful for empirical work in the imperfectly observed action case. Section 5 will discuss

estimation for these cases.

5Once again, we will treat different values of z as identical if they induce the same expected outcomes

(P̆i (z) , T̆i (z)).
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4.3. Approximating E [V | z]. For general noisy action shifters, the joint distribution of

action shifters and values G (z, v) is not identified. However, under certain conditions, it is

possible to approximate the function E [V | Z = z] (which we will write in short as E [V | z]),

the conditional expectation of an agent’s valuation given the observed Z. This object may

be of direct interest as a best guess of an agent’s valuation given the data, and it will also

be useful in allowing us to construct an approximate lower bound for gains from trade for

the agent in the game.

Throughout this and the next subsection, we suppress subscripts i, writing for example z

to mean zi. We will also write P (v) and T (v) as shorthand for P(s(v)) and T(s(v)), rather

than writing P(a) and T(a), because we are primarily interested here in the relationship

between the action shifter Z and values V. We also assume Z is real-valued and supported

on a continuous bounded interval; P (·) , T (·) are everywhere strictly increasing and differ-

entiable; G (v | z) is differentiable in v for any z; and G (v | z) is continuous in z for almost

all v. These assumptions make our results easier to state and prove, but they are stronger

than we need; all of these assumptions can be relaxed without significantly affecting the

results.

We impose one final restriction that cannot easily be relaxed: we assume that G (v | z) is

ordered by stochastic dominance, that is

z2 > z1 =⇒ G (v | z2) >FOSD G (v | z1) .

Under these assumptions, we aim to find conditions under which we can approximate the

conditional expectation of an agent’s value given the agent’s observed Z, that is, T̆
′(z)

P̆′(z)
≈

E [V | z]. To begin, Proposition 2 characterizes the ratio T̆ ′(z)

P̆′(z)
in terms of the conditional

distributions G (v | z) and the menu {(P̆ (·) , T̆ (·))}:

Proposition 2. Under the conditions stated above for Z, P̆ (·),T̆ (·), and G (v | z),

T̆ ′ (z)

P̆′ (z)
=

´ v̄
0 v
(
−
dG(v|z)
dz

)
P′ (v)dv

´ v̄
0

(
−
dG(v|z)
dz

)
P′ (v)dv

. (9)

Since both
(
−
dG(v|z)
dz

)
and P′ (v) are positive and finite by assumption, their product(

−
dG(v|z)
dz

)
P′ (v) can be thought of as a weighting function; hence the expression on the

right hand side of (9) can be thought of as a weighted average of values v with respect to(
−
dG(v|z)
dz

)
P′ (v).

Proposition 2 implies that if the weighting function
(
−
dG(v|z)
dz

)
P′ (v) behaves similarly to

the probability density function g (v | z) then the ratio T̆ ′(z)

P̆′(z)
will be close to the conditional
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expectation E [V | z] =
´ v̄

0 v g (v | z)dv. This behavior will only hold under fairly restrictive

assumptions on the functions G (v | z) and P′ (v); however, these assumptions are satisfied

by certain classes of conditional distributions commonly assumed in practice. We describe

two such sets of conditions below. The first involves conditional invariance of the joint

distribution G(v, z) and a linear expected allocation function:

Corollary 6. Suppose that (i) G (v, z) is translationally invariant, that is, G (v, z) =

Ḡ (v− z); and (ii) P′ (v) is constant. Then,

T̆ ′ (z)

P̆′ (z)
= E [V | z] .

While the result in Corollary 6 is stated as an equality, equation (9) is smooth in all of

its arguments, so a similar statement about approximate equality holds: if G (v, z) is close

to translationally invariant locally at some z, and P′ (·) is close to constant in the relevant

neighborhood, T̆
′(z)

P̆′(z)
will be close to E [V | z].

Our second case where E [V | z] can be approximated well involves the noise in Z being

bounded:

Corollary 7. Suppose G (v | z) has compact support: G (v | z) ∈ [ν (z) − δ, ν (z) + δ] for

some δ > 0, where ν (z) is continuous. Then,∣∣∣∣∣ T̆ ′ (z)P̆′ (z)
− E (V | z)

∣∣∣∣∣ 6 2δ.

If the support of G (v | z) is not compact, but the majority of the probability mass is

concentrated near ν (z), Corollary 7 will still hold approximately. Intuitively, this corollary

says that if z is a fairly good predictor for v, in the sense that the residual variation in v

conditional on observing z is small, the derivatives T̆
′(z)

P̆′(z)
will be fairly close to E (V | z).

4.4. Approximating Gains from Trade. Corollary 6 or Corollary 7 can be used to

obtain a lower bound on the total expected gains from trade in the game played in the

data. We can use the following quantity to obtain an approximate lower bound to the

expected gains from trade for all agents. Total expected welfare from trade is:

EV

[
max
v′

[
V P(v′) − T(v′) − Vx̄

]]
,

where the maximization is performed pointwise for each realization of V. Using the law of

iterated expectations, we can write this as:

= EZ

[
EV

[
max
v′

[
VP(v′) − T(v′) − Vx̄

]
| Z

]]
.
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Corollary 3 shows that the convex hull of the (P̆ (z) , T̆ (z)) pairs is an upper bound for the

true menu {(P (v) , T (v))}. Hence, for all z,

EV

[
max
v′

[
VP(v′) − T(v′) − Vx̄

]
| Z = z

]
> EV

[
max
z′

[
VP̆
(
z′
)
− T̆

(
z′
)
− Vx̄

]
| Z = z

]
(10)

> max
z′
EV [V | Z = z] P̆

(
z′
)
− T̆

(
z′
)
− EV [V | Z = z] x̄. (11)

This last inequality follows because any value attainable in (11) is also attainable in (10).

An intuition for this inequality is that, fixing a feasible expected outcome (P̆ (z) , T̆ (z)), the

gains from trade are linear in values V. Hence, the average maximal utility across agent

types is at least the maximal utility of the average agent type. Thus, one can use Corollary

6 or Corollary 7 to identify E [V | Z = z], and then, taking expectations with respect to the

empirical distribution of Z, one can obtain (11) as a lower bound on the total gains from

trade.

The expression in (11) will correspond exactly to the gains from trade only if the action

shifter Z is a one-to-one function of values. If the action shifter Z is not a one-to-one function

of V, the inequalities (10) and (11) will hold strictly. Thus, even if we are unsure whether

the approximation E [V | z] ≈ T̆ ′(z)

P̆′(z)
is valid, as long as we believe that the assumptions of

Corollaries 6 or 7 are even approximately satisfied, this is a generally conservative approach

to identifying a bound on the expected gains from trade.

5. Estimation

We now present approaches for estimating valuations, building on the identification argu-

ments presented in Sections 3 and 4. For simplicity of exposition, we describe our estimation

results in the context of the fully observed action case, but the same estimation approaches

apply to the imperfectly observed actions settings described in Section 4. We discuss es-

timation with discrete actions in Section 5.1 and with continuous actions in Section 5.2.

Throughout this section, we will focus on estimation for a single agent (or a class of agents

who are indistinguishable), thus we will omit subscripts i, writing for example a, v,P (·) , T (·)
instead of ai, vi,Pi (·) , Ti (·). We will introduce here a subcript j to index an observation in

the data, putting this subscript on each object observed in instance j of the game, namely

xj, tj, and aj.

5.1. Discrete Actions. Suppose that there are a finite number of possible actions, A ={
a1 . . .aK

}
, with generic element ak. As above, we order the values of ak in terms of

increasing probability P
(
ak
)

of attaining the asset. We wish to identify the set of types
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s−1
(
ak
)

choosing each action value ak. Again, we suppose that the econometrician observes

multiple instances of the trading game, and that in each instance she observes the agent’s

action akj ∈ A, the trade outcome xj, and the transfer tj. We can construct a family of

two-step estimators as follows. First, we construct estimates P̂
(
ak
)

, T̂
(
ak
)

as the averages

of xj, tj respectively conditional on observations where the action ak was chosen. We then

set, as in Theorem 1,

max
k′<k

 T̂ (ak)− T̂
(
ak

′
)

P̂ (ak) − P̂ (ak
′)

 6 ŝ−1 (ak) 6 min
k′>k

 T̂
(
ak

′
)
− T̂

(
ak
)

P̂ (ak
′) − P̂ (ak)

 .

Asymptotically, all ratios
T̂(ak)−T̂

(
ak

′)
P̂(ak)−P̂(ak′)

converge to their population equivalents, hence

ŝ−1 (ak) consistently estimates the bounds of the set s−1
(
ak
)
.

A disadvantage of this estimator is that, in finite samples, the set of {(P̂
(
ak
)

, T̂
(
ak
)
)}

pairs may not be convex, in which case the lower and upper bounds may cross for some

values of a. An alternative strategy is to adopt an empirical ironing procedure: rather than

using the {(P̂
(
ak
)

, T̂
(
ak
)
)} graph directly, we take its convex hull, and use the subgradients

of the convex hull to estimate values.

For a given collection {(P̂
(
ak
)

, T̂
(
ak
)
)}, we define the supporting hyperplane H (p; ν)

of slope ν, as the highest line of slope ν which lies below all points in {(P̂
(
ak
)

, T̂
(
ak
)
)}:

b (ν) ≡ max
{
b : T̂

(
ak
)
> b+ νP̂

(
ak
)
∀ak
}

H (p;ν) ≡ b (ν) + νp

We construct the convex hull of {(P̂
(
ak
)

, T̂
(
ak
)
)} at any point p by taking the supremum

over all supporting hyperplanes, which we denote H̄ (p) ≡ supνH (p;ν). We then estimate

ŝ−1 (ak) using the set of subgradients of H̄ (p) at point P̂
(
ak
)
; that is, the set of slopes ν

such that H (p;ν) attains the supremum at point P̂
(
ak
)
:

ŝ−1 (ak) = {ν : H
(
P̂
(
ak
)

;ν
)
= H̄

(
P̂
(
ak
))}

.

H̄ (p) is an upper envelope of linear functions H (p; v), so it is convex. Thus, it admits

subgradients at any point p, and the collection of subgradients is setwise increasing in p.

Asymptotically, since the true menu
{(
P
(
ak
)

, T
(
ak
))}

is convex, the inferred ŝ−1 (ak) has

the same limit as the first estimator. However, using the convex hull of {(P̂
(
ak
)

, T̂
(
ak
)
)}

ensures that the estimator produces non-overlapping bounds for agents’ values in finite

samples.

5.2. Continuous actions. In many cases of interest, the econometrician may be willing to

assume that the equilibrium strategies are smooth functions of values, and the equilibrium
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P (a) and T (a) mappings are also smooth. In this case, we can estimate the mapping from

actions to values using nonparametric regression. In particular, assume that the mappings

P (a) , T (a) are differentiable, and the function v = s−1 (a) is continuous. Corollary 2 (or

Corollary 5 in the imperfectly observable actions case) implies that:

s−1 (a) =
dT
ds
dP
ds

.

If we can nonparametrically estimate the derivatives T̂ ′ (a) , P̂′ (a) as functions of actions

a, their ratio is a consistent estimator for s−1 (a). Nonparametric derivative estimation of

smooth functions can be done using local polynomial regression (Fan and Gijbels, 1996).

The local polynomial regression estimator for T (a) at a given point a with degree p, band-

width h, kernel Kh is:

[
β̂0 (a) , . . . β̂p (a)

]
= arg min

β

∑
j

[tj − p∑
k=0

βk
(
aj − a

)k]2

Kh
(
aj − a

) . (12)

In this expression, p represents the degree of the local polynomial fit; Fan and Gijbels

suggest using even polynomial orders p = k+ 2m+ 1 for estimating first derivatives, hence

local quadratic regression with p = 2 is appropriate for our case. Kh (·) is a kernel function

of bandwidth h; common kernel functions include Gaussian or Epanechnikov kernels. The

coefficient βk estimates the kth derivative of T . Therefore, an estimate of the first derivative

T̂ ′ (a) is given by running a local polynomial regression of the observed transfer, tj, on the

observed action, aj, and taking the coefficient on the linear term in (12), β̂1. Similarly, an

estimate of the first derivative P̂′ (a) is given by running a local polynomial regression of

the observed allocation, xj (i.e., an indicator for whether the player won), on the observed

action, aj, and taking the coefficient on the linear term in the regression.6

As in Section 5.1, this estimation procedure may result in a nonconvex {(P (a) , T (a))}

menu, and it may be desirable to “iron” the empirical menu function, constraining it to

6For the bandwidth, Fan and Gijbels, Chapter 4.2, describes the following rule-of-thumb selection procedure:

First, one fits a global quintic polynomial by standard ordinary least squares,
ˆ̂
T (a) = α0 + α1a . . . + α5a

5.
Let the residual variance from the regression be σ̃2. The rule-of-thumb bandwidth is then equal to the
following “variance components”-like formula:

ĥ = Cν,p (K)

 σ̃2∑n
i=1

(
ˆ̂
T ′′ (a)

)2


1
7

, (13)

where Cν,p (K) is a kernel-specific constant. Fan and Gijbels, Table 3.2, reports this constant as approxi-
mately 0.884 for the Gaussian kernel, 2.275 for the Epanechnikov kernel, and 2.869 for the triweight kernel.
This procedure chooses smaller bandwidths for functions that can be fitted better by polynomials.
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be convex during estimation.7 In addition, it may be desirable in some contexts to enforce

monotonicity of the P (a) function. In a manner similar to Judd (1998) and Schumaker

(1983), we propose a spline-based procedure to nonparametrically estimate the P (·) , T (·)
functions while imposing convexity of the {(P (a) , T (a))} menu. In Appendix B, we describe

the construction of the quadratic and cubic spline bases in detail. Our estimation approach

proceeds in two stages: first, P (a) is nonparametrically estimated as a smooth function of

a, possibly constrained to be monotonic, using quadratic splines. Then, T (·) is estimated

as the composite function T̂ (P (a)), where T̂ (·) is constrained to be a convex cubic spline.

Constraining the quadratic (cubic) spline coefficients to be nonnegative ensures that the

target function is nondecreasing (convex). Note that, by construction, the quadratic splines

have two continuous derivatives, and the cubic splines three continuous derivatives. Since

T̂ (p) is a cubic spline, the estimated mapping s−1 (a) = dT
dP is guaranteed to be continuous

and differentiable.

6. Monte Carlo Simulations

6.1. First-Price Auction Simulations. In this section, we simulate data from a first-

price auction and estimate values using the standard Guerre, Perrigne, and Vuong (2000)

(GPV) approach as well as our approaches based on local polynomial regressions and convex

splines. We use m = 5 bidders for each auction instance, using uniform, exponential and

lognormal value distributions. We generate datasets of size 4,000, 16,000, and 40,000 for

estimation; we solve for the unique equilibrium as in GPV, and then simulate and estimate

from each combination of distribution and dataset size 200 times.

The GPV estimator can be written:

v̂ (a) = a+
ˆ̄G (a)

ˆ̄g (a)
,

where v is the agent’s value, a is the agent’s bid, and ˆ̄G (·) , ˆ̄g (·) are estimates of the

distribution and density functions of the maximum opposing bid, rather than the distribution

of all bids.8 We estimate ˆ̄g (·) using a kernel density estimator, using Gaussian kernels with

bandwidth chosen using the Silverman (1986) rule of thumb. We estimate ˆ̄G (·) using a

linearly interpolated empirical CDF. To implement our local polynomial regression method,

7Menu convexity corresponds exactly to monotonicity of Myerson (1981) marginal revenue, hence “ironing”
in this context is exactly equivalent to the Myersonian procedure of enforcing marginal revenue monotonicity
for a demand curve.
8While we draw i.i.d. bids for simulation, we estimate values allowing for bidders to be potentially drawn
from different distributions. The symmetric GPV estimator uses multiple data points from each auction,
and could technically be implemented with only observing one auction (with many bidders) whereas our
approach requires observing multiple instances of the game. We use the asymmetric version here to hold
fixed the effective sample size between our procedure and GPV, comparing only the estimation procedures’
performances.
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we run local quadratic regressions to estimate derivatives as described in Section 5.2, using

Gaussian kernels with bandwidths equal to half9 the Fan-Gijbels rule of thumb in (13).

To implement our convex spline method, we first estimate Pi (·) separately for each agent

i using a local linear regression, with bandwidth chosen using a rule of thumb that Fan

and Gijbels propose for local linear regression. Then, we estimate the function Ti (Pi) for

each agent i using convex splines with 10 knots uniformly separated in bid quantile space,

minimizing the sum of squared errors from the (a, x, t) triples observed in data. We did not

explicitly apply any procedure for spline knot selection, but we found that results were not

very sensitive to using knot counts between 5 and 20.

We show pointwise 95% coverage bands from 200 estimation sample for both estimators,

for the case of the exponential distribution with N = 4, 000 in Figure 3. In Table 1, for

all specifications we used, we show average mean squared errors normalized by the true

variance in values, for bid values between the 20th and 80th bid quantiles.10

We find that GPV significantly outperforms both of our estimators: the mean squared

error of GPV is less than 1 percent in all of the simulation specifications, and in some

cases it is even below 0.1%. In absolute terms, however, both the local quadratic and spline

estimators perform fairly well, achieving below 10% MSE in all specifications, and achieving

around 1% MSE in specifications with 40,000 observations.

Our proposed spline estimator may have a number of qualitative benefits over the local

quadratic regression estimator. First, it is guaranteed to produce convex menus for any given

estimation instance, which may be desirable in settings where value and menu estimates

are used for economic counterfactuals. Second, as we demonstrate in Section 7.2, the

spline estimator allows the researcher to incorporate an unobserved heterogeneity correction

procedure. If unobserved heterogeneity is not a serious issue, we suggest using the local

quadratic regression estimator, as its finite-sample performance appears to exceed that of the

spline estimator. In cases where unobserved heterogeneity or other multi-step procedures

that benefit from parametric estimation are needed, or in cases where data is sparse and

enforcing menu convexity is important for statistical reasons, our spline procedure may be

preferable despite its worse finite-sample performance. We use the splines approach in our

empirical application in Section 8 below.

9This is an ad-hoc adjustment, because we found that the estimator performed somewhat better with
smaller bandwidths, possibly because this reduces bias in the estimator when the target function is relatively
nonsmooth.
10While this is a large truncation, as Figure 3 shows, both GPV and our local quadratic regression estimator
can function very poorly towards the lower end of the support of the bid distribution. For our estimator,

this is essentially because the probability of winning and transfer both become very small; the ratio T ′(b)
P′(b)

thus becomes numerically unstable. Thus MSE comparisons are more meaningful for bids well inside the
interior of the support of the bid distribution.
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We interpret these first-price auction simulation results as suggesting that if the researcher

is well aware that the game generating the data is indeed a first-price auction, the researcher

should use the standard GPV approach for identification and estimation. If, however, the

researcher has data by some unknown bidding procedure or by some unknown equilibrium

selection rule, or from a bidding procedure for which no specific, standard tool has yet

been derived, and wishes to identify and estimate valuations in a manner that is robust to

misspecification of these features of the game, our menu approach can perform well.

6.2. Bargaining Simulations. To further illustrate our method, we choose a setting for

which, unlike first-price auctions, there is no existing off-the-shelf method for estimation:

a bargaining game with two-sided incomplete information. The theoretical literature on

incomplete information bargaining demonstrates that such games in general have multiple

equilibria that are difficult to characterize. Here, we generate data from a particular equilib-

rium from such a game. In order to do so, we adopt the bilateral bargaining game described

in Satterthwaite and Williams (1989). Players’ roles are denoted i ∈ {B,S}. The buyer B

and seller S have private valuations and make offers. If the buyer’s offer (aB) exceeds that

of the seller (aS), trade occurs at price t = kaS+(1−k)aB, where k ∈ [0, 1]. The parameter

k can be considered a bargaining power weight. A game with k = 1 corresponds to the

seller-optimal mechanism (a take-it-or-leave-it offer by the seller) and a game with k = 0

corresponds to the buyer-optimal mechanism (a take-it-or-leave-it offer by the buyer). This

game is referred to in the literature as a k double auction (see also Chatterjee and Samuel-

son 1983). Satterthwaite and Williams (1989) demonstrate that a continuum of equilibria

exist in this game, and they provide methods to solve for a class of equilibria. We simulate

data following their solution approach, as described in Appendix C.

An observation in the data we generate consists of a final transfer t, an allocation x

(i.e. an indicator for whether or not the good sold), and a seller’s offer aS. In applying

our estimation approach, we then deliberately tie our hands by treating the buyer’s offer

and the bargaining power parameter as unknown and treating the seller’s action as though

arising from an unknown extensive form bargaining game generating the data. Specifically,

we treat the seller’s offer as a partially observed action vector that is one-to-one with the

seller’s value as described in Section 4. This simulated data mimmicks a type of dataset

that a researcher may commonly find: prices arising from an unknown negotiation process

(i.e. the precise extensive form of the game is unknown to the researcher). For example,

a researcher might observe housing data with transacted prices, a measure of how many

buyers placed offers on the house and failed to win it, and the seller’s initial list price

(analogous to the seller offer generated in our data).
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We apply our estimators to cases were valuations are distributed according to a uniform or

truncated Normal distribution, and for sample sizes of 4,000, 16,000, or 40,000 observations.

The distributional parameters for the true distributions are discussed in Appendix C. Figure

4 display sellers’ offers on the horizontal axis and the estimated and true valuations of

sellers on the vertical axis for the uniformly distributed case with 4,000 observations. The

estimation procedure performs well in recovering valuations close to the truth. Table 2

displays the mean squared error for the different specifications, normalized by the true

variance as in Table 1. The mean squared error of the local quadratic regression estimator

is at most 10% in small samples and in larger samples it is below 5%. The convex spline

estimator is less accurate in small samples, but also has MSE below 10% in larger samples.

We also remark here that this estimation exercise did not exploit any information about

the value of k (the bargaining power), any offer made by the buyer, or the particular

equilibrium being played. Recall that a continuum of equilibria exist to this game at any

value of k. The generated data in our simulation exercise could have come from any fixed

value of k and any fixed equilibrium, or even a sequential bargaining game completely

distinct from the static k double auction, and the two-step approach proposed herein would

still have returned reasonable estimates of valuations based solely on the observed first seller

offer, the allocation, and the transfer.11

7. Extensions: Heterogeneity and Correlated Values

We now provide extensions to our identification arguments provided above to settings of

game-level heterogeneity (observed and unobserved heterogeneity) and correlated values.

7.1. Observable Game-Level Heterogeneity. If realizations of the game differ in a way

that is observable observable to the econometrician, such heterogeneity can easily be con-

trolled for. In particular, the estimation procedures described in Section 5 can be extended

to include a vector Y of observable characteristics (that may vary in each realization of the

game) as a control in the estimation of the Pi(·) and Ti(·) functions determining the menu.

If such heterogeneity enters players’ valuations and actions in an additively or multiplica-

tively separable, single-index form, the econometrican can simply regress observations of

actions on observations of the vector Y and treat the residuals from this regression as coming

from a “homogenized” game, as in the auction setting of Haile, Hong, and Shum (2003).

We discuss this separability condition in more detail below when we discuss unobserved

heterogeneity.

11Li and Liu (2015) propose an estimation approach for settings where the researcher instead knows that
the data is generated by a k double auction.
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Allowing for the equilibrium menu to vary with observable heterogeneity at the game level

also allows for the data to represent play from different equilibria of the underlying game:

as long as the equilibrium selection can be controlled for using observables, the presence of

multiple equilibria poses no threat to identification or estimation. We discuss this further

in Section 9.4 below.

7.2. Unobserved Heterogeneity. We focus here on correlation induced in values through

game-level heterogeneity that is observed by the players but not by the econometrician,

similar to the unobserved auction-level heterogeneity in Krasnokutskaya (2011). We study

a class of games that we call separable heterogeneity games, which are defined as follows. In

the first stage, common component W is drawn from the bounded distribution FW (·) and

commonly observed by all agents i ∈ {1 . . .m} but not the econometrician. In the second

stage, agents’ private values Vi are drawn independently from distributions Fi (·); agents’

values are then

Ṽi = Vi +W.

In the third stage, agents take actions ãi ∈ [ai, āi], which are observed by the econometri-

cian. We require the game to satisfy the following property:

Definition 2. We say that game G satisfies the separable heterogeneity game property if

for all ã1 . . . ãm,∆, and for all i

xi (ã1 + ∆, ã2 + ∆, . . . ãm + ∆) = xi (ã1, ã2, . . . ãm) , (14)

ti (ã1 + ∆, ã2 + ∆, . . . ãm + ∆) = ti (ã1, ã2, . . . ãm) + ∆ (xi (ã1, ã2, . . . ãm) − x̄i) . (15)

The separable heterogeneity game property can also be defined multiplicatively. We

focus on the additive case here for brevity. This property implies that, if all agents increase

bids by a constant amount ∆, the probability of any agent winning is unchanged, and

the prices paid by agents change by the same amount by which bids change. Intuitively,

this property is appropriate for games which are position-invariant, in the sense that the

structure of the game is unchanged when all bids are changed by a given amount. The

separable heterogeneity game property may not be appropriate, for example, in bargaining

settings with fixed costs, in which case the structure of the game may be qualitatively

different depending on the size of the payoff agents are bargaining over.12

Since the common component W is observed by all agents prior to agents’ action choices,

agents can condition their strategies on the common component W; thus, we can think of

12In such settings, one possible approach is to divide instances of the game into coarse partitions by ob-
servable characteristics that may affect payoff size. The separable heterogeneity game property may be a
reasonable assumption within each partition, and the approach described in this section could be applied
within partitions.
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agents’ strategies in separable heterogeneity games as functions si (vi,w) mapping common

components and private values into actions. Bayes-Nash equilibrium in the full game re-

quires that agents’ strategies constitute a Bayes-Nash equilibrium conditional on any value

of w. Fixing a given value of w, the game is identical to that of Section 3. Let Awi be a

random variable representing i’s equilibrium action when the common component is w. As

in Section 3, we define the expected probability and transfer that i achieves when playing

ai in equilibrium as:

Pwi (ai) ≡ E
(
xi
(
ai,A

w
−i

))
, Twi (ai) ≡ E

(
ti
(
ai,A

w
−i

))
.

Agent i’s expected utility when her type is vi and she plays ai when the common component

is w is

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i.

Analogously to Section 3, equilibrium in a separable heterogeneity game with common

component w requires that i’s strategy si (vi,w) maximize her utility in expectation over

the distributions of other agents’ actions Aw−i. That is, fixing w, for all i, vi, we require

si (vi,w) ∈ arg max
ai

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i.

In the following proposition, we show that the equilibria of separable heterogeneity games

have a “position invariance” property with respect tow—if actions a1 . . .am are equilibrium

actions conditional on w, actions ai +w
′ −w are equilibrium actions under w′.

Proposition 3. Fix some value of w, and suppose that strategies s1 (v1,w) . . . sm (vm,w)

constitute an equilibrium of a separable heterogeneity game. Then, for any common com-

ponent w′, the following strategies constitute an equilibrium:

s1

(
v1,w′) = s1 (v1,w) +w′ −w

...

sm
(
vm,w′) = sm (vm,w) +w′ −w.

Motivated by this proposition, we will define position-invariant equilibria by requiring

that agents play the same equilibrium for any common component w:

Definition 3. A position-invariant equilibrium is a set of position-invariant strategies

si (vi), such that:

si (vi,w) = si (vi) +w.

and si (vi) constitute equilibrium strategies for w = 0.
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In the equilibrium conditional on w = 0, we have, as before in Section 3,

vi (ai) >
T0
i (ai) − T

0
i

(
a′i
)

Pi (ai) − Pi
(
a′i
) ∀a′i : Pi (ai) > Pi (a′i) ,

vi (ai) 6
T0
i

(
a′i
)
− T0

i (ai)

Pi
(
a′i
)
− Pi (ai)

∀a′i : Pi (ai) < Pi
(
a′i
)

.

Thus, if we can recover the function Pi (ai) and T0
i (ai), we can bound values or point

identify values as in Section 3. Unlike the setting with no unobserved heterogeneity, these

objects are not immediately identified from conditional expectations in the data. Rather, the

objects that can easily be identified in the data are noisy versions of Pi (ai) and T0
i (ai) that

include—but cannot condition on—the unobserved heterogeneity term in each realization

of the game. We will denote these objects

P̃i (ãi) ≡ E
[
xi

(
ãi, Ã−i

)]
, T̃i (ai) ≡ E

[
ti

(
ãi, Ã−i

)]
.

Assuming the econometrician observes multiple independent observations of same under-

lying separable heterogeneity game in which a position-invariant equilibrium is played, the

true menu is identified.

Proposition 4. Pi (·) , T0
i (·) are uniquely identified by P̃i (ãi) , T̃i (ãi) and actions {ãi} from

a separable heterogeneity game in which the equilibrium is position invariant.

The intuition behind our identification result is as follows. Since the unobserved private

value components vi are independent by assumption, any correlation in observed actions

ãi must be caused by to the unobserved heterogeneity W. Using a method similar to Kras-

nokutskaya (2011), we can thus separately recover the distribution FW of the unobserved

heterogeneity term W, and the distribution of actions that would have been played at a

realization of w = 0, which we will refer to as FAi . These distributions are identified from

the observed distribution of actions that includes the realized unobserved heterogeneity,

FÃi , through a deconvolution argument. We then show that the distributions FW , FAi allow

us to recover Pi (ai) , T0
i (ai) from the functions P̃i (ãi) , T̃i (ãi) through a series of decon-

volutions and convolutions against FW (·). In particular, if agent i is the agent whose menu

and valuation we wish to identify (for example, suppose i is a seller in a bilateral bargaining

game and the other agent is the buyer), then Pi (ai), the true underlying menu, solves:

P̃i (ãi) =

´
Pi (ai) fai (ai) fW (ãi − ai)dai´

fai (ai) fW (ãi − ai)dai
,

and T0
i (ai), the homogenized or true underlying transfer function, solves

T̃ (ãi) − E (W∆Pi | ãi) =

´
T0
i (ai) fai (ai) fW (ãi − ai)dai´
fai (ai) fW (ãi − ai)dai

,
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where the term E (W∆Pi | ãi) is given by

E (W∆Pi | ãi) =

ˆ
(Pi (ai) − 1) (ãi − ai) fai (ai) fW (ãi − ai)dai.

This identification argument for Pi (ai) and T0
i (ai) immediately leads to an estimation

procedure. To describe the estimation, we now re-introduce subscripts j to denote observa-

tions in the data. Assume the econometrician observes the allocation xij, transfer t̃ij, and

action ãij for agent i in j = 1, ..., J games. The objects t̃ij and ãij include the unobserved

heterogeneity component wj. In order to perform the initial Krasnokutskaya (2011) decon-

volution, the econometrician must also observe the action ãij of at least one other agent.

For simplicity here we will assume the econometrician observes all agents’ actions, the set

{ãi}, but only one is required. The first step is to estimate fW and each fAi (the densities

corresponding to FW and FAi) through parametric or nonparametric maximum likelihood

using observed actions {ãi}. The log-likehood function is given by∑
j

ˆ (∏
i

fAi(ãij −w; θa)

)
fW(w; θW)dw (16)

The objects θa and θW represent vectors to be estimated, parameterizing the densities fW

and each fAi to belong to some parametric family or sieve space. The second step is to

estimate P̃ (·) and T̃ (·) which can be done through local linear regression just as in the

no-unobserved-heterogeneity case in Section 5.2.

Given the estimates of fAi (·) , fW (·) , P̃ (·) , T̃ (·), we can solve for Pi (·) , T0
i (·) using min-

imum weighted distance, using our empirical ironing, shape-constrained spline basis func-

tions suggested in Section 5.2 and described in detail in Appendix B. We propose quadratic

spline coefficients θP, flexibly parameterizing Pi (·; θP), to solve the following objective func-

tion:

min
θP

ˆ [ˆ
Pi (ai; θP) fAi (ai)fW (ãi − ai)dai − P̃i (ãi)

]2

[ˆ
fAi (ai) fW (ãi − ai)dai

]
dãi. (17)

This minimizes the integrated distance between
´
Pi (ai; θP) fAi (ai) fW (ãi − ai)dai and

P̃i (ãi), weighting by
´
fAi (ai) fW (ãi − ai)dai, which is the density function of ãi.

13

13Weighting by the density of ãi is ad-hoc and does not matter asymptotically, but in finite samples it
has the effect of lowering the estimation weight on regions where ãi has low density, so P̃i (ãi) may not be
estimated accurately.
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We can then estimate T0
i (·) as a function of P(·), parameterizing it as T0

i (Pi (ai; θP) ; θT ),

where θT are cubic spline coefficients chosen to solve

min
θT

ˆ [ˆ
T0
i (Pi (ai; θP) ; θT ) fAi (ai) fW (ãi − ai)dai −

(
T̃i (ãi) − E (W∆Pi | ãi)

)]2

[ˆ
fAi (ai) fW (ãi − ai)dai

]
dãi. (18)

The minimum distance problems in (17) and (18) can be computed with standard gradient

descent methods. Once Pi (·) , T0
i (·) are estimated, values can then be estimated using the

relationship s−1 (a) = dT
dP as in Section 5.2.

7.3. Identification with Non-independent Private Values. In this section, we relax

the assumption that values of different agents are independent. Suppose that agents’ values

V1 . . .Vm are drawn from some joint distribution F (v1 . . . vm), which is common knowledge

to all agents. This incorporates and generalizes, for example, the affiliated private value

model of first-price auctions analyzed by Li, Perrigne, and Vuong (2002). As above, we

suppose that the agents play trading game G . We assume that the equilibrium of the game

is separating: equilibrium strategies are described by the si (vi), where each si is invertible.

We show that, as in Section 3, we can derive bounds on the inverse functions vi (·) for

each ai. Our results in this section are complementary to a contemporaneous paper by

Kline (2016), which derives stronger identification results than ours under an additional

assumption about equilibrium monotonicity.

Let si (·) denote the equilibrium strategy of agent i. Since values are not independent,

equilibrium actions will be given by some joint distribution G (a1 . . .an), derived from

F (v1 . . . vn) and the equilibrium strategy si (·). Fix any given value vi of player i; condi-

tional on vi, the distribution over values of agents −i is some F (v−i | vi). This conditional

distribution of values, combined with the equilibrium strategies of other players s−i, induces

a conditional distribution over opponents’ actions G (a−i | vi). Thus, in equilibrium, if agent

i is of type vi and plays action a′i, she attains the expected outcome (Pvii
(
a′i
)

, Tvii
(
a′i
)
),

defined as the expectation over the expected outcomes xi
(
a′i,A−i

)
, ti
(
a′i,A−i

)
when

A−i ∼ G (a−i | vi). That is,

Pvii
(
a′i
)
= E

[
xi
(
a′i,A−i

)
| A−i ∼ G (a−i | vi)

]
,

Tvii
(
a′i
)
= E

[
ti
(
a′i,A−i

)
| A−i ∼ G (a−i | vi)

]
.

In order for type vi to play action ai = si (vi) in equilibrium, si (vi) must then satisfy:

si (vi) = arg max
ai

viP
vi
i (ai) − T

vi
i (ai) − vix̄i. (19)
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As in Section 3, this allows us to bound vi (ai), the unique type that plays ai in equilibrium.

Proposition 5. For each ai, the unique v = vi (ai) satisfies:

v >
T
vi=vi(ai)
i (ai) − T

vi=vi(ai)
i

(
a′i
)

P
vi=vi(ai)
i

(
a′i
)
− P

vi=vi(ai)
i

(
a′i
) ∀{a′i : Pvi=vi(ai)

i

(
a′i
)
< P

vi=vi(ai)
i (ai)

}
, (20)

v 6
T
vi=vi(ai)
i

(
a′i
)
− T

vi=vi(ai)
i (ai)

P
vi=vi(ai)
i

(
a′i
)
− P

vi=vi(ai)
i (ai)

∀
{
a′i : P

vi=vi(ai)
i

(
a′i
)
> P

vi=vi(ai)
i (ai)

}
. (21)

If the distribution F (v1 . . . vn) has full support, these bounds collapse to a single point.

Proof. Follows from (19). �

If the distribution F (v1 . . . vn) has full support on the rectangle [min v1, max v1] × . . . ×
[min vn, max vn], then the equilibrium probability distribution over action tuplesG (a1 . . .an)

will likewise have full support on the product rectangle of actions played; thus, by observing

multiple independent repetitions of G , the econometrician can consistently estimate both

the equilibrium action distribution G (a1 . . .an), and the outcomes conditional on all action

tuples:

Pi (a1 . . .an) = E [xi (a1, . . .an) | a1, . . .an] ,

Ti (a1 . . .an) = E [ti (a1, . . .an) | a1, . . .an] .

Note that G (a−i | vi = vi (ai)), the equilibrium action distribution conditional on v =

vi (ai), involves the unknown quantity vi (ai). However, this is equivalent to the conditional

distribution G (a−i | ai), which can be derived from G (a1 . . .an). Thus, for any ai, the

econometrician can estimate the functions:

P
vi=vi(ai)
i

(
a′i
)
= E

[
xi
(
a′i,A−i

)
| A−i ∼ G (a−i | ai)

]
,

T
vi=vi(ai)
i

(
a′i
)
= E

[
ti
(
a′i,A−i

)
| A−i ∼ G (a−i | ai)

]
.

These functions, plugged into the equations in Proposition 5, allow us to identify the unique

vi (ai).

This approach is related to that of Li, Perrigne, and Vuong (2002), although it is more

general, as it applies to incomplete information trading games more broadly, rather than

just auctions. The argument utilizes the fact that any type vi must play an equilibrium

action that is a best response to the distribution of opponents’ actions conditional on her

type. These conditional distributions can be estimated by the econometrician, allowing

us to identify types essentially as in Section 3. While our identifiation argument in this

section is quite general, estimation in this general correlated values setting would likely be

cumbersome given the number of different conditional objects to be estimated.
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Our approach in this section requires that the equilibrium strategy si (vi) is strictly

separating. This assumption is necessary in order to estimate the distribution G (a−i | vi)

for the unique vi = vi (ai) using the observed G (a−i | ai). If si were not invertible, in

general vi (ai) would be a set of vi values; thus, the observed G (a−i | ai) would be a

mixture over distributions G (a−i | vi) for different values vi ∈ vi (ai) and the researcher

would not be able to use G (a−i | ai) to consistently estimate Pvii
(
a′i
)

, Tvii
(
a′i
)

for any

given type vi.

8. Application to Auction with Sequential Bargaining

We apply our approach to study a complex game used in wholesale used-car markets,

that of a secret reserve price auction followed by alternating-offer bargaining between the

seller and high bidder.14 The presence of sequential bargaining in this mechanism, with

both parties having private information about their valuations, puts this game in a class

for which there is no known analytical solution or full equilibrium characterization: that

of two-sided bargaining games with two-sided incomplete information and continuum of

agent values. The properties of such games are unknown. In particular, it is unknown how

efficient such a mechanism is in practice relative to efficient bargaining, and how the gains

from trade created by the mechanism are divided among the participants.15 Our approach

allows us to estimate players’ valuations and expected gains from trade in this game without

imposing a particular extensive form or equilibrium selection. We then use these objects

to measure how efficient the market is and how the total welfare is split among buyers and

sellers.

We also use our estimates to address an additional question of interest for market design.

The seminal work of Myerson and Satterthwaite (1983) demonstrated that, when there is

uncertainty about whether gains from trade exist and when a mechanism must be budget-

balanced, any mechanism between one buyer and one seller will fall short of the ex-post

efficient outcome.16 In used car markets, there is not merely one buyer, but multiple buyers.

The natural question then follows: with N > 1 buyers, does the Myerson and Satterthwaite

(1983) result still hold, or is ex-post efficiency achievable? Below, we describe the setting

and data and explain how we apply our menu approach to this setting. We then discuss

14Auctions followed by post-auction bargaining between the buyer and seller have been reported in a number
of other settings as well, such as procurement. In an important precurser to GPV, Elyakime, Laffont, Loisel,
and Vuong (1997) analyze this mechanism’s use in timber auctions.
15See discussions of complications introduced in these settings in Ausubel, Cramton, and Deneckere (2002).
16The ex-post efficient outcome is for trade to occur whenever the buyer values the good more than the
seller.
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counterfactual results, comparing the mechanism used in practice to the efficient mecha-

nism for N buyers and 1 seller and analyzing how this relates to Myerson-Satterthwaite

inefficiency.

The application we present in this section is related to a previous study focusing on this

market, Larsen (2014). That previous paper also reports welfare measures under counter-

factual mechanisms, but focuses solely on the post-auction bargaining element of the game,

whereas here we study instead the fullN-buyer, 1-seller mechanism. That paper also did not

apply the menu approach we present herein for identification or for estimation, but instead

applied undominated-strategy bounds, akin to those in Haile and Tamer (2003); Section

9.3 below highlights the distinction between these types of approaches for other settings.

Our focus in this section is on applying the menu approach to estimating the distribution

of seller valuations given that this is the particularly tricky object to recover structurally,

as described below. Other preliminary steps for estimation are rather straightforward (e.g.

controlling for observable heterogeneity), and we follow the same approach as in Larsen

(2014) for those preliminary steps. We describe the full estimation procedure, including

these preliminary steps, below.

8.1. Background and Data. The wholesale used-car industry—an industry with revenues

above $80 billion annually in the United States—operates through a network of several hun-

dred auction house locations scattered throughout the country (and operations are similar

internationally). These auction houses have been a part of the US used car market for over

seventy years. Over 15 million cars pass through auto auction houses annually. At each

auction house location, used-car dealers come to buy cars from other car dealers or from

companies who possess large fleets—such as rental car companies, banks with repossessed

vehicles, or manufacturers with lease-buyback vehicles. Sales at a given auction house typi-

cally take place once a week, and the seller of a given car brings the car to the auction house

several days before the sale and reports a secret reserve price to the auction house. On the

day of the sale, buyers (used-car dealers) come to the auction house, with many buyers

traveling long distances to attend. Cars are auctioned off roughly in the order they arrive,

with multiple auctions running simultaneously, as multiple sales lanes run throughout the

building where the sale takes place.

The mechanism proceeds as follows: buyers participate in an ascending auction, indi-

cating their willingness to pay the current price, with the bidding controlled by a human

auctioneer who raises the price until only one bidder remains. The auction itself takes about

90 seconds (Lacetera, Larsen, Pope, and Sydnor 2016). If the final auction price exceeds the

secret reserve price (observed to the auctioneer, but not the buyers), then the high bidder is

awarded the car. If not, the high bidder and seller enter into an alternating-offer bargaining
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game, mediated by an auction-house employee over the phone. The high bidder is allowed

the chance to opt out of bargaining before the seller is contacted.

Our data consists of 133,249 realizations of the auction-plus-bargaining game from sales

by fleet/lease sellers (as opposed to sales where the seller was a used-car dealer) from six

different auction house locations from 2007–2010. For each game, the primary variables we

observe are the seller’s reported secret reserve price, the final transaction price, the final

allocation (i.e. an indicator for whether the car sold), and the auction price. We also

observe a large set of observable characteristics of each sale, including characteristics of the

car and features of the auction house environment at the time of the sale. Our data also

contains bid logs for a subset of sales, from which the number of bidders can be inferred.

8.2. Applying the Menu Approach to Used-Car Markets. To improve clarity, we

will introduce here some notation specific to our application. The key object of interest for

our counterfactual exercises is the distribution of seller private valuations, VS ∼ FS. The

distribution of buyer valuations, VB ∼ FB, is also of interest, but Larsen (2014) demonstrates

that, in this setting, bidders in the auction cannot gain by deviating from truthtelling, and

thus FB can be estimated quite easily using a standard order statistics inversion using the

high bid from the auction, a random variable we denote HB ∼ FHB.17 We assume here that

VB and VS are independent and hence, by truthtelling, HB and R will also be independent.

We further assume that the data represents independent realizations of play from a single,

position-invariant equilibrium of the game (with the analytical characterization of that

equilibrium unknown to us as the econometricans).

To estimate FS, we apply the results for imperfectly observed actions from Section 4 and

the results for unobserved heterogeneity from Section 7.2. Specifically, we will assume that

the seller’s secret reserve price (a random variable R ∼ FR) is a strictly increasing function

of her valuation VS—and thus serves as a one-to-one action shifter—and that the game

satisfies the separable heterogeneity property of Section 7.2. Larsen (2014) demonstrates

that these two properties will indeed be satisfied in Bayes-Nash equilibria of this game as

17N, the number of bidders, varies from one instance of the game to the next. We assume N is independent
of VS and VB. For any y, FB(y) is estimated by solving the following order-statistic relationship:

FHB(y) =
∑
n

Pr(N = n)
[
nFB(y)

n−1 − (n− 1)FB(y)
n
]

, (22)

where the distribution FHB(y) is the distribution of the high bid from the auction, an estimate of which
comes the maximum likelihood estimation described below. Pr(N = n) is the distribution of the number of
bidders, which we estimate using the empirical distribution of N for the subset of auctions with big log data.
See Larsen (2014) for more details on this bid log data and for a proof that the maximum order statistic
distribution (which we use in counterfactuals) implied by the estimated FB and by Pr(N = n) is not sensitive
to the fit of Pr(N = n).
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long as bargaining strategies do not jump discontinuously with the auction price.18 We can

then apply our results to estimate the true menu faced by sellers and, consequently, the

equilibrium mapping from sellers’ reserve price offers to sellers’ underlying values, given by

the derivative of that menu.

Throughout this section, for simplicity of exposition, we will omit the subscript i = S

from menu objects (P(·), T(·), etc.) because we only apply the menu approach to estimating

seller valuations. We will also omit the (̆·) notation from menu objects even though these

will be estimated here using only a partially observable action rather than the seller’s full

action vector (which is not observable). The reserve price functions act an action shifter Z

in this application, but for clarity we will simply refer to the reserve price as R throughout.

We first describe our preliminary estimation steps before we apply the actual menu

estimation. Because of the position-invariance property, we can first control for observable

heterogeneity through a regression of auction prices and reserve prices on Yj, a large set

of observables.19 We assume this variable enters valuations and actions as a single index,

Y ′
jη, and we estimate η through a linear regression. For the sake of concreteness, we will

refer to the predicted value from this regression, Y ′
j η̂, as the “bluebook” value of the car.

We treat the residuals from this regression (that is, reserve prices and auction prices minus

the bluebook) as contaminated with an unobserved heterogeneity term, W ∼ FW , which we

assume is independent of VB, VS, and N. Let these residuals be denoted by the random

variables R̃ = R+W and H̃B = HB+W. We then estimate FW , FR, and FHB by maximum

likelihood, as in (16), parameterizing each distribution as a Normal distribution.

To apply the menu approach, we then estimate the object P̃ (r̃)—the noisy measure of the

expected allocation function—a using local linear regression of xj on r̃j using a Gaussian

kernel.20 To estimate T̃ (r̃), we perform a similar local linear regression, but where the

18While our estimation relies strongly on the secret reserve price being a one-to-one function of type, even if
this assumption is violated, our results in Sections 4.3 and 4.4 suggest that, so long as the setting is relatively
smooth, our estimates of value distributions and trade surplus are likely to be close to true values.
19The vector Yj contains fifth-order polynomial terms (all degrees of the polynomial from one through five)
in the auction houses’ own bluebook estimate and the odometer reading; the number of previous attempts
to sell the car; the number of pictures of the car displayed online on the auction house’s website; a dummy
for whether or not the odometer reading is considered accurate, and the interaction of this dummy with
the odometer reading; the interaction of the odometer reading with car-make dummies; dummies for each
make-model-year-trim-age combination (where age refers to the age of the vehicle in years); dummies for
condition report grade (ranging from 1–5); dummies for the year-month combination of the date of the
sale and for auction house location interacted with hour of sale; dummies for 32 different vehicle damage
categories recorded by the auction house; dummies for each seller who appears in at least 500 observations;
dummies for discrete odometer bins; and several measures of the thickness of the market during a given sale
and of the order the cars were run (see Larsen 2014 for details on the construction of these measures).
20We choose a bandwidth of 500 for this estimation. The mean and standard deviation of reserve prices in
the data are $10,385 and $5,805.
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dependent variable when trade occurred is the final transaction price minus Y ′
j η̂, denoted,

t̃j.

Given the estimates of FR, FW , P̃ (r̃), and T̃ (r̃), we solve for the true menu {(P (r) , T0 (r))}

using minimum weighted distance as described in (17) and (18). For P (r) we use quadratic

splines with 9 knots, constrained to be nondecreasing. For T0 (r) we use cubic splines with

7 knots, constrained to be convex. Finally, since the object T0 (P (r)) is represented as a

convex sum of splines, we can analytically take its derivatives, giving us the final estimated

mapping from reserve prices to values vS(r). We then estimate the gains from trade attained

by a seller with value vS as vSP(r(vS)) − T
0(r(vS)), where r(vS) is the inverse of vS(r).

21

8.3. Estimation Results. Before displaying the estimated menu and valuations, we first

provide some descriptive evidence that different secret reserve prices do indeed appear to

yield different payoffs for sellers, and hence can serve to help separate seller types as a our

method requires. In the left panel of Figure 5 we show the probability of sale as a function

of sellers’ residualized reserve prices, R̃. This probability is estimated from a local linear

regression, corresponding to 1 − P̃ (r̃), as P̃ (r̃) is the probability of the seller keeping the

good. The units for the horizontal axis are $1,000, and these numbers can be negative

because they are the result of subtracting off Y ′
j η̂; these numbers can thus be thought of

indicating where the reserve price lies relative to the bluebook estimate of the car, (Y ′
j η̂).

The right panel of Figure 5 displays, on the vertical axis, the auction price and the final

price from the mechanism, again from a local linear regression against reserve prices.22 The

regressions in each panel use observations with reserve prices lying between the 0.01 and

0.99 quantiles of empirical reserve prices.

Figure 5 demonstrates that auction prices are correlated with reserve prices, violating

the independence assumption of the baseline model of Section 2. This suggests that it

is important to account for unobserved heterogeneity in this setting. We also see that

sellers who post higher reserve prices sell with lower probabilities, but are able to attain

higher prices conditional on sale. In particular, the difference between the average final

price conditional on sale and the average auction price is increasing in the reserve price.

The average auction price roughly measures the value of unobserved car-level heterogeneity

conditional on the reserve price.23 Thus, if the difference between the final price and the

21Appendix D describes how computing buyers’ gains from trade requires an additional assumption: that
each seller type trades with all buyer types above a certain cutoff. Larsen (2014) demonstrates that this
property will indeed be satisfied in Bayes-Nash equilibria of this game, relying on results from Storms (2015).
22Recall that auction prices and final prices will not necessarily coincide with one another because of the
bargaining component of the mechanism. Also, the final price exists only for observations of the game that
end in trade, whereas the auction price always exists.
23To see this, note that, since H̃B = HB+W, R̃ = R+W, and HB,R,W are mutually independent, we have

that E
[
H̃B | R̃

]
= E

[
W | R̃

]
.
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auction price is increasing in the reserve price, this suggests that sellers who post high

reserve prices are forgoing some probability of selling the good in order to obtain a higher

sale price.

In Figure 6, we show the local linear estimates of P̃ (r̃) , T̃ (r̃), as well as the unobserved

heterogeneity corrected estimates P (r) , T0 (r). We also display intermediate steps in this

unobserved heterogeneity correction to illustrate the procedure. For probabilities, the P̃ (r̃)

function is essentially a noisy version of the P (r) function; thus, correcting for unobserved

heterogeneity will yield an estimate of P (r) that is steeper than P̃ (r̃). This can be seen in

panel A by comparing the P (r) line to the P̃ (r̃) line. For transfers, unobserved heterogene-

ity necessitates two corrections to the T̃ (r̃) function. First, we subtract from T̃ (r̃) the term

E (W∆P | r̃), which represents the expected value of the unobserved heterogeneity condi-

tional on r̃. Intuitively, for higher values of r̃, we will observe that trades tend to happen at

higher prices, but much of this is due to the unobserved heterogeneity term W being higher

on average, rather than the transfer T0 (r) being higher. In panel B, comparing the T̃ (r̃) line

to the T̃ (r̃) − E (W∆P | r̃) line shows that this correction makes the slope of the expected

transfer function significantly less negative. Secondly, T0 (r) is essentially a noise-corrected

version of T̃ (r̃)−E
(
W∆P̃ | r̃

)
, and thus the slope and concavity of T0 (r) are both larger in

absolute value than the noisy version. The net effect is that T0 (r) is much less negatively

sloped—and somewhat more concave—than the original nonparametric estimate T̃ (r̃). In

each panel, the yellow line displays the convolution of the estimated allocation or transfer

function against FW , constructed from the left-hand side of (17) and (18), as a check on fit;

in each case, the estimate aligns closely with the P̃ (r̃) or T̃(r̃) − E (W∆P | r̃) function as it

should.

We now display, in Figure 7, the estimated menu constructed from the objects P (r) and

T0 (r), with P (r) on the horizontal axis and T0 (r) on the vertical axis. Each point on the

menu corresponds to an expected payoff for the seller from choosing a particular secret

reserve price. We note here that our formulation for payoffs described in (1) in Section 2,

vP(a) − T(a), is perhaps more intuitive in a game where the agent of interest is a buyer, in

which case P(a) represents the expected probability of the buyer winning and T(a) is the

expected payment made by the buyer. Here, with the agent being a seller, P(r) represents

the probability of the seller keeping the good (so 1 − P(r) is the probability that a sale

occurs) and T0 (r) is the expected transfer paid by the seller (so −T0(r) is the expected

payment received by the seller). Also, as highlighted above, all seller values are relative

to the estimated bluebook value of the car, Y ′
j η̂, so a seller value of -$1,000, for example,

represents a seller who values the car at $1,000 below bluebook.
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With this interpretation in mind, we compare several points long the menu, marked A–D

in Figure 7. Each point corresponds to a distinct reserve price, which we will refer to as

rA–rD, where rA < rB < rC < rD. Points A and B lie along the downward-sloping portion

of the menu. Choice rA would yield a lower probability of keeping the good and a lower

expected transfer (i.e. a less negative T0(r)) than would choice rB. Therefore, a seller who

chooses rA must want to get rid of the car more than a seller who chooses rB, implying that

the former seller has a lower value (lower s) than the latter. This is precisely what Figure 7

shows: the derivative of the menu at rA is more negative than at rB, and these derivatives

(by Corollary 2) reveal sellers’ values, so a seller choosing rA must therefore have a value s

that is farther below the bluebook value of the car than does a seller choosing rB. Points

C and D lie along the upward-sloping portion of the menu. Comparing these two points,

choice rC would yield a lower probability of keeping the good but a higher expected transfer

to the seller (i.e. a more negative T0(r)). Therefore, a seller choosing rD must want to keep

the good more (i.e. have a higher s) than a seller choosing rC. This is again clearly revealed

by the derivatives of the menu at these points: the derivative is more positive at point D

than at point C.

Taking these derivatives at each point r yields the mapping between the reserve price and

the inferred value s corresponding to that reserve price. We display this mapping with the

solid blue line in panel A of Figure 8, with reserve prices on the horizontal axis and values on

the vertical axis. The units for each axis are $1,000. The dashed lines indicate a pointwise

95% confidence band computed by bootstrapping the exercise 500 times. The red line shows

the 45 degree line (the reserve prices itself) for comparison. To interpret this plot, consider

a particular point on this mapping at approximately r =-$300 (-0.3 on the horizontal axis).

We see that the corresponding inferred value for such a seller is approximately s =-$1,000

(a value of -1 on the vertical axis). Therefore, a seller who chooses a reserve price that is

$300 below the bluebook is actually willing to let the car go for up to $1,000 below the

bluebook.

The estimated reserve-value mapping, combined with the distribution FR of reserve prices,

gives us an estimated distribution FS of sellers’ values, and we plot this in panel B of Figure 8.

For comparison, we also plot the estimated distribution of the highest-value buyer, which

is the buyer who potentially ends up in bargaining with the seller.24 The distributions

indicate that 80% of sellers have values less than about $50 below the bluebook estimate,

while nearly 90% of buyers have values above this amount. This suggests that there is a

lot of room for trade gains in this market, which is to be expected given that these auction

houses have been functioning well as market makers in this industry for three quarters of

24This distribution can be computed by using the objects FB and Pr(N = n), described above. The maximum
order stastic distribution is then given by FB(1)(y) =

∑
n Pr(N = n)FB(y)

n.
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a century. However, panel B also shows overlap between seller and buyer distributions,

which, by the Myerson and Satterthwaite (1983) Theorem, could lead to inefficiency in this

market due to incomplete information, with some trades failing to occur even when the

highest-value buyer values the good more than the seller. We will analyze this in more

detail below.

We pause to remark on individual rationality. Throughout our identification arguments

and estimation process, we have only used local incentive compatibility conditions of sellers—

that is, the condition that outcomes under the reserve prices chosen are preferred to the

outcomes from any other possible choice of reserve price. We have not exploited or enforced

individual rationality constraints. Individual rationality (IR) for the seller refers to the fact

that the seller should always be able to choose an outcome corresponding to (P, T) = (1, 0);

that is, keeping the good with probability 1 and receiving no payment. There is no simple

way to enforce this constraint jointly with our estimation procedure, but it can be imposed

after the fact. In our estimated menu, we find that the IR constraint is violated for the

roughly 17% of seller types who are inferred to have the highest values, implying that

these sellers would be better off ex-ante by not participating in the mechanism. Since it

is empirically implausible that sellers would actually violate individual rationality, in our

counterfactual exercise below, we will analyze the mechanism’s efficiency only for the 83%

of seller types for whom the IR constraint is satisfied. This is equivalent to assuming that

IR-violating sellers have infinitely high values, which is conservative for estimating actual

and potential gains from trade as it treats these sellers as never having potential gains from

trade. An alternative approach would be to assume that all IR-violating sellers have the

same values and expected outcomes as the highest non-IR-violating seller type. We found

that taking this approach did not have noticeable effects, qualitatively or quantitatively, on

our counterfactual results.

8.4. Efficiency, Optimality, and Equity. We now compare the outcomes observed in

the data to a number of counterfactual benchmarks in order to study efficiency, optimality,

and equity. These counterfactual benchmarks can each be computed using the estimated

distributions of valuations. First, we calculate the fully efficient outcome, where trade

occurs whenever the highest-value buyer values the good more than the seller. Second, we

calculate the the second-best, information-constrained mechanism. This is the mechanism

that would maximize ex-ante efficiency in a setting with N buyers and 1 seller, taking into

account players’ incentive compatibility and individual rationality constraints (and budget

balance). This mechanism is similar the second-best mechanism studied in Myerson and

Satterthwaite (1983), but theirs is for just 1 buyer and 1 seller. Appendix D discusses

technical details of how we solve for this mechanism. Third, we consider the mechanism
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that would be optimal for the seller in this setting, which is a second-price auction with an

optimally chosen public reserve price. Fourth, we consider the buyer-optimal mechanism,

in which the highest-value buyer makes a take-it-or-leave-it offer to the seller.

These above mechanisms allow us to examine the efficiency of the real-world mechanism

and its optimality relative to what would be optimal for one-party or the other. To study

equity—who obtains what share of the total surplus—we impose no assumptions a priori

about who has more bargaining power, but instead let the data speak to this question by

examining the buyer and seller surplus in each of these counterfactual mechanisms and in

the real-world mechanism.

Table 3 displays the welfare measures for each of the counterfactual mechanisms and for

the real-world mechanism. Rows 1–4 report each of the four counterfactual mechanisms,

followed by the real-world auction-plus-bargaining mechanism in the final row. For each

mechanism, the first column reports the probability of trade. Columns 2–6 report total

expected surplus, expected surplus and margin for the seller (seller margin is the difference

between the seller’s price and the seller’s value for transacted cars), and expected surplus

and margin for the highest-value buyer (buyer margin is the difference between the buyer’s

value and the price paid for transacted cars). The final column reports the percentage of

the surplus achieved by the seller.

In terms of surplus division (the final column in Table 3), the mechanism in the data gives

the seller 60.4% of the trade surplus, slightly lower than the 66.8% that sellers achieve in the

second-best mechanism, and lying between the extremes of 41.6% and 76.3% that the seller

would achieve in the buyer-optimal and seller-optimal mechanisms respectively. Quanti-

tatively, this implies that sellers achieve $2,093 of surplus in the real-world mechanism,

compared to $2,421 in the second-best mechanism, $2,628 in the seller-optimal mechanism,

and $1,335 in the buyer-optimal mechanism. We can also calculate average margins for

sellers by dividing seller utility by the probability of trade. This is $2,571 in the real-world

mechanism, compared to $1,940 in the buyer-optimal mechanism and $3,443 in the seller

optimal mechanism. Given that average car prices are approximately $10,000, this im-

plies that sellers’ markups over their reservation values are approximately 26% of car prices

in the real-world mechanism, compared to 19% and 34% at the buyer and seller-optimal

mechanisms respectively. Buyer surplus is $1,374 in the real-world mechanism, compared

to $818 and $1,874 in the seller-optimal and buyer-optimal mechanisms respectively. In

margin terms, buyers’ margins in the real-world mechanism are roughly 14% of car prices,

computed by dividing buyer surplus by the probability of trade.

In Figure 9, we display the seller surplus and trade probability specific to different seller

types (different values s) in the real-world mechanism and in each counterfactual mechanism.
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Panel A demonstrates that in the real-world mechanism sellers with values near the median

(the median seller value is approximately $78 below the bluebook estimate) trade with

substantially higher probabilities than in the buyer- and seller-offer mechanisms; sellers

with values towards the extremes of the distributions trade with probabilities equal to or

lower than the seller-optimal mechanism. This suggests that sellers with values close to the

median contribute significantly to the relatively high efficiency of the real-world auction-

plus-bargaining mechanism. Panel B demonstrates that the real-world mechanism yields

sellers a surplus that, across most of the range of seller types, is roughly a constant fraction

of what the seller could achieve in the seller-optimal or the second-best mechanisms. At

seller values closer to the bluebook estimate (i.e. at seller values closer to 0 on the horizontal

axis), the seller-optimal mechanism yields the seller a much higher surplus than in the real-

world or second-best efficient mechanisms.

Returning to Table 3, we find that the Myerson-Satterthwaite impossibility result for

1 buyer and 1 seller—which implies that the second best will always fall short of the first

best when buyer and seller distributions overlap—imposes very weak restrictions on feasible

mechanisms in this context: the maximal possible second-best surplus is 99.99% of the first-

best trade surplus. This is partly because competition between multiple buyers (N > 1)

tends to alleviate Myerson-Satterthwaite impossibility. In Figure 10, we examine this result

more closely. We re-compute the second-best and first-best mechanisms under different

assumptions for the average number of bidders present at the auction, varying this number

smoothly between between 1 and 2.34, the number estimated from bid log data.25 The

upper (blue) line displays the percentage of the first-best surplus achievable in the second-

best mechanism, the middle (red) line displays the fraction of first-best sales achieved by

the second-best mechanism, and the lower (yellow) line displays the percentage of the total

surplus sellers achieve in the second-best mechanism. The plot shows that, as the average

number of bidders increases, the second-best achieves a larger fraction of the first-best

surplus and sale volume, and sellers attain a larger share of the total surplus.

Table 3 also demonstrates that the auction-plus-bargaining mechanism in the data is

fairly efficient relative to the second-best, achieving $3,467 in expected gains from trade,

which represents 95.6% of the second-best surplus level, $3,626. However, the mechanism

achieves trade only 81.4% of the time, whereas the second-best mechanism would achieve

trade 96.4% of the time. Interestingly, if the auction house were to employ a mechanism

that was optimal for either the seller or the buyer, the probability of trade would drop to

76.3% and 68.8%, respectively, and the total surplus would drop to $3,445 and $3,209. This

would only be a slight drop in trade or total surplus in the case of the seller mechanism.

25We do this by taking convex combinations between the distribution of the number of bidders observed in
the data, and a distribution with a unit mass at 1 buyer.
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The auction house revenue model is such that fees are paid only when trade occurs, so

the auction house cares particularly about keeping the probability of trade high. This

may explain in part why the auction-plus-bargaining mechanism is used in practice over a

traditional auction with a reserve price; while the latter would be optimal for the seller, it

would reduce the probability of trade, reducing auction house revenue from fees.

9. Discussion

9.1. Counterfactuals. As highlighted in the introduction, a number of counterfactual ex-

ercises of interest for studying real-world mechanisms involve comparing a mechanism used

in practice to some theoretical benchmark that achieves some notion of efficiency, optimal-

ity, equity, no-collusion, efficient collusion, etc. Or the counterfactual may involve a change

to an alternative mechanism completely, such as a shift from a median price auction to a

first-price auction. Counterfactuals such as these can be performed using the objects our

approach delivers. Certain types of counterfactuals, however, would not be feasible using

our approach. This includes any counterfactual in which the researcher needs to be able to

simulate from the game played in the data and solve for an equilibrium. For example, in

our application to used-car auctions, it would be infeasible to use our approach to study

the question of what would happen if credit constraints were introduced or if players were

required to pay a cost for each bargaining offer made. Such counterfactuals would require

being able to solve for equilibria of an alternating-offer offer bargaining game with two-

sided incomplete information (which, as explained above, is beyond the state of the current

theory literature). Our approach explicitly avoids modeling the game actually played in

the data, achieving identification of primitives without solving for an equilibrium. It is an

incomplete model approach. We see this as a plus for the approach, making it capable of

applying to settings where the rules of the game are either unknown or the game’s equilibria

are complex, but the approach does indeed rule out studying some counterfactuals that the

additional structure of a complete model could deliver.

9.2. Beliefs and Rational Expectations. Throughout this paper, we have assumed

Bayes-Nash equilibrium, which requires that agents have rational expectations about the

distributions of opposing actions, and thus know the functions P (a) , T (a) for any action a

that they could play. This assumption is important for our estimation procedure; if agents’

beliefs coincide with the true conditional expectations P (a) , T (a), we can simply estimate

agents’ beliefs using expected outcome functions in data. Our approach is in fact robust to

some deviations from Bayes-Nash equilibrium: since only agent i’s best response condition
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is used to estimate her valuation, inference about agent i’s value only requires that agent i

has correct beliefs about opponents’ actions, not that all agents are rational.26

Our approach can fail for agents who do not have correct beliefs about the distribution

of opponents’ actions. These agents can be thought of as optimizing with respect to some

Ṗ (a) , Ṫ (a) functions which may differ from empirical averages, and the econometrician

must then take an essentially unverifiable stance on how agents’ Ṗ (a) , Ṫ (a) functions are

formed. A number of approaches have been proposed in the literature. Agarwal and Somaini

(2018) estimate values assuming rational expectations as well as coarse and lagged expec-

tations. Syrgkanis, Tamer, and Ziani (2017) explore inference in auctions under different

information assumptions. In a related literature, Doraszelski, Lewis, and Pakes (2018) show

that firms in a new market for frequency response behave in a way that is more consistent

with adaptive learning than rational-expectations equilibrium.

Belief formation in multi-agent games is a difficult and important question in the lit-

erature; further discussion is beyond the scope of this paper, but we emphasize that the

assumption of rational expectations is important for our methods to work. This may be

a reasonable assumption for marketplace-like settings, in which traders interact frequently

in environments that are relatively stationary over time, but it may be less appropriate

for large one-shot mechanisms, or nonstationary settings in which agents are learning and

converging towards optimal behavior over time.

9.3. Belief Estimation versus Undominated-Strategy Approaches to Identifica-

tion. This paper, along with GPV and many of the papers discussed in the subsection

above, assumes that agents are optimizing with respect to some beliefs about outcomes,

and moreover that the econometrician can estimate these beliefs. If these beliefs can be

estimated, revealed preference arguments can be applied to identify agents’ values. We view

these papers as conceptually distinct from a set of identification and estimation approaches

that are based instead on the concept of rationalizability, or undominated strategies. Ex-

amples include Haile and Tamer (2003) (or recent work by Chesher and Rosen (2017)) for

estimating bounds on buyer valuations in ascending auctions or Larsen (2014) for estimat-

ing bounds on seller valuations in bargaining games. Rather than taking a stance on what

agents’ beliefs about outcomes are, these approaches rule out only values under which ac-

tions observed in the data are dominated—that is, values for which particular actions could

not to be rationalizable by any belief. In the classic example of Haile and Tamer (2003),

an agent bidding some amount y at some point in an ascending auction must have value

26A similar argument is made in Nekipelov, Syrgkanis, and Tardos (2015), who argue that many learning
algorithms should eventually converge to regret-free behavior, which motivates using no-regret conditions—
essentially best-response conditions for stationary averages over opponents’ actions—in estimation.
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above y; if not, there is no possible outcome that the agent could achieve from bidding y

that would give the agent positive utility.

The belief estimation approach requires strictly stronger assumptions about agents’ be-

liefs than the rationalizability-based approach; if the econometrician is willing to make

these assumptions, the benefit can be powerful identification results with weaker assump-

tions about game structure. In contrast to rationalizability-based approaches such as Haile

and Tamer (2003), the approach we take here allows the econometrician to use essentially

no information about the rules of the game; all relevant information about game rules is

inferred from observing game outcomes. Moreover, rationalizability-based approaches tend

to only allow partial identification of values, whereas our approach can often achieve point

identification.

We believe that these two approaches can be used in a complementary manner. In some

settings, for example, dominance-based arguments could be used to robustly find bounds

on agents’ values, and the stronger assumption of Bayes-Nash equilibrium could be used

more tentatively to point-identify values.

9.4. Multiple Equilibria. We assume that agents are playing a single equilibrium across

all observations. In some marketplace-like settings, agents interact with anonymous trading

partners and few observables are available for agents to coordinate on; the assumption that

all agents are playing the same equilibrium may be plausible in these settings. In other

settings, agents may be able to coordinate to play different equilibria based on various

features of the environment that they observe. For example, in timber auctions, agents

bidding in auctions for high quality timber could play a certain equilibrium, bidding in

a systematically different way than agents bidding in auctions for low quality timber. In

such settings, if the econometrician observes all possible characteristics that agents could

use for coordination, the problem of multiple equilibria could be addressed by estimating

equilibrium menus conditional on observables, rather than pooling all observations into a

single menu. This effectively allows a different equilibrium to be played for each possible

combination of observables characterizing a trading game. There may be setting in which

agents play different equilibria conditional on variables unobserved by the econometrician;

this presents an interesting unobservable heterogeneity problem for which we do not yet

have a solution.

Examples of features on which equilibrium selection can depend would be a reserve price

in an auction or the number of competing bidders in an auction. If reserve prices are present

and vary from one instance of the game to the next, and if these reserve prices are observable

to agents, the econometrician would also need to observe and condition on reserve prices in

order to correctly estimate equilibrium menus for buyers. Similarly, if agents can observe
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the number of their competitors and this number affects equilibrium behavior (it would

do so in a first-price auction, for example, but not in an ascending button auction), then

econometrician should observe and condition on this quantity when estimating equilibrium

menus. If, however, agents themselves do not observe the number of their competitors, the

econometrician need not observe it either in applying the menu approach.

9.5. Affine-Utility Games. We focus in this paper on trading games, in which agents’

utility functions depend on an indicator variable xi for trade and real-valued transfers

ti. However, our arguments only utilize the fact that agents’ expected utilities are affine

functions of expected outcomes, up to some unknown vector of types, and similar arguments

apply to other settings in which agents maximize objective functions which are affine in types

and observable outcomes.

For example, in an oligopolistic competition setting, our menu estimation approach is

related to the Baker and Bresnahan (1988) approach of using firm cost shifters to estimate

the residual demand curve facing a given firm, and using this to make statements about

firms’ price-setting power. Similar arguments apply to other settings in which firms or

agents have preferences that are assumed to be linear in some quantity measure q (p),

rather than a probability P (a) as in our setting.27 Applying our approach to such settings

could allow for firms to potentially have incomplete information about competitors’ costs

without assuming a particular model of conduct by those firms. This could be particularly

useful given that Sweeting, Tao, and Yao (2018) point out that small amounts of asymmetric

information in oligopoly pricing can have big effects on prices, and price setting in such cases

may look similar to collusion if incomplete information is ignored.

Related arguments also apply to settings in which agents maximize affine functions of

more than two outcomes. Agarwal and Somaini (2018) analyze school choice problems, in

which applicants’ utilities for submitting a given report are affine functions of probabilities

of admission to different schools, and uses this to derive identification and estimation argu-

ments. Gentry, Komarova, and Schiraldi (2014) use similar arguments to analyze bidding

in combinatorial auctions for highway procurement. While our nonparametric estimation

is specialized to the case of two outcomes, menus are also convex in settings with multi-

ple goods, and similar approaches to ours can be applied in such settings. For example,

Agarwal and Somaini (2018) show that solving for agents’ values for any preference report

requires satisfying a set of revealed-preference inequalities that define the subgradient set

27For example, consider a monopolist pricing problem, where the monopolist chooses price p to maximize
pq (p) − cq (p), where c is the (potentially privately known) marginal cost and q(p) is demand. Defining

T (p) = pQ (p), we can write monopolist profit as T (p) − cq (p) and obtain c as
dT
dp
dq
dp

= c, which can be

re-written to obtain the standard monopolist pricing formula c = p+ qp′ (q).
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of a multidimensional convex function; this is a linear programming problem, so it is fairly

straightforward even in high dimensions.

9.6. Mechanism Design. The class of quasilinear-utility trading games that we study

here is exactly the canonical model of classical mechanism design, as pioneered by Myerson

(1981), and many parallels can be drawn between our results and this literature. Simi-

larly to the mechanism design literature, our incentive compatibility constraints in (1) rely

only on the quasilinear-utility setup, and are independent of the particular game being

played. Indeed, one interpretation of our results from the perspective of mechanism design

is that equilibria of arbitrary trading games can alternatively be thought of as revelation

mechanisms, in which the abstract actions that agents take are their type reports. The

econometrician can estimate the mapping that the revelation mechanism from type reports

to outcomes, and use this to estimate the value of an agent making any given type report.

The constraint that equilibrium menus are convex is related to the implementability con-

straint from Myerson, stating that equilibrium allocations must be weakly increasing in

types. The “empirical ironing” procedures we propose in Section 5 to enforce menu con-

vexity are thus related to the concept of ironing demand curves to enforce monotonicity of

optimal allocation rules in optimal mechanism design.

10. Conclusion

This paper provides a two-step identification argument, based on intuitions from the

theoretical mechanism design literature, for general incomplete information trading games,

generalizing a number of game-specific approaches in the literature. We propose an method

to deal with imperfectly observed actions, derive general estimation procedures, and extend

tools for unobserved heterogeneity and correlated private values from auctions setting to

general trading games. We believe our results may be useful in a number of incomplete-

information settings where closed-form equilibrium solutions may not exist, or where play-

ers’ actions may be difficult to fully observe, or where the rules of the game are not neces-

sarily known to the econometrician, such as incomplete-information sequential bargaining

games.
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Figure 1. Hypothetical menu
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Notes: Hypothetical menu. The slopes of the green lines are upper and lower bounds for the value
of an agent choosing action a3i .

Figure 2. Example Menu in Imperfectly Observed Action Case

Notes: True menu (P, T) compared to a menu generated in an imperfectly observed action case.

The latter menu (P̆i, T̆i) is based on an action-shifter Z that is a noisy measure of the true
underyling valuation.
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Figure 3. Estimated Buyer Valuations From First-Price Auction Simulation

Notes: Figure displays the mapping between values (vertical axis) and bids (horizontal axis) from
first-price auction simulations. Lines correspond to estimated medians (solid lines) and pointwise
95% quantiles (dotted lines) for the true values (black), GPV (blue), our local quadratic regression
method (LQ, red), and our spline method (Spl, green) for exponential value distributions with
N = 4, 000. Means and quantiles are constructed across 200 simulation replications.

Figure 4. Estimated Seller Valuations from Bargaining Simulation

Notes: Figure displays the mapping between values (vertical axis) and bids (horizontal axis)—i.e.
seller offers—from bargaining game simulations. Lines correspond to estimated medians (solid
lines) and pointwise 95% quantiles (dotted lines) for the true values (black), our local quadratic
regression method (LQ, red), and our spline method (Spline, green) for uniform value distributions
with N = 4, 000. Means and quantiles are constructed across 200 simulation replications.
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Figure 5. Average Sale Probability, Auction Price, and Final Price by
Reserve Price

(a) (b)

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold
regressed on the secret reserve price. Panel B contains similar local linear regression estimates for
the auction price (the high bid from the auction) in red and the final price (conditional on a sale
occurring) in blue. Units are in terms of $1,000, relative to the bluebook estimate.

Figure 6. Removing Unobserved Heterogeneity from Allocation/Transfer
Functions

(a) Allocation function (P) (b) Transfer function (T)

Notes: Figure displays heterogeneity correction for allocation function (Panel A) and transfer
function (Panel B). Red lines display the original uncorrected estimates from local linear

regressions, P̃(r̃) and T̃(r̃), and green lines display final, corrected estimates, P(r) and T0 (r). In
panel B, blue line (which is very close to the yellow line) displays estimates from intermediate step

subtracting off mean of unobserved heterogeneity, T̃(r̃) − E (W∆P | r̃). In each panel, yellow line
displays convolution against FW , constructed from the left-hand side of (17) and (18), as a check
on fit. Units on the horizontal axis (and vertical axis of panel B) are $1,000, relative to the
bluebook estimate.
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Figure 7. Estimated Menu

Notes: Figure displays the final estimated menu, (P, T). Dashed lines show pointwise 95%
confidence bands from bootstrapping with 500 replications. Units on the vertical axis are $1,000
relative to the bluebook estimate. The points marked A–D are discussed in the body of the paper.

Figure 8. Value Mapping and Value CDFs

(a) Mapping from Reserve to Value (b) Value CDF

Notes: Left panel shows the estimated mapping from reserve prices to values (blue line) and the
reserve price (red line, 45-degree line). Right panel displays estimated CDF of seller valuations, FS
(blue line), and estimated CDF of maximum order statistic of buyer valuations, FB(1) (green line).
Dashed lines in panel A and shaded region in panel B show 95% confidence bands from
bootstrapping with 500 replications. Units on horizontal axes (and on vertical axis of panel A) are
$1,000 relative to bluebook estimate.
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Figure 9. Trade Probability and Seller Surplus

(a) Trade Probability (b) Seller Surplus

Notes: Panel A shows trade probability as a function of the seller’s valuation under different
mechanisms. Panel B shows the expected seller surplus as a function of the seller’s valuation under
different mechanisms. Units are $1,000 relative to the bluebook estimate.

Figure 10. Second-Best Efficiency as Function of Number of Bidders

Notes: Figure shows results for counterfactual mechanisms with a different average number of
bidders. Horizontal axis shows average number of bidders; upper (blue) line displays the
percentage of the first-best surplus achievable in the second-best mechanism; middle (red) line
displays the fraction of first-best sales achieved by the second-best mechanism; and lower (yellow)
line displays the percentage of the total surplus sellers achieve in the second-best mechanism.
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Table 1. Mean Squared Error for First-Price Auction Simulations

Distribution N GPV MSE LQ MSE Spline MSE
Uniform 4, 000 0.316% 2.9% 6.05%

16, 000 0.0959% 1.2% 2.21%
40, 000 0.0446% 0.696% 1.39%

Exponential 4, 000 0.148% 3.44% 4.51%
16, 000 0.0485% 1.47% 1.29%
40, 000 0.0211% 0.885% 0.729%

Lognormal 4, 000 0.15% 5.37% 5.46%
16, 000 0.0434% 2.45% 1.62%
40, 000 0.022% 1.36% 0.92%

Notes: Mean squared error between bid quantiles 0.2 and 0.8 for GPV, our local quadratic
regression method (LQ), and our convexity-constrained spline method (Spline), for uniform,
exponential, and lognormal distributed values of various sample sizes. Mean squared errors are in
terms of percent of the true variance in bidder values between bid quantiles 0.2 and 0.8 and are
based on 200 simulation replications.

Table 2. Mean Squared Error for Bargaining Simulation Results

Distribution N LQ MSE Spline MSE
Uniform 4, 000 6.2% 14.2%

16, 000 2.82% 5.45%
40, 000 1.61% 2.89%

Normal 4, 000 8.96% 24%
16, 000 4.28% 11.5%
40, 000 2.59% 7.41%

Notes: Mean squared error between true valuations and estimated valuations from bargaining
simulations for uniform and Normal distributions of valuations of various sample sizes. LQ refers
to the local quadratic estimator and Spline refers to the convexity-constrained spline estimator.

Table 3. Efficiency of Various Mechanisms

Trade Total Seller Seller Buyer Buyer Seller
Probability Surplus Surplus Margin Surplus Margin Surplus Share

First Best 97% 3.627
Second Best 96.4% 3.626 2.421 2.511 1.205 1.250 66.8%
Seller Optimal 76.3% 3.445 2.628 3.443 0.818 1.071 76.3%
Buyer Optimal 68.8% 3.209 1.335 1.940 1.874 2.723 41.6%
Real World 81.4% 3.467 2.093 2.571 1.374 1.687 60.4%

Notes: Sale probability, total surplus, seller surplus (and seller margin), buyer surplus (and buyer
margin), and share of surplus accruing to seller in different mechanisms, including first-best,
second-best, seller-optimal, buyer-optimal, and real-world mechanisms. Seller and buyer margins
are calculated by dividing seller and buyer surplus, respectively, by trade probability. Units for
surplus are $1,000.
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Appendix

Appendix A. Proofs

A.1. Proof of Proposition 1.

Proof. Part 2. We can rearrange the inequalities in Theorem 1 to:(
Pi
(
a′i
)
− Pi (ai)

)
vi 6 Ti

(
a′i
)
− Ti (ai) ∀a′i. (23)

Hence, any type vi ∈ vi (ai) is a subgradient of {(Pi (ai) , Ti (ai))} at ai. Each individual

inequality in (23) describes a closed convex set, hence their intersection is a closed convex

set, which is a closed interval in R. Since each type vi must play some action si (vi), the

union of vi (ai) for all actions ai is the support of values vi.

Part 3. Fix some ai,a
′
i and suppose that Pi

(
a′i
)
> Pi (ai). For any vi ∈ vi (ai), by

(23), we must have:

Ti
(
a′i
)
− Ti (ai) > vi

(
Pi
(
a′i
)
− Pi (ai)

)
.

For any v′i ∈ vi
(
a′i
)
, we must have:

Ti
(
a′i
)
− Ti (ai) 6 v

′
i

(
Pi
(
a′i
)
− Pi (ai)

)
.

Since by assumption Pi
(
a′i
)
> Pi (ai), we have v′i > vi. Moreover, if vi = v

′
i, we must have

vi =
Ti
(
a′i
)
− Ti (ai)

Pi
(
a′i
)
− Pi (ai)

.

Thus, the intersection of vi (ai) , vi
(
a′i
)

contains at most a single point.

Part 1. Given a set of points (pi, ti), the graph of (pi, ti) is convex if and only if every

secant line lies above every point (pi, ti). Formally, for any p1,p2,p3, if αp1 +(1 − α)p2 =

p3, and 0 6 α 6 1, then

t3 6 αt1 + (1 − α) t2.

Consider any ai. Suppose we have a′i,a
′′
i s.t. αPi

(
a′i
)
+ (1 − α)Pi

(
a′′i
)
= Pi (ai) , and

0 6 t 6 1. We know that the {(Pi (ai) , Ti (ai))} graph admits some subgradient v at ai.

Thus,

Ti (ai) +
(
Pi
(
a′i
)
− Pi (ai)

)
v 6 Ti

(
a′i
)

,

Ti (ai) +
(
Pi
(
a′′i
)
− Pi (ai)

)
v 6 Ti

(
a′′i
)

.

Hence,

Ti (ai) +
(
αPi

(
a′i
)
+ (1 − α)Pi

(
a′′i
)
− Pi (ai)

)
v (ai) 6 αTi

(
a′i
)
+ (1 − α) Ti

(
a′′i
)

,

Ti (ai) 6 αTi
(
a′i
)
+ (1 − α) Ti

(
a′′i
)

,



58 LARSEN AND ZHANG

as desired.

�

A.2. Proof of Corollary 2.

Proof. Using (6), we have

vi (ai) = lim
δ→0

Ti (ai) − Ti (si (vi − δ))

Pi (ai) − Pi (si (vi − δ))
.

Since si (·) is continuous, this is the same as the following, for some ε > 0:

= lim
ε→0

Ti (ai) − Ti (ai − ε)

Pi (ai) − Pi (ai − ε)
=

dTi
dai
dPi
dai

=
T ′i (ai)

P′i (ai)
.

�

A.3. Proof of Corollary 3.

Proof. For any zi, if the true menu is {(Pi (ai) , Ti (ai))}, the agent can attain the outcome

{(P̆i (zi) , T̆i (zi))} by playing a mixed strategy, with distribution over actions equal to the

conditional distribution

H (ai | Zi = zi) .

This attains the expected outcome:

E [(Pi (Ai) , Ti (Ai)) | Zi = zi] .

which we have shown is equal to {(P̆i (zi) , T̆i (zi))}. Since any outcome attainable un-

der {(P̆i (zi) , T̆i (zi))} is also attainable under {(Pi (ai) , Ti (ai))}, maximum utility under

{(P̆i (zi) , T̆i (zi))} is a lower bound for maximum utility under the true menu. �

A.4. Proof of Corollary 5.

Proof. Following the proof of Corollary 2, we have:

vi (zi) = lim
δ→0

T̆i (zi) − T̆i (zi (vi − δ))

P̆i (zi) − P̆i (zi (vi − δ))
.

Since zi (·) is continuous, this implies, for ε > 0,

= lim
ε→0

T̆i (zi) − T̆i (zi − ε)

P̆i (zi) − P̆i (zi − ε)
=

dT̆i
dzi

dP̆i
dzi

=
T̆ ′i (zi)

P̆′i (zi)
.

�



A MECHANISM DESIGN APPROACH TO IDENTIFICATION AND ESTIMATION 59

A.5. Proof of Proposition 2.

Proof. First, note that we can write

P̆ (z) = E (P (v) | z) =

ˆ v̄
0
P (v)dG (v | z) ,

T̆ (z) = E (T (v) | z) =

ˆ v̄
0
T (v)dG (v | z) .

We will write P (v) , T (v) as:

P (v) =

ˆ v
0
P′ (ṽ)dṽ,

T (v) =

ˆ v
0

dT

dP
P′ (ṽ)dṽ =

ˆ v
0
ṽP′ (ṽ)dṽ.

Hence, the expectations with respect to z are

P̆ (z) =

ˆ v̄
0
P (v) g (v | z)dv =

ˆ v̄
0

ˆ v
0
P′ (ṽ)dṽ g (v | z)dv,

T̆ (z) =

ˆ v̄
0
T (v) g (v | z)dv =

ˆ v̄
0

ˆ v
0
ṽP′ (ṽ)dṽ g (v | z)dv.

Suppose we have z2, z1, where z2 > z1, hence G (v | z2) >FOSD G (v | z1). The slope of

the secant line connecting them is:

T̆ (z2) − T̆ (z1)

P̆ (z2) − P̆ (z1)
=

´ v̄
0

´ v
0 ṽP

′ (ṽ)dṽ g (v | z2)dv−
´ v̄

0

´ v
0 ṽP

′ (ṽ)dṽ g (v | z1)dv´ v̄
0

´ v
0 P

′ (ṽ)dṽ g (v | z2)dv−
´ v̄

0

´ v
0 P

′ (ṽ)dṽ g (v | z1)dv
. (24)

This simplifies to: ´ v̄
0

´ v
0 ṽP

′ (ṽ)dṽ [g (v | z2) − g (v | z1)]dv´ v̄
0

´ v
0 P

′ (ṽ)dṽ [g (v | z2) − g (v | z1)]dv
.

Since ṽ is bounded above and below, and both G (v | z1) and G (v | z2) are bounded mea-

sures, we can change the order of integration for both the numerator and the denominator.

For example, for the numerator,
ˆ v̄

0

ˆ v
0
ṽP′ (ṽ)dṽ [g (v | z2) − g (v | z1)]dv =

ˆ v̄
0

ˆ v̄
ṽ

ṽP′ (ṽ) [g (v | z2) − g (v | z1)]dvdṽ

=

ˆ v̄
0
ṽP′ (ṽ)

ˆ v̄
ṽ

[g (v | z2) − g (v | z1)]dvdṽ

=

ˆ v̄
0
ṽP′ (ṽ) [(G (v̄ | z2) −G (v̄ | z1)) − (G (ṽ | z2) −G (ṽ | z1))]dṽ.

Since G (v̄ | z2) = G (v̄ | z1) = 1, the term (G (v̄ | z2) −G (v̄ | z1)) cancels, and we are left

with:

=

ˆ v̄
0
ṽP′ (ṽ) [G (ṽ | z1) −G (ṽ | z2)]dṽ.
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For simplicity, we will now write all ṽ’s in the integrand as v’s. Interchanging the order

of integration in both the numerator and denominator in 24, we have:

T̆ (z2) − T̆ (z1)

P̆ (z2) − P̆ (z1)
=

´ v̄
0 vP

′ (v) [G (v | z1) −G (v | z2)]dv´ v̄
0 P

′ (v) [G (v | z1) −G (v | z2)]dv
.

Now, suppose that z2 = z1 + ε for some ε > 0. We then have:

T̆ (z1 + ε) − T̆ (z1)

P̆ (z1 + ε) − P̆ (z1)
=

´ v̄
0 vP

′ (v) [G (v | z1) −G (v | z1 + ε)]dv´ v̄
0 P

′ (v) [G (v | z1) −G (v | z1 + ε)]dv
.

Dividing all terms by the difference ε, we have:

T̆(z1+ε)−T̆(z1)
ε

P̆(z1+ε)−P̆(z1)
ε

=

´ v̄
0
G(v|z1)−G(v|z1+ε)

ε vP′ (v)dv´ v̄
0
G(v|z1)−G(v|z1+ε)

ε P′ (v)dv
.

Taking the limit as ε→ 0, this becomes:

T̆ ′ (z)

P̆′ (z)
=

´ v̄
0 v
(
−
dG(v|z)
dz

)
P′ (v)dv

´ v̄
0

(
−
dG(v|z)
dz

)
P′ (v)dv

,

which proves Proposition 2. �

A.6. Proof of Corollary 6.

Proof. Let P̆′ (v) be equal to some constant C for all v. IfG (v, z) = Ḡ (v− z), then dG
(v|z)
dz =

g (v | z). Hence,

T̆ ′ (z)

P̆′ (z)
=

´ v̄
0 v
(
−
dG(v|z)
dz

)
P̆′ (v)dv

´ v̄
0

(
−
dG(v|z)
dz

)
P̆′ (v)dv

=

´ v̄
0 v g (v | z)Cdv´ v̄
0 g (v | z)Cdv

= E [V | z] .

�

A.7. Proof of Corollary 7.

Proof. We have:

T̆ ′ (z)

P̆′ (z)
=

´ v̄
0 v
(
−
dG(v|z)
dz

)
P̆′ (v)dv

´ v̄
0

(
−
dG(v|z)
dz

)
P̆′ (v)dv

=

´ ν(z)+δ
ν(z)−δ v

(
−
dG(v|z)
dz

)
P̆′ (v)dv

´ ν(z)+δ
ν(z)−δ

(
−
dG(v|z)
dz

)
P̆′ (v)dv

.

We must have T̆ ′(z)

P̆′(z)
∈ [ν (z) − δ, ν (z) + δ]. Likewise, E (V | z) ∈ [ν (z) − δ, ν (z) + δ].

Hence, ∣∣∣∣∣ T̆ ′ (z)P̆′ (z)
− E (V | z)

∣∣∣∣∣ 6 2δ.

�
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A.8. Proof of Proposition 3.

Proof. Fixing common component w, we have

Pwi (ai) ≡ E
[
xi
(
ai,A

w
−i

)]
,

Twi (ai) ≡ E
[
ti
(
ai,A

w
−i

)]
.

Suppose strategies si (vi,w) constitute an equilibrium under w. Then, for all i, vi:

si (vi,w) ∈ arg max
ai

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i.

We wish to show that conjectured equilibrium strategies s′i (vi,w
′) = si (vi,w) + (w′ −w)

constitute an equilibrium under w′. Let Aw
′

i = s′i (Vi,w
′) denote the random variable

representing i’s action under w′, assuming that i plays according to the conjectured equi-

librium strategies si. We define Pw
′

i (ai) , Tw
′

i (ai) as the expected allocation and transfer i

achieves under w′, assuming opponents’ actions are distributed as Aw
′

−i. That is,

Pw
′

i (ai) = E
[
xi

(
ai,A

w′
−i

)]
,

Tw
′

i (ai) = E
[
ti

(
ai,A

w′
−i

)]
.

In order to prove our Proposition, we need to show that:

s′i (vi,w) +
(
w′ −w

)
∈ arg max

ai

(
vi +w

′)Pw′
i (ai) − T

w′
i (ai) −

(
vi +w

′) x̄i.
We will show a stronger result: for any ai, the expected utility from playing ai + (w′ −w)

under w′,Aw
′

−i (net of the outside option) is the same as the expected utility from playing

ai under w,Aw−i. That is,(
vi +w

′)Pw′
i

(
ai +

(
w′ −w

))
− Tw

′
i

(
ai +

(
w′ −w

))
−
(
vi +w

′) x̄i =
(vi +w)P

w
i (ai) − T

w
i (ai) − (vi +w) x̄i. (25)

Thus, if ai maximizes the right-hand side, ai+(w′ −w) maximizes the left-hand side, and

we are done. �

Proof of (25)

Proof. We have

Pw
′

i

(
ai +

(
w′ −w

))
= E

[
xi

(
ai +

(
w′ −w

)
, Aw

′
−i

)]
.

By construction of s′i (vi,w
′) = si (vi,w)+(w′ −w), the random variable Aw

′
i has the same

distribution as Awi + (w′ −w). Thus,

E
[
xi

(
ai +

(
w′ −w

)
,Aw

′
−i

)]
= E

[
xi
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))]
.
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By the separable heterogeneity game property in Definition 2,

xi
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))
= xi

(
ai,A

w
−i

)
,

hence,

E
[
xi
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))]
= E

[
xi
(
ai,A

w
−i

)]
.

Thus we have shown that

Pw
′

i

(
ai +

(
w′ −w

))
= Pwi (ai) . (26)

For transfers, we have

Tw
′

i

(
ai +

(
w′ −w

))
= E

[
ti
(
ai +

(
w′ −w

)
,Aw−i

)]
= E

[
ti
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))]
.

Again using Definition 2, we have

ti
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))
= ti

(
ai,A

w
−i

)
+
(
w′ −w

) (
xi
(
ai,A

w
−i

)
− x̄i

)
.

Hence,

E
[
ti
(
ai +

(
w′ −w

)
,Aw−i +

(
w′ −w

))]
=

E
[
ti
(
ai,A

w
−i

)]
+ E

[(
w′ −w

) (
xi
(
ai,A

w
−i

)
− x̄i

)]
. (27)

The term E
[
ti
(
ai,A

w
−i

)]
is equal to Twi (ai) by definition. Using linearity of expectations,

the right term simplifies to

E
[(
w′ −w

) (
xi
(
ai,A

w
−i

)
− x̄i

)]
=
(
w′ −w

) (
E
[
xi
(
ai,A

w
−i

)]
− x̄i

)
=
(
w′ −w

)
(Pwi (ai) − x̄i) .

Hence, we have shown that

Tw
′

i

(
ai +

(
w′ −w

))
= Twi (ai) +

(
w′ −w

)
(Pwi (ai) − x̄i) . (28)

Once again, i’s expected utility from playing ai + (w′ −w) when common component is

w′ and opponents’ actions are distributed as Aw
′

−i is(
vi +w

′)Pw′
i

(
ai +

(
w′ −w

))
− Tw

′
i

(
ai +

(
w′ −w

))
−
(
vi +w

′) x̄i.
Using the expressions in (26) and (28), this is

=
[(
vi +w

′)Pwi (ai) − T
w
i (ai) −

(
w′ −w

)
(Pwi (ai) − x̄i)

]
−
(
vi +w

′) x̄i
= [(vi +w)P

w
i (ai) − T

w
i (ai)] − (vi +w) x̄i.

Hence we have proved the equality in (25). �
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A.9. Proof of Proposition 4.

Proof. We observe actions ãij, allocations xij, and transfers tij for a number of repetitions

j of the game. We suppose that:

ṽij = vij +wj.

Following our definition of position-invariant equilibria,

ãij = aij +wj.

Following Krasnokutskaya (2011), we can identify the distributions fW , fAi using correlation

in actions ãij across players. In the remainder of this proof, we omit the subscript j.

We can empirically estimate the functions:

P̃i (ãi) ≡ E
[
xi

(
ãi, Ã−i

)]
, T̃i (ai) ≡ E

[
ti

(
ãi, Ã−i

)]
.

The functions involved in the position-invariant equilibrium are the probability of trade and

the homogenized T0 (ai) as a function of the homogenized action ai:

Pi (ai) = E [xi (ai,A−i)] , T
0
i (ai) = E [ti (ai,A−i)] .

Below, we show that the functions Pi (ai) , T0
i (ai) are identified from the functions P̃i (ãi),

T̃i (ãi), fW , fAi .

Probabilities

First, note that:

P̃i (ãi) = E
[
xi

(
ãi, Ã−i

)]
= E [E [xi (W +Ai,W +A−i) | Ai,W +Ai = ãi] |W +Ai = ãi] .

By Definition 2, we have

xi (w+ ai,w+A−i) = xi (ai,A−i) ∀w

=⇒ E [xi (W +Ai,W +A−i) | Ai, ãi =W +Ai] = E [xi (Ai,A−i) | Ai] = Pi (Ai) .

Hence,

P̃i (ãi) = E [Pi (Ai) |W +Ai = ãi]

P̃i (ãi) =

´∞
ai=−∞ Pi (ai) fAi (ai) fW (ãi − ai)dai´∞

ai=−∞ fAi (ai) fW (ãi − ai)dai
.

This shows that P̃i (ãi) is equal to Pi (ai) convolved against the function

fAi (ai) fW (ãi − ai)´∞
ai=−∞ fAi (ai) fW (ãi − ai)dai

. (29)
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Since the distributions of Ai and W both have bounded support, we can set Pi (ai) to

0 for all ai outside the support of Ai. Thus, both Pi (ai) and (29) are in L1; hence the

convolution theorem applies, meaning that the convolution of Pi (ai) and (29) is invertible,

hence Pi (ai) is identified from (29) and P̃i (ãi).

Homogenized transfers

First, note that

T̃i (ãi) = E
(
ti

(
ãi, Ã−i

))
= E [E [ti (W +Ai,W +A−i) | Ai,W +Ai = ãi] |W +Ai = ãi] .

By Definition 2, we have

ti (W +Ai,W +A−i) = ti (Ai,A−i) + (xi (Ai,A−i) − x̄i)W.

Taking expectations,

E [ti (W +Ai,W +A−i) |W,Ai]

= E [ti (Ai,A−i) |W,Ai] + E [(P (Ai) − x̄i)W |W,Ai]

= T0
i (Ai) + (Pi (Ai) − x̄i)W.

Hence,

T̃i (ãi) = E
[(
T0
i (Ai) + (Pi (Ai) − x̄i)

)
W |W +Ai = ãi

]
.

Since we are conditioning on the event W +Ai = ãi, we can substitute out for W:

= E
[(
T0
i (Ai) + (Pi (Ai) − x̄i) (ãi −Ai)

)
|W +Ai = ãi

]
.

In integral form, this equation is:

T̃i (ãi) =

´∞
ai=−∞ T0

i (ai) fAi (ai) fW (ãi − ai)dai´∞
ai=−∞ fAi (ai) fW (ãi − ai)dai

+

´∞
ai=−∞ (ãi − ai) (Pi (ai) − x̄i) fAi (ai) fW (ãi − ai)dai´∞

ai=−∞ fAi (ai) fW (ãi − ai)dai
. (30)

The rightmost term represents the average common component of payment. We can define

this as:

E (W∆Pi | ãi) ≡
´∞
ai=−∞ (ãi − ai) (Pi (ai) − x̄i) fAi (ai) fW (ãi − ai)dai´∞

ai=−∞ fAi (ai) fW (ãi − ai)dai
. (31)

Since we have shown that Pi (ai) is identified, E (W∆Pi | ãi) can be calculated for any ãi.

We can rearrange (30) to:

T̃i (ãi) − E (W∆Pi | ãi) =

´∞
ai=−∞ T0

i (ai) fAi (ai) fW (ãi − ai)dai´∞
ai=−∞ fAi (ai) fW (ãi − ai)dai

.
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The term T̃i (ãi) can be estimated from the data, so the entire LHS is known. The RHS is

a convolution of T0
i (ai) against

fAi (ai) fW (ãi − ai)´∞
ai=−∞ fAi (ai) fW (ãi − ai)dai

.

Again, by the convolution theorem, this is invertible, and thus T0 (ai) is identified. �

Appendix B. Spline Construction

Suppose we wish to estimate some function of a variable y using splines. Given a knot

sequence y1 . . .yn, we define the quadratic splines Sq1 (·) . . .Sqn+1 (·):

S
q
1 (y) =

2

y2 − y1

[
|y− y1|+ −

|y− y1|
2
+ − |y− y2|

2
+

2 (y2 − y1)

]
...

S
q
k (y) =

2

yk+1 − yk−1

[
|y− yk−1|

2
+ − |y− yk|

2
+

2 (yk − yk−1)
−

|y− yk|
2
+ − |y− yk+1|

2
+

2 (yk+1 − yk)

]
...

Sqn (y) =
2

yn − yn−1

[
|y− yn−1|

2
+ − |y− yn|

2
+

2 (y2 − y1)
− |y− yn|+

]
Sn+1 (y) = 1.

As shown in Figure 11, each Sqk (·) behaves like a smoothened step function, increasing

on the interval [yk−1,yk+1]. By constraining the coefficients β1 . . .βn to be nonnegative,

we can constrain the target function to be nondecreasing. Moreover, each Sqk (·) has the

property that limy→∞ Sqk (y) = 1; hence, to constrain the target function to always lie below

some bound M, we need only constrain
∑n+1
k=1 βk 6 M. We impose the constraint that∑

k βk 6 1 in estimating P̂ (·).

The family of cubic splines Sck (·) we use are integrals of the Sqk functions, hence they are

quadratic splines in first derivative space; that is,

Sc1 (y) =

ˆ y
−∞ S

q
1 (ỹ)dỹ

...

Scn (y) =

ˆ y
−∞ Sqn (ỹ)dỹ

Scn+1 (y) = y

Scn+2 (y) = 1.
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Constraining the coefficients in this approximation to be nonnegative ensures that the

target function is convex.

Appendix C. Bargaining Simulation Details

For the bargaining simulations, we follow the game studied in Satterthwaite and Williams

(1989), referred to as a k double auction. The authors demonstrated that, for any k ∈ [0, 1],

a continuum of strictly increasing, differentiable equilibria exist satisfying the following

linked differential equations for the buyer’s action aB and seller’s action aS as a function

of their private valuations VB ∼ FB and VS ∼ FS:

a
(−1)
B (aS(vS)) = aS(vS) + ka

′
S(vS)

(
vS +

FS(vS)

fS(vS)

)
, (32)

a
(−1)
S (aB(vB)) = aB(vB) + (1 − k)a ′

B(vB)

(
vB −

1 − FB(vB)

fB(vB)

)
. (33)

Satterthwaite and Williams (1989) provided an approach for solving for equilibria numer-

ically given knowledge of the distributions of player types. A point (vS, vB, t), where

t is a final price which vS and vB could potentially agree upon, is chosen in the set

P = {(vS, vB, t) : vS 6 vS 6 t 6 vB 6 vB, vS 6 vS, vB > vB}, and then a one-dimensional

manifold passing through this point is traced out using the differential equations defined

by (32) and (33). This path traces out an equilibrium. This approach does not allow for

identification of players’ value distributions, only for solving for equilibria given knowledge

of the distributions. We use their approach to solve for an equilibrium and simulate data

from equilibrium play, then apply our method for estimating the underlying valuations.

In our bargaining simulations, we focus on two possibilities for valuation distributions:

VS ∼ U[0, 1] and VB ∼ U[0, 1], or VS ∼ N(.2, .5) and VB ∼ N(.6, .3). For the Normal case, we

truncate the distribution to lie within [0, 1] to simplify computation. We set k = 1/2. In each

case we choose an equilibrium passing through the point (vS, vB, t) = (0.375, 0.625, 0.5). An

example of a solution path crossing through this point, for the truncated Normal case, is

shown in Figure 12.

Appendix D. Solving for Second-Best and Computing Gains From Trade

Consider a trading game between a seller with a private value VS ∼ FS (supported on

[vS, vS]) for keeping the good, and N buyers B1 . . .Bn with private values independently

drawn from FB supported on [vB, vB]. Let VB1 , ...,VBn denote buyers’ values. N is a random

variable. Suppose in this section that its realization is n. When bidders’ values are ordered,

we denote this ordering, from highest to lowest, using superscripts on B: VB(1) , ...,VB(n) . Let
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FB(1) denote the distribution of VB(1) , the maximum order statistic of buyer valuations.28

Here we solve for the second-best optimization problem, subject to information constraints

and ex-ante budget balance, that maximizes the expected gains from trade.

A mechanism is a set of m functions p1 (vS, vB1 . . . vBn) . . .pm (vS, vB1 . . . vBn), mapping

a tuple of seller and buyer values to a vector of probabilities that the seller trades with each

buyer. The surplus of any mechanism is:

ˆ vS
vS

ˆ vB
vB

. . .

ˆ vB
vB

[
m∑
i=1

(vBi − vS)pi (vS, vB1 . . . vBn)

]
dFB (vB1

) . . .dFB (vBn)dFS (vS) . (34)

The revenue from any mechanism is:

ˆ vS
vS

ˆ vB
vB

. . .

ˆ vB
vB

[
m∑
i=1

([
vBi −

1 − FB (vBi)

fB (vBi)

]
−

[
vS +

FS (vS)

fS (vS)

])
pi (vS, vB1 . . . vBn)

]
dFB (vB1

) . . .dFB (vBn)dFS (vS) . (35)

If buyer marginal revenues (i.e. virtual valuations) vBi−
1−FB(vBi)
fB(vBi)

are strictly increasing

then in the optimal mechanism, whenever the good is allocated, it will be allocated to the

highest value bidder; that is, pi = 0 whenever vBi 6= vB(1) , and revenue and trade surplus

from the highest value buyer do not depend on the values of lower valued buyers. We find

that estimated buyer marginal revenues are indeed strictly increasing in our application;

thus, we can replace the vector of pi functions by a single function p (vS, vB(1)) determining

the probability of trade between the seller and the highest-value buyer. For notational

simplicity, in the following we will omit the superscript and refer to vB(1) simply as vB.

Under this simplification, the surplus from (34) can be written as follows:
ˆ vS
vS

ˆ vB
vB

(vB − vS)p (vS, vB)dFB(1) (vB)dFS (vS) . (36)

28When the number of bidders present N is a random variable, varying from one instance of the game to
another, as in our application, the first order statistic distribution will be the unconditional order statistic, as
in Freyberger and Larsen (2017). The traditional notation for order statistics writes values from highest to
lowest as Vn:nB , ...,V1:n

B , which refers to an order statistic conditional on a realization of N = n. In contrast,
VB(j) is the jth highest VB among N bidders, unconditional on the realization of the random variable N, and
is thus a draw from the distribution

FB(j)(u) ≡
∑
n

Pr(N = n)F
V

n−j+1:n
B

(u),

where F
V

n−j+1:n
B

is the distribution of the jth highest bid conditional on N = n, which, given that draws of

VB are i.i.d., is given by the following (see David 1981):

F
V

n−j+1:n
B

(u) ≡

[
n∑

k=n−j+1

(
n

k

)
FB(u)

k(1 − FB(u))
n−k

]
.
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and the total revenue from (35) can be written as
ˆ vS
vS

ˆ vB
vB

([
vB −

1 − FB (vB)

fB (vB)

]
−

[
vS +

FS (vS)

fS (vS)

])
p (vS, vB)dFB(1) (vB)dFS (vS) . (37)

In addition, incentive compatibility requires that marginal probabilities of trade are com-

ponentwise increasing. This implies that the quantities
ˆ vB
vB

p (vS, vB)dFB(1) (vB) (38)

ˆ vS
vS

p (vS, vB)dFS (vS) (39)

must respectively be monotone in vS, vB. Because in our application we find that marginal

revenue for buyers is monotone, the monotonicity constraint for (39) does not bind at

the optimum. However, our seller value distribution has a non-monotone virtual valuation

function, hence we need to enforce that (38) be monotone, ironing sellers’ virtual valuations.

We numerically solve the second-best problem on a uniformly spaced quantile grid of

seller values. For each vS, since buyer marginal revenue is monotone, at the optimum sellers

will trade with all buyers with values above a cutoff; hence we need only specify a lower

cutoff buyer value c (vS) for each seller type. As in the bilateral trade case of Myerson

and Satterthwaite (1983), the revenue constraint (37) can be included in the objective

as a Lagrange multiplier; with some algebra, the Lagrangian incorporating the revenue

constraint can be written as a function of a scalar α to be solved for:ˆ vS
vS

ˆ vB
c(vS)

([
vBi − α

1 − FB (vBi)

fB (vBi)

]
−

[
vS + α

FS (vS)

fS (vS)

])
dFB(1) (vB)dFS (vS) . (40)

Similarly to the second-best problem in Myerson and Satterthwaite (1983), to solve the

second-best problem here, we take a two-step approach: in an inner loop, fixing α, we

maximize (40) subject to the monotonicity constraints vS > v′S =⇒ c (vS) 6 c
(
v′S
)
.

In an outer loop, we evaluate revenue (37) for the optimal solution for any given α, and

search for a value of α ∈ [0, 1] that leads to zero revenue. Since buyer marginal revenue is

monotone, the inner loop is a convex optimization problem, and similarly to Myerson and

Satterthwaite (1983) the outer loop can be shown to be monotone in α; hence both the

inner and outer loops are guaranteed to be well-behaved.

Finally, we discuss how we calculate trade surplus for the mechanism observed in the data.

Since our estimation procedure produces estimates of the probability of trade P (r(vS)) and

transfer T0 (r(vS)) for all seller values in the mechanism observed in the data, we can

calculate the utility achieved by any seller type as

vSP (r(vS)) − T
0 (r(vS)) .
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In order to calculate trade surplus, since we do not observe the buyer’s value for each

instance of bargaining, we need to impose the assumption that trade is monotonic, in the

sense that each seller type trades with all buyer types above a certain cutoff. Larsen (2014)

demonstrates that this property will indeed be satisfied in Bayes-Nash equilibria of this

game, relying on results from Storms (2015). Under this property, our estimated P (r(vS))

function and the buyer value distribution FB (·) together imply cutoffs

c̃ (vS) = {vB : 1 − FB (vB) = P (r(vS))} .

This allows us to calculate gains from trade from the actual mechanism essentially using

(36), that is: ˆ vS
vS

ˆ vB
c̃(vS)

(vB − vS)p (vS, vB)dFB(1) (vB)dFS (vS) . (41)
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Figure 11. Quadratic/Cubic Spline Basis

(a) Quadratic (b) Cubic

Notes: Example of quadratic (panel A) and cubic (panel B) spline basis functions, with knots at
y = (1, 2, 3, 4, 5, 6) . In addition, the quadratic spline basis includes an intercept term, and the
cubic spline basis includes slope and intercept terms.

Figure 12. An Equilibrium in the k Double Auction

Notes: A solution to the k = 1/2 double auction, lying with the tetrahedron
P = {(vS, vB, t) : vS 6 vS 6 t 6 vB 6 vB, vS 6 vS, vB > vB}. This solution passes through the point
(vS, vB, t) = (0.375, 0.625, 0.5). Buyer valuations are drawn from a N(0.6, 0.3) and seller valuations
from a N(0.5, 0.2), with each distribution truncated to lie between [0, 1].


