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Abstract

In general screening problems, implementable allocation rules correspond exactly to Walrasian

equilibria of an economy in which types are consumers with quasilinear utility and unit demand.

Due to the welfare theorems, an allocation rule is implementable if and only if it induces an

efficient matching between types and goods.

JEL Codes: D50, D82, D86.

1 Introduction

In a screening problem, a principal who faces uncertainty over an agent’s type designs a

contract – an allocation rule mapping types to goods, and a transfer function mapping

types to monetary payments – to maximize some objective function, such as profit or

social welfare. Since the agent’s type is private information, the contract must be incentive

compatible. A classic issue in the theory of screening is the problem of implementability

– given an allocation rule, when do there exist transfer functions under which truthful

reporting is incentive compatible?

In this paper, we demonstrate an analogy between implementable allocation rules,

Walrasian equilibria, and efficient matchings. Given a candidate allocation rule, we con-
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struct a quasilinear unit-demand economy in which each type of the agent is represented

by a consumer with unit demand, and each assigned good corresponds to an indivisible

commodity. By a version of the Taxation Principle, implementable allocations and their

associated transfers correspond to Walrasian equilibrium allocations and prices of these

economies. By the Welfare Theorems for quasilinear economies, Walrasian equilibrium

allocations constitute efficient matchings between consumers and commodities.

The classic reference on implementability in general screening problems is Rochet

(1987), who defines a “cyclic monotonicity” condition which is necessary and sufficient

for an allocation rule to be implementable. Recently, a number of authors (Rahman, 2011;

Hartline et al., 2015; Shao, 2014) have studied connections between implementability

and efficient matchings. However, to our knowledge, the connection we draw between

implementable allocation rules and Walrasian equilibria of quasilinear economies is new

to the literature.

We emphasize three advantages of our approach. Firstly, the analogy to Walrasian

equilibria provides an economically intuitive proof of the connection between imple-

mentable allocation rules and efficient matchings, through the Welfare Theorems for

quasilinear economies. Secondly, as we show in Corollary 1, our analogy allows us to

draw parallels between classical results about Walrasian equilibrium prices and recent

results (Carbajal and Ely, 2013; Heydenreich et al., 2009; Kos and Messner, 2013) about

the structure of incentive compatible transfers in screening problems without revenue

equivalence. Finally, in Corollary 2, we demonstrate a novel result: since Walrasian equi-

libria exist in economies with arbitrary endowments, any allocation rule has at least one

permutation which is implementable, and the implementable permutation is generically

unique.

2 Model

2.1 The Screening Problem

There is a single agent with type θ ∈ Θ ≡ {θ1, θ2, . . . , θn}, unobserved by the principal.

The assumption that Θ is finite is mainly for clarity of exposition – we extend our main
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result to an arbitrary type space in Appendix C. X describes the set of decisions that the

principal can take to affect the utility of the agent. In addition, the principal can impose

monetary payments t ∈ R. The agent has utility

v (θ, x) − t,

where v : Θ×X→ R is an arbitrary function. There is an outside option ∅ which is always

available to the agent, with utility normalized to v(θ, ∅) = 0, for all θ.

The principal chooses an allocation rule x : Θ→ X.

Definition 1. Allocation rule x is implementable if there exists a transfer function t : Θ→ R

such that the incentive compatibility and individual rationality constraints hold for each

type θ ∈ Θ:

v(θ, x(θ)) − t(θ) > v(θ, x(θ̂)) − t(θ̂), ∀θ̂ ∈ Θ, (IC)

v(θ, x(θ)) − t(θ) > 0. (IR)

The elements of X can be arbitrary objects, for example, state-contingent contracts,

lotteries, or bundles. For concreteness, we will refer to elements of X as goods. For a given

allocation rule x, we denote by Cx = {x (θ1) , . . . , x (θn)} the collection of n goods assigned

under x. As allocation rules may assign the same good to multiple types, we consider

duplicates as distinct elements. We will use ω to denote a generic element of Cx.

2.2 The Quasilinear Unit-Demand Economy

For a given allocation rule x, define the economy Ex = {Cx; U1, ..., Un}, with the n

commodities Cx = {x (θ1) , . . . , x (θn)} and n consumers. Each consumer i can hold at

most one indivisible commodity ω ∈ Cx, and has utility

Ui(ω, t) = v(θi, ω) − t,
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where t denotes a net monetary transfer from i. The value of not holding any commodity

is zero. Consumer i is endowed with x (θi) and a large amount of money.

A feasible allocation in Ex is a partition y = {y0, y1, ..., yn} of Cx, where yi is the set of

goods held by consumer i, with cardinality at most one, and y0 is the set of goods not

held by any consumer. A feasible allocation y clears the market if y0 = ∅. Because there

are n consumers and n commodities, market clearing requires each consumer to hold a

commodity, so feasible market-clearing allocations can be viewed as bijective functions,

or matchings, between consumers and commodities. For a feasible market-clearing

allocation y, we use yi to mean the commodity held by consumer i.

A price function p is a mapping from Cx to R, where p (ω) represents the price of

good ω. Since |Cx| = n, we can think of p as a vector in Rn.

Definition 2. A Walrasian equilibrium is a feasible market-clearing allocation y and a price

function p such that each consumer i is optimizing given prices p:

v(θi, yi) −p (yi) > v(θi, ω) −p (ω) , ∀ω ∈ Cx, (WE1)

v(θi, yi) −p (yi) > 0. (WE2)

Any allocation rule x defines a particular feasible market-clearing allocation yx in Ex by

yxi = x(θi), for all i. Again, yx can also be thought of as a particular matching between

the type space Θ and the collection of goods Cx.

2.3 Matchings

We will consider all possible matchings between Θ and the Cx. Let M (Θ, Cx) =

{y : Θ→ Cx : y is bijective}. We call yx an efficient matching if it achieves higher total

utility than any other matching in M (Θ, Cx); that is, yx is an efficient matching if

yx ∈ arg max
y∈M(Θ,Cx)

n∑
i=1

v (θi,y (θi)) .
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3 Results

Theorem 1. The following statements are equivalent:

1. The allocation rule x is implementable.

2. x defines a Walrasian equilibrium allocation in Ex.

3. yx is an efficient matching.

We prove the theorem by showing that (1) and (2) are equivalent, and then that (2) and

(3) are equivalent.

Lemma 1. [Taxation Principle] The allocation rule x is implementable if and only if x

defines a Walrasian equilibrium allocation in Ex.

Proof. The conditions (IC) and (IR) are identical to conditions (WE1) and (WE2). If

the allocation rule x is implemented by transfers t, then yx is a Walrasian equilibrium

allocation in Ex under prices p
(
yxi

)
= t(θi), for all i. Conversely, if yx is a Walrasian

equilibrium allocation under prices p, then transfers t(θi) = p
(
yxi

)
, for all i, implement

the allocation rule x.

Lemma 2. [First and Second Welfare Theorems] x defines a Walrasian equilibrium allocation

in Ex if and only if yx is an efficient matching.

Proof. See Appendix A.

3.1 Corollaries

The triple equivalence of Theorem 1 allows us to draw connections between results known

separately in each of the contexts. The following corollary characterizes the structure of

the set of incentive compatible contracts for a given collection of goods. These results

are not novel, as they are the subject of a recent series of papers (Carbajal and Ely, 2013;

Heydenreich et al., 2009; Kos and Messner, 2013) studying the structure of incentive

compatible transfer functions in settings where revenue equivalence may not hold. Our
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proof highlights the connection between this literature and classical results (Shapley

and Shubik, 1971) about the structure of Walrasian equilibrium prices in quasilinear

economies.

Given a contract (x, t), we define τ : Cx → R by τ (ω) = t
(
x−1 (ω)

)
. Any contract

(x, t) can be equivalently described by the pair (x,τ) . Let Λ(C) be the set of all incentive

compatible contracts (x,τ) with Cx = C.

Corollary 1. For any n-element collection C, Λ(C) is a product set X× T , where X is the set of

efficient matchings between Θ and C, and T is a convex complete sublattice of Rn that is bounded

from above.

Proof. See Appendix B.

We also demonstrate the following corollary, which to our knowledge has not appeared

in the literature.

Corollary 2. For any n-element collection C:

1. There exists an implementable allocation rule x with Cx = C.

2. For generic values of v (·, ·), there is a unique implementable allocation rule x with Cx = C.

Equivalently, for any allocation rule x, there exists a permutation of x which is implementable,

and the implementable permutation is generically unique.

Proof. Efficient matchings exist between Θ and any C. For generic choices of v (·, ·), the

efficient matching is unique. The Corollary then follows from Theorem 1.
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A Proof of Lemma 2

Proof. As Shapley and Shubik (1971) discuss, the welfare theorems in quasilinear unit-

demand economies are equivalent to the duality theory of a linear program known as the

assignment problem. We include the standard duality proof here for completeness.

Only if, First Welfare Theorem: For sake of contradiction, suppose x defines a Walrasian

equilibrium under prices p and yx is not an efficient matching. Then there exists a

matching y with Cy = Cx such that:

n∑
i=1

v (θi,y (θi)) >

n∑
i=1

v (θi, x (θi))

=⇒
n∑
i=1

(v (θi,y (θi)) −p (y (θi))) >

n∑
i=1

(v (θi, x (θi)) −p (x (θi)))

=⇒ ∃ i, v (θi,y (θi)) −p (y (θi)) > v (θi, x (θi)) −p (x (θi))
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Hence, some consumer i prefers to purchase good y (θi) over good x (θi) under prices p,

contradicting (WE1).

If, Second Welfare Theorem: Suppose that yx is an efficient matching. To simplify

notation, define ωi = x(θi), ∀i. Then yx defines a solution to the primal form of the

assignment problem:

max
{πij}

n∑
i=1

n∑
j=1

πijv
(
θi,ωj

)

s.t.
n∑
i=1

πij 6 1,
n∑
j=1

πij 6 1, πij > 0, ∀i, j.

The corresponding dual program is:

min
ui,p

n∑
i=1

ui +

n∑
j=1

p
(
ωj

)

s.t. ui +p
(
ωj

)
> v

(
θi,ωj

)
, ∀i, j.

By the strong duality theorem of linear programming, the primal program has a solution

if and only if the dual program does. Moreover, the dual constraints bind at the optimal

primal allocation yx. Hence, letting p, u denote solutions to the dual program,

∃p,u s.t. ui = v (θi, x (θi)) −p (x (θi)) , ui > v
(
θi,ωj

)
−p

(
ωj

)
, ∀i, j.

Thus, under prices p, each consumer i prefers her commodity x (θi) to all other goods

ωj, and (WE1) is satisfied. Finally, if vectors p and u constitute a solution to the dual

program, vectors p̃ (ω) = p (ω) + c and ũ = u− c also form a solution for any scalar c.

Thus, given solutions p and u to the dual program, let p̃ = p+ mini ui, ũ = u− mini ui.

By construction,

ũi = v (θi, x (θi)) − p̃ (x (θi)) > 0, ∀i.

Hence, all consumers prefer their commodity to the empty set, and (WE2) is also satisfied.

Hence x defines a Walrasian equilibrium allocation under prices p̃.
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B Proof of Corollary 1

Proof. By Theorem 1, it is enough to characterize the set of pairs (y,p) such that the Wal-

rasian equilibrium conditions (WE1) and (WE2) hold for the economy with endowment

C. Building on our proof of Lemma 2 in Appendix A, by the strong duality theorem of

linear programming, the inequalities

v (θi, x (θi)) −p (x (θi)) > v
(
θi,ωj

)
−p

(
ωj

)
, ∀i, j,

are satisfied for any primal solution yx and any dual solution p. Hence, the set of Wal-

rasian equilibrium pairs is a product set Y ×P, where Y is the set of efficient allocations.

To characterize P, suppose functions p, p′ satisfy (WE1) and (WE2) for some x. Then,

the function p̄ defined by p̄ (ω) = max (p (ω) ,p′ (ω)), the function p defined by p (ω) =

min (p (ω) ,p′ (ω)) and also the function p̃ (ω) = ap (ω) + (1 − a)p′ (ω) , 0 6 a 6 1 also

satisfy (WE1) and (WE2), by direct inspection. Moreover, if p1, p2, . . . satisfy (WE1) and

(WE2) for all n, and pn → p pointwise, then p also satisfies (WE1) and (WE2). Hence P

is a convex complete sublattice of Rn.

To see that P is bounded from above, note that for a economy with goods space C,

v (θ, x) takes on a total of n2 finite values, hence is bounded above by some constant M.

Hence prices p (ω) =M, ∀ω, form an upper bound for the price functions.

C Extension to Arbitrary Type Spaces

We assume that Θ is an arbitrary space, potentially infinite. We assume that the utility

function v is uniformly bounded from below, i.e. there exists v ∈ R such that ∀θ ∈

Θ, ∀x ∈ X, v(θ, x) > v.

Theorem 2. The allocation rule x : Θ→ X is implementable if and only if for any finite Θ0 ⊂ Θ,

the matching defined by x|Θ0 is efficient.

Proof. The necessity of the condition is obvious. We prove sufficiency. For every finite Θ0,

let p̄(x(θ); Θ0) be the componentwise highest Walrasian equilibrium price for x(θ) in the
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economy defined by x|Θ0 . From our result in Corollary 1, p̄(x(θ); Θ0) is well-defined for

any x(θ), Θ0. Define transfers, for every θ ∈ Θ, by

t(θ) = inf{p̄(x(θ), Θ0) : |Θ0| < ℵ0}.

Note that t(θ) is well defined because, for every Θ0, under maximum equilibrium prices

p̄(x(·) ; Θ0), there exists a type θ? ∈ Θ0 who gets zero utility in equilibrium. Indeed, if

such a type did not exist, we could raise all prices by some small ε, contradicting the fact

that we had highest equilibrium prices. Consequently p̄(x(θ); Θ0) > v(θ?, x(θ)) > v, and

so t(θ) is bounded from below by v.

It is immediate that condition (IR) holds for type θ. Fixing a type θ̂, we will show that

the condition (IC) holds as well. Fix ε > 0. By definition, we can find a finite Θ0 such that

p̄(x(θ̂); Θ0) 6 t(θ̂) + ε. Suppose that θ ∈ Θ0. Then,

v(θ, x(θ)) − t(θ)
(1)
> v(θ, x(θ)) − p̄(x(θ); Θ0)

(2)
>

v(θ, x(θ̂)) − p̄(x(θ̂); Θ0)
(3)
> v(θ, x(θ̂)) − t(θ̂) − ε, (C.1)

where (1) follows from the definition of t(θ), (2) is a Walrasian equilibrium condition,

and (3) is true by the choice of Θ0. Because ε was arbitrary, the inequality is proven in

this case. If θ /∈ Θ0, then we instead consider Θ′0 := Θ0 ∪ {θ}. Note that if p : Θ′0 → R is

an equilibrium price vector for the economy defined by x|Θ′0 , then the truncation of p to

Θ0 must be an equilibrium price vector for the economy defined by x|Θ0 . This means that

the set of equilibrium prices for x(θ̂) shrinks as we move from Θ0 to Θ′0, so the maximum

can only decrease:

p̄(x(θ̂); Θ′0) 6 p̄(x(θ̂); Θ0).

We can now apply the same reasoning as before to Θ′0.

Remark. The condition that v is bounded from below can be relaxed if we drop the (IR)

constraint. We can then make sure that t is well defined by fixing the utility (equivalently,

the transfer) of an arbitrary type in Θ.
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