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1 Introduction

Many real-world bargaining situations—among nations, businesses, investors, consumers, or litigants—

involve a third-party intermediary or mediator. These mediators are often at the center of massive

transactions and are highly paid for their role: consider investment banks handling firm acquisi-

tions or lawyers mediating pre-trial settlement. A 2011 survey of Fortune 1000 companies found

that 98% of respondents used a mediator at least once in the previous three years (Stipanowich

and Lamare 2014).1 To date, however, there is little real-world evidence on whether intermediaries

make a difference for negotiation outcomes and welfare.

We analyze 75,000 business-to-business negotiations from the wholesale used-car market. The

industry consists of hundreds of auction house locations nationwide that facilitate trade between

manufacturers, fleet companies, banks, and used and new car dealerships, with more than $110

billion worth of cars traded annually.2 Each car is auctioned individually in a rapid process. When

the auction price (the highest bid at the auction) fails to reach the seller’s secret reserve price, it

frequently occurs that a mediator facilitates bargaining between the highest bidder and seller over

the phone. The buyers, sellers, and mediators in this market are professionals; they frequently

engage in negotiations, as each auction house location sells hundreds to thousands of cars on a fixed

day each week. Stakes are high, especially for smaller buyers or sellers, where each transaction can

make the difference for preferred inventory levels or profit margins. The primary goal of the auction

house company throughout this process is to maximize the trade probability (see discussions of the

industry in Treece 2013, Lacetera et al. 2016).

The dataset we study is rich, containing information from six auction house locations owned

by one company. Collectively, these locations sold hundreds of thousands of cars from 2006–2010.

For each attempt to sell a car, the data records the auction price, the seller’s secret reserve price,

every action taken by each party in the negotiation process, and — critically for our study —

the mediator’s identity, which varies across transactions. The data also contains detailed vehicle

characteristics, the timing and location of each transaction, and identities of buyers and sellers.

Such data is rare in the literature — only a handful of existing studies analyze information on offers

1Stipanowich and Lamare (2014) showed that the use of mediators by major companies has grown since 1997
in every category of dispute: commercial contracts, employment, consumer issues, corporate finance, environmental
issues, intellectual property, personal injury, product liability, real estate, and construction.

2https://www.autoremarketing.com/ar/how-vehicle-volumes-sales-rates-performed-at-naaa-member-auctions-last-
year/.
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and counteroffers within real-world bargaining, and we know of only one other study containing

information on both counteroffers and mediation.3 We view this market as a rare opportunity to

study bargaining intermediaries in the field.

In the data, negotiations end in agreement 62% of the time. In the remaining 38%, the buyer

and seller fail to trade. Such breakdown is consistent with the presence of two-sided incomplete

information, where the buyer and seller both have private values (i.e., unknown to the opposing

party) for the car, and inconsistent with complete information.4 Two-sided incomplete information

is a primary reason why the wholesale used-car market is an interesting place to study mediator

heterogeneity and its effects on welfare. This is for two reasons. First, in such an environment, the

number of equilibria of a sequential bargaining game is infinite (Ausubel et al. 2002), with equilibria

known to have vastly different efficiency outcomes, ranging from no trade (Perry 1986, Ausubel and

Deneckere 1992) to relatively efficient trade (Cramton 1992, Ausubel and Deneckere 1993). Thus, if

one mediator can implement a different equilibrium than another, there is scope for her to increase

trade probabilities and realized gains from trade. Second, with incomplete information, there is an

inherent trade off between efficiency and either party’s rent extraction, and thus bargaining is not

zero-sum: mediators who increase agreement can potentially also increase the size of the pie.

To analyze whether different mediators differentially affect welfare, we introduce a structural

model that allows for different mediators to correspond to distinct pure strategy Bayes Nash equilib-

ria (BNE) of a two-sided incomplete-information game. As a precursor for this structural analysis,

we first document descriptive evidence on the assignment of mediators to specific negotiations and on

the heterogeneity in observable outcomes across mediators. Our conversations with sales managers

suggest that mediators are largely randomly assigned, although empirically we find some evidence

that assignment is not entirely random and can depend on features determined before bargaining

starts, such as car characteristics, buyer and seller identities, and outcomes of the pre-bargaining

3In contemporaneous work, Dindaroglu and Ertac (2024) studied a little over 1,000 manually collected negotiations
in Turkey’s sheep market leading up to the Festival of Sacrifice. 7 percent of these involved a third-party mediator.
Mediated negotiations had a higher trade probability and showed no difference in prices, consistent with our findings.

4In a complete-information model, such as the Rubinstein (1982) noncooperative model or a cooperative Nash
bargaining model, parties would only begin negotiating if agreement is known a priori to be efficient. The same is
true in many incomplete-information models where the incomplete information is about features other than values,
such as discount rates (as in Rubinstein 1985), or in models of reputational bargaining (Abreu and Gul 2000), where
all rational types eventually trade and trade is always the efficient outcome. In contrast, with two-sided incomplete
information about values, and with overlapping support for buyer and seller values, disagreement will sometimes be
the efficient outcome, and impasse will generally occur with positive probability even when gains from trade do exist
(Myerson and Satterthwaite 1983).
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stages of the game (the auction). Our detailed data allows us to control for these features, and we

show that, conditional on controls, variation in mediator assignment is indeed largely random. We

further show that our key findings are similar with or without these controls.

We document heterogeneity in mediators’ average trade probability through various regressions

of an agreement indicator on mediator fixed effects, following the analysis of human auctioneer het-

erogeneity in Lacetera et al. (2016). We observe significant dispersion: the 75th percentile mediator

trades 32.9 percentage points more often than the 25th percentile mediator. Large differences per-

sist as we add rigorous controls for features of the negotiation. In our most saturated specification,

the 75–25-percentile gap is 18.07 percentage points. Some variation in outcomes would occur in

any finite data due to statistical noise even if underlying population probabilities were equal across

mediators. Through a bootstrap simulation exercise, we show that mediator heterogeneity is a real

phenomenon, wider than can be explained by statistical error. While mediators have large effects

on trade probability, their effects on prices are indistinguishable from zero.5 In this light, we refer

to mediators with a higher trade probability as having higher skill or higher performance.

Having established heterogeneity in mediators’ trade probability, we then examine how medi-

ators differ in when they come to agreement and how outcomes differ by mediators’ experience.

Negotiations handled by effective mediators have a higher likelihood of ending in the first bargain-

ing round, rather than after substantial back-and-forth action between buyers and sellers. Effective

mediators stand out in their ability to achieve trade in difficult negotiations, where the auction price

is not already close to the seller’s secret reserve price. More experienced mediators — those who

have been employed by the company longer — are more effective on average at reaching agreement,

and within-mediator performance improves to some extent over time. Importantly, however, there

is substantial residual variation in mediator ability that is not explained by experience.

These results are consistent with any number of possible channels through which mediators

might influence outcomes. The lens through which we view this for our structural exercise is that

different mediators implement different equilibria, some with higher probabilities of trade. The

model is closely related to that of Larsen (2021). We first identify the buyer value distribution

using an order statistics argument that relates buyer values to auction prices. We bound the seller

value distribution using revealed preference arguments from the seller’s decision to accept or reject

5As highlighted above, a lack of price effects is consistent with statements of industry participants, who suggest
that the primary aim of the auction house is to facilitate trade independent of price. In our bootstrap simulation
exercise, we confirm that any differences in average prices across mediators can be explained by statistical noise.
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the auction price. Finally, for different mediators, we identify the function determining whether a

given buyer and seller pair trade. This final step relies on a revelation-principle argument: any BNE

has a corresponding direct mechanism. The direct mechanism for a given mediator skill level can be

identified from trade probabilities in the data conditional on auction prices and reserve prices. Our

identification and estimation also incorporate unobserved game-level heterogeneity — information

that agents observe but that is unobservable to the econometrician.

Our estimates of the direct mechanisms for different mediator types imply that, for cases where

the buyer’s value is high relative to the seller’s, mediator skill makes little difference: the probability

of agreement is high independent of the mediator. Where mediators matter substantially is in cases

of intermediate gaps in private values: high-skilled mediators are more likely to get agreement to

occur for the same pair of buyer and seller types.

With these estimated direct mechanisms and distributions of buyer and seller values, we compute

surplus (the gains from trade) realized in the trade-maximizing (first-best efficient) mechanism and

the second-best efficient mechanism, as well as the real-world surplus achieved by mediators of

different skill levels.6 We find that mediators who achieve a higher trade probability also achieve

greater gains from trade. This implies that higher-skilled mediators are not only capturing additional

low-surplus trades (i.e., cases where the buyer values the car only slightly more than the seller).

Rather, these higher trade-volume mediators increase the total realized gains from trade, creating

significant value. As highlighted above, this reflects the feature that, under two-sided incomplete

information about values, the game is not zero sum.

2 Related Literature

Our study examines mediator heterogeneity. A related theoretical and empirical literature compares

mediated bargaining to unmediated bargaining. On the theory side, Jarque et al. (2003) (JPS)

and Fanning (2021) studied continuous-time, war-of-attrition models where mediators can improve

outcomes by speaking privately to agents and only revealing the opposing parties’ offers once they

agree. The models differ in how they arrive at this result: JPS studied a double auction with two-

sided incomplete information about values. Fanning (2021) considered reputation, with two-sided

incomplete information about whether an agent is rational or not. In the latter model, mediators

6The first-best mechanism maximizes trade gains as well as probability. With incentive constraints, the second-best
mechanism that maximizes trade gains does not necessarily maximize probability. We choose to evaluate both the
first-best and surplus-maximizing second-best.
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introduce randomness in when they reveal offers compatible with agreement.7 Our model differs

from Fanning (2021) in that we consider incomplete information about values, as in JPS.8 We differ

from JPS by considering alternating offers and discrete time, realistic features of our setting.9

Theory also considers mediation in one-shot bargaining games. In Goltsman et al. (2009), a

mediator can improve outcomes over unmediated bargaining by filtering information and adding

noise, akin to Fanning (2021).10 In Kydd (2003), mediators must be biased toward one party or

the other in order to send credible messages.11 Hörner et al. (2015) modeled international conflict,

finding that mediation can be effective when mediators do not fully reveal when a country is weak. Li

and Zhang (2024) demonstrated theoretically that more informed mediators can improve efficiency.12

In our study, we aim for a structural model that is patterned closely after the real-world game

and that allows for the wide variety of outcomes we observe while still being empirically tractable.

This motivates our choice of a model with the following traits: two-sided incomplete information

about values, continuous value distributions, discrete time, and both parties being allowed to make

multiple offers. None of the above models of mediation in bargaining fits these requirements. We

therefore adapt the two-sided incomplete-information model of Larsen (2021) to allow for multiple

mediator types.13 Our model does not incorporate some potential roles of mediators from the

theoretical models above, such as mediators having different information than agents or being

7The model of Copic and Ponsati (2008) is built on JPS, while that Fanning (2023) is built on Fanning (2021) to de-
rive the optimal mediation protocol in reputational bargaining. Basak (2024) also studied information in reputational
bargaining. Fanning (2021) offered a thorough literature review that we build on.

8Gottardi and Mezzetti (2024) modeled two-sided incomplete information about values, where mediators know
more about agents’ values than do agents. Mediators restrict information flow to agents to allow gradual learning
and improve efficiency. In our setting, mediators do not know more than agents about the car; Table 3 and Figure 7
of Lacetera et al. (2016) presented survey evidence consistent with this for auctioneers, whose level of knowledge is
similar to auction house mediators in this market.

9JPS highlighted that modeling their setting in continuous time greatly facilitates the theoretical analysis.
10Goltsman et al. (2009), as well as Fanning (2023), found that arbitration is generally more effective than mediation.

Like mediation, arbitration is considered a form of alternative dispute resolution (ADR), but arbitrators can enforce
(rather than only recommend) an outcome. Unlike mediation, arbitration usage by firms has declined in recent decades
(Stipanowich and Lamare 2014). Kong et al. (2021) presented a structural analysis of arbitration.

11Kim (2020) showed theoretically that a mediator who maximizes trade (not revenue) can send more credible
messages. The author finds supporting evidence in Korean real estate.

12Glode and Opp (2016) considered an intermediary who buys from a seller and resells to a buyer, finding that
efficiency improves if the intermediary is more informed than one of the negotiators.

13The broader bargaining theory literature also tends to focus on special cases of the game we study, such as take-
it-or-leave-it offers or one-sided incomplete information. Sequential bargaining with two-sided incomplete information
about values is known to yield infinitely many, qualitatively different BNE, with no complete characterization (Ausubel
et al. 2002), posing challenges for theoretical and empirical work. Equilibrium multiplicity is driven by off-equilibrium
beliefs, which can sustain a large range of on-path behavior. A feature that supports tractability in our setting is that
negotiation occurs after an auction, so auction actions (e.g., auction prices and secret reserve prices) help us identify
primitives while remaining agnostic about the equilibrium of the post-auction bargaining subgame.
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able to elicit private information to selectively (and potentially randomly) disclose. Instead, in

our model, mediator types differ in which of infinitely many equilibria they implement, leading to

different agreement rates and trade gains.

A higher-skilled mediator in our framework can be viewed as one that helps agents play an

equilibrium closer to the theoretical second-best described in Myerson and Satterthwaite (1983) and

Williams (1987). For example, a good mediator may be better at withholding trades between players

when necessary — even when she knows the buyer values the good more than the seller — to keep

agents’ reporting incentive compatible.14 In theory work building on Myerson and Satterthwaite

(1983), Eilat and Pauzner (2021) showed that, if mediators cannot commit to the trade-withholding

necessary to maintain incentive compatibility, efficiency declines.15 How close real-world bargaining

gets to the Myerson-Satterthwaite-Williams frontier, and whether some mediators get closer than

others, is an empirical question.

Empirical evidence on mediation effectiveness is mixed. Several laboratory experiments have

studied mediation: in Bazerman et al. 1992, mediation decreases the trade probability and increases

price, depending on mediators’ incentives and knowledge; Casella et al. (2020) found that mediation

does not increase agreement; Eisenkopf and Bachtiger (2013) found the opposite, but only when

mediators can punish uncooperative agents. In international conflict, Dixon (1996) found that

mediation increases the likelihood of peaceful resolution, while Fey and Ramsay (2010) found no

effect.16 In law, McEwen and Maiman (1981) found that mediation increases compliance and

satisfaction rates in small claims suits, and Emery et al. (1991) showed positive effects in child

custody cases in which parents were randomly assigned to mediated vs. unmediated negotiations.

An important distinction of our study from previous empirical work — as well as previous

theoretical work — is that we study differences across mediators rather than comparing mediated

to unmediated bargaining. To our knowledge, in the theoretical or empirical studies highlighted

above, all mediation is considered equal — there is no scope for any one mediator to do something

14Myerson and Satterthwaite (1983) considered the second-best efficient bilateral trade mechanism, maximizing
the gains from trade, with equal weights on buyer and seller surplus, under the constraints of individual rationality,
incentive compatibility, and ex-ante budget balance. Williams (1987) extended this analysis to the full Pareto efficient
frontier with unequal welfare weights.

15Recent theoretical work (Saran 2011) suggests that efficiency in the Myerson and Satterthwaite (1983) framework
can also be affected — indeed, improved — by the presence of naive traders who do not strategically shade their
actions relative to their true values.

16Bercovitch and Jackson (2001) found that mediation is preferred in international conflicts (over unmediated
bargaining) in cases of outcome uncertainty or unequal bargaining power.
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better or inherently be better than another, no notion of mediator types or mediator skill.17 This

contrasts starkly with the way mediators are discussed in popular writing and negotiation training,

where discussions abound of the existence of high-quality vs. low-quality mediators.18 Our study

attempts to fill this gap by analyzing mediator heterogeneity.

Our study also relates to structural empirical work studying bargaining under two-sided incom-

plete information (Keniston 2011, Li and Liu 2015, Freyberger and Larsen 2021, Larsen 2021, Larsen

and Zhang 2021).19 Our work contributes by analyzing the impact of intermediaries.20 The data

we use overlaps to some extent with that of Larsen (2021) and Larsen and Zhang (2021), although

those studies do not exploit mediator identities. Larsen (2021) provided a structural welfare analysis

of the real-world average bargaining efficiency relative to theoretical benchmarks, and Larsen and

Zhang (2021) analyzed the division of surplus in this context. Both studies leave unanswered the

question of what explains variation in outcomes across negotiating pairs. Our paper takes a first

step in this direction. Our model builds on Larsen (2021) to identify buyer and seller values, but

differs in allowing the direct mechanism to depend on the mediator.

Our hope is that insights from this paper can inform several audiences. For practitioners,

the results suggest that mediator heterogeneity can have sizeable effects on outcomes, much like

takeaways from the teacher value-added literature, and hence interventions to improve mediator

skill may have positive effects on trade and welfare.21 For bargaining theory, we hope our findings

can motivate models incorporating this heterogeneity, rather than equal treatment of all mediation.

Finally, for empirical bargaining research, which typically models negotiated prices as arising from

some form of Nash bargaining, where mediators can play no role, our finding that mediators play a

17Theory work by Kim (2017) sheds light on one reason why empirical analysis of mediator heterogeneity can
be challenging: to avoid being revealed as a weak negotiator, both parties favor a mediator who is best for strong
negotiators. This leads to complicated selection in settings where a mediator is chosen by the negotiators. In our
setting, negotiators do not choose the mediator.

18See, for example, the training material offered by the Harvard Law School Program on Negoti-
ation at https://www.pon.harvard.edu/freemium/mediation-secrets-for-better-business-negotiations-top-techniques-
from-mediation-training-experts/. Evidence in Stipanowich and Lamare (2014) also pointed to the existence of vari-
ation in quality: responding Fortune 1000 firms prefer mediators whom they know from previous experience or who
come from private ADR firms, and only 37.7% of respondents rank mediators they work with as “very qualified.”

19Empirical bargaining studies of one-sided incomplete information include Silveira (2017) and Ambrus et al. (2018).
20Biglaiser et al. (2020) offered a model and empirical evidence of how intermediaries can help reduce information

asymmetries in retail used-car markets.
21Other empirical studies have documented heterogeneous outcomes in sales situations in the field, such as Bar-

wick and Pathak (2015), Robles-Garcia (2020), and Gilbukh and Goldsmith-Pinkham (2023), studying real estate
agents/brokers; Lacetera et al. (2016), studying auctioneers in wholesale used-car markets; Bruno et al. (2018), study-
ing art auctions; and Jindal and Newberry (2022), studying heterogeneity across sellers in large-scale appliances.
Relative to much of this literature, the heterogeneity we find is quantitatively large.
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large role may offer insights into the validity of such abstractions and the importance of incomplete

information more broadly.

3 Institutional Background and Data

The wholesale used-car auction industry is the backbone of the supply-side of the used-car market,

both in the U.S. and much of the world. Millions of used cars arrive each year to used-car dealerships

as trade-in vehicles and then are never sold at those dealerships, but are instead brought by the

dealerships (referred to as dealer sellers) to a wholesale used-car auction house location, where the

inventory is sold to other car dealerships. Inventory at used-car auction houses also comes from

large sellers (referred to as fleet/lease sellers), including fleet companies (such as Wheels, selling old

fleet cars), rental car companies (such as Hertz), banks (such as Bank of America, selling repossessed

cars), or manufacturers (such as Ford or GM, selling off-lease or lease-buy-back vehicles). Total

industry revenue is currently more than $110 billion annually.

Transactions involve a secret reserve price ascending auction potentially followed by post-auction

bargaining. The role of the auction stage is to ensure that it is the highest-value bidder (rather

than some other bidder) who trades with the seller through the auction or who faces the seller in

a post-auction negotiation. For each car, an auctioneer runs a rapid (approximately 90-second)

ascending auction. Prior to the auction, the seller chooses a reserve price, which is reported to the

auction house but hidden from bidders. If the auction price (the highest bid) fails to reach the

seller’s secret reserve price, the buyer is given the option to walk away from the transaction. If the

buyer chooses not to walk away, bargaining ensues between the high bidder (whom we will call the

buyer) and the seller. For most sales, this bargaining stage simply involves the seller immediately

accepting or rejecting the auction price in person.22 About 26% of auctions end with the auction

house facilitating negotiations over the phone through an auction house employee — a mediator.23

22In some cases, if the seller is not present and the auctioneer observes a sufficiently wide gap between the auction
price and the reserve price, the auctioneer may decide to reject the auction price on behalf of the seller.

23This 26% is not conditional on the auction failing, but rather represents the percentage of observations for which
we see a mediator identity recorded among all attempts to sell the vehicle in our full auction-plus-bargaining dataset,
described in Section 5.5. Observations without a mediator recorded are those fall into one of the following cases: (i)
the car sells through the auction price exceeding the reserve price, (ii) the auction price is below the reserve price and
is accepted or rejected by the seller in person (meaning a mediator is never involved), or (iii) the auction price is so far
below the reserve price that the auctioneer opts against contacting the seller. The 26% of transactions with mediated
negotiation — which we will refer to as our mediated negotiation data — constitute the primary dataset we use in
this and the following sections to study mediator heterogeneity. In Section 5, we bring in observations corresponding
to cases (i)–(iii) as well, as these observations are key for identifying buyer and seller value distributions.
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The mediator first calls the seller and relays the auction price.24 The seller can choose to accept

this price, counter, or quit (ending the negotiation). If the seller counters, the mediator calls the

buyer. This process continues until one party accepts or quits. The auction house company records

all actions taken by either party, the identity of each party, and the mediator’s identity.

The mediated negotiation data consists of several hundred thousand realizations of bargaining

sequences at six different auction house locations (in distinct geographic markets) run by the same

parent company from 2006–2010. We will frequently use the term thread to refer to a bargaining

sequence. The data storage system creates a new record for each action taken during a given

bargaining thread, allowing us to see that some threads involve multiple mediators facilitating

different stages of the negotiation. Among all bargaining threads, 67.06% are handled by one

mediator per thread, 30.34% are handled by two mediators, and the remaining by more than two.

We limit our analysis to threads involving single mediators to facilitate our attribution of outcomes

to mediators.25 Because we want a sufficient number of observations per mediator to estimate

mediator-specific outcomes, we restrict our sample to mediators whom we observe in at least 50

separate bargaining threads. Appendix B describes additional data cleaning. In the end, we have

114 mediators and 75,090 threads with 6,226 distinct sellers and 6,258 distinct buyers.

The industry’s primary performance indicator is the probability with which trade occurs; the

auction company’s goal is to operate a liquid two-sided market that can attract both buyers and

sellers (Treece 2013, Lacetera et al. 2016).26 Each mediator also has this same goal. We will largely

evaluate differences in mediator performance by this trade probability metric.27 We also look at

heterogeneity in the final price of successful trades. To make prices comparable across cars, for

much of our analysis, we normalize them by the auction company’s estimated market value of the

car (which we will refer to as the book price).

Table 1 shows thread-level statistics for our main sample.28 Agreement occurs in 62.3% of

24The mediator’s identity is not known to the buyer or seller before the negotiation begins.
25Appendix B compares the single-mediator threads to those with multiple mediators and presents evidence sug-

gesting that dropping these observations does not drastically affect our results.
26In contrast, price maximization (a common auction design objective) attracts sellers but not buyers.
27Mediators are not paid a commission based on individual trades they facilitate; they are paid a salary. However,

our conversations with individual mediators, and our in-person observations of the mediation process, make it clear
that mediators’ primary objective is a high trade probability.

28Appendix Table B.1 shows means from Table 1 separately by the six auction house locations. Locations vary in
the number of negotiations they handle, ranging from 6,766 to 19,293, with smaller locations having fewer mediators
(this ranges from 10 to 31 across locations). Locations also differ in the fraction of cars sold by fleet/lease sellers,
ranging from 0.396 to 0.536. See Appendix B for more discussion. In our analysis of mediator heterogeneity below,
we control for these differences in a number of ways, both through location fixed effects and through controls varying
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Table 1: Descriptive Statistics at Bargaining Thread Level

Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.623 0.485 0 1
Final price ($) 5,605 4,940 850 12,700
Book price ($) 6,958 5,264 1,550 14,475
Auction price ($) 5,572 4,938 800 12,700
Reserve Price ($) 7,347 5,407 1,900 15,000
No reserve 0.255 0.436 0 1
# Offers in a thread 1.393 0.704 1 2
Length of a thread (hours) 5.769 14.934 0.337 15.6
Fleet/lease car 0.474 0.499 0 1
Car age (years) 6.353 3.605 2 12
Mileage 93,341 51,099 30,161 158,011
Engine displacement (liters) 3.598 1.525 2 5.7
No. Threads 75,090

Notes: Table presents descriptive statistics at the thread level. Final price is conditional on trade occurring.

threads. Final price refers to final negotiated price when trade occurs. This price may coincide

with the auction price if the seller accepts that price in the negotiation (the auction price is the

first offer in the negotiation stage). The average final price for a successful trade is $5,605, lower

than the average book price of $6,958. The average final price is also between the average auction

price of $5,572 and average secret reserve price of $7,347, though it is much closer to the former.29

A bargaining thread ends after 1.39 offers on average, and within six hours. An average car is 6.35

years old and has 93,341 miles on it.30 Roughly half of threads correspond to fleet/lease sellers.

Table 2 shows descriptive statistics at the mediator level. Some of these outcomes are thread-level

characteristics averaged within threads handled by a given mediator. Among the 114 mediators,

45.8% are female.31 The average mediator has worked at her current auction house for four years.32

at the thread-level within a location.
29Recall that any transaction that reaches the negotiation stage is one in which the reserve price exceeds the auction

price, and hence trade failed to occur at the auction stage.
30Table 1 shows that, for 25.5% of observations, there is no reserve price reported. This typically implies that (i)

the seller plans to be present at the auction to signal to the auctioneer whether to let the car sell at the current bid
(effectively acting as a shill bidder) or (ii) the seller wants an auction house mediator to call her regardless of the
auction price to let her accept or reject this price over the phone. The probability of agreement is similar in cases
where the reserve price is missing vs. not (see Online Appendix D.1.1 of Larsen 2021).

31We find no difference in trade probabilities by mediator gender (see Appendix Table B.5).
32We observe each mediator’s employment start date at an auction house. The reported years of employment in

Table 2 are computed by first calculating the mediator’s employment length up through the date of each bargaining
thread and then taking the average of this quantity across all of her threads in our data.

10



Table 2: Descriptive Statistics at Mediator Level

Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.604 0.196 0.374 0.899
Final price/book price 0.834 0.0751 0.754 0.932
Final price/reserve price 0.790 0.0626 0.725 0.861
Final price/auction price 1.022 0.0359 1 1.04
Female 0.458 0.501 0 1
# Threads mediated 659 686 102 1,473
Years of employment 4.150 5.308 0.379 9.96
No. Mediators 114

Notes: Table presents descriptive statistics at the mediator level.

In our data, she handles 659 bargaining threads and successfully facilitates 60.4% of them. While

our sample restrictions enforce that each mediator handle at least 50 negotiations, Table 2 shows

that even the 10th percentile mediator handles more than twice this amount. The achieved final

price is, on average, 79% of the reserve price and 2.2% higher than the auction price. Dispersion in

average trade probability is quite large across mediators, with a standard deviation of 0.196 (while

the dispersion in prices is much smaller). The following section analyzes this dispersion.

4 Heterogeneity in Outcomes Across Mediators

In this section, we provide evidence on mediators’ assignment and their heterogeneous performance

as measured by their trade probability. We show that this heterogeneity is not due to sampling error.

We also examine differences in their final negotiated prices. Finally, we examine how mediators

differ in when they achieve trade, how experience correlates with performance, and how different

mediators perform when faced with greater disparity in buyer and seller values.

4.1 Mediator Effects on Agreement. We first report raw differences in trade probability across

the 114 mediators. Let Agreei be an indicator variable representing whether trade occurs for thread

i, which is mediated by intermediary k(i). Let Jk be the set of all threads mediated by k, and |Jk|

be the number of elements in this set. The average of Agreei over the subset of k’s threads is

Agreek ≡ 1

|Jk|
∑
i∈Jk

Agreei. (1)

Figure 1 shows these probabilities, sorted from smallest to largest. A core stylized fact of our study
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Figure 1: Mediator Differences in Trade Probability

Notes: Figure shows average trade probability for each mediator, ranking them from low to high. Dashed lines
represent the trade probability achieved by the 25th and 75th percentile mediators.

is that different mediators have very different success probabilities. The best to worst mediators

span a difference of 0.840. The 90–10 percentile spread is 0.525. The 25th-percentile of mediator

trade probabilities is 0.441 and the 75th-percentile is 0.770 (shown with horizontal dashed lines in

Figure 1). We will refer to higher-trade-probability mediators as higher-skilled.

To better understand the industry, we spent time observing the bargaining/mediation process

and interviewing mediators, buyers, and sellers. Through this effort, we learned about potential

drivers of mediator heterogeneity and the mediator assignment process. These conversations re-

vealed that each seller typically has an auction house employee assigned to manage the relationship

between that seller and the auction house, and, where possible, this employee mediates negotiations

involving that seller. A seller’s default mediator is often unavailable, however, and in such cases

alternative mediators handle negotiations. At one location, we were told that negotiations involving

fleet/lease sellers, rather than dealer sellers, are more often handled by a pre-assigned mediator,

but even for fleet/lease sellers this is not always the case. At this location, we were able to observe

that, for several exciting hours each week, the room in which the phone calls occur for dealer sellers

is alive with activity, akin to a miniature stock market trading floor, with no obvious protocol

determining which mediator handles a given thread.33

33Throughout the body of the paper, we use a sample of negotiations that includes both dealer sellers and fleet/lease
sellers. In Appendix D we replicate all tables and figures from the body of our paper on separate samples for dealers
vs. fleet/lease sellers and find that our results are largely similar across the two seller types.
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Mediator assignment for a given thread thus involves an element of randomness, but is unlikely to

be completely random. Nonrandom assignment is potentially problematic for our goal of measuring

mediator heterogeneity if good mediators are systematically assigned to threads with characteristics

associated with higher trade probabilities; for example, if effective mediators are systematically

assigned to less-expensive cars, cars with lower reserve prices or higher auction prices, or sellers

or buyers who have a higher propensity to agree. We evaluate the extent of this non-random

assignment and identify features of the negotiation that help control for non-random assignment.

We first construct a leave-one-out estimate of a mediator’s agreement rate, given byAgree−i,k(i) ≡
1

|Jk|−1

∑
{j:j ̸=i,j∈Jk}Agreej . This is the average trade probability for all threads other than i that

are mediated by k. We construct a similar leave-one-out average of the trade probability for the

seller and buyer of thread i.34 We then estimate the following regression:

Agreei = Z ′
iα+ ϵi, (2)

and an alternative version of this regression where the outcome variable is instead Agree−i,k(i).

Zi contains characteristics of thread i that are determined before the negotiation begins (and

hence before any mediator influence). The auction price and reserve price are conceptually quite

important to include in Zi. All observations in our mediated negotiation data are cases where the

auction price is below the reserve price (the condition that leads to auction failure and entering

negotiations). However, observations in which the auction price is closer to the reserve price are

more likely cases where gains from trade exist and agreement is feasible. This is because a higher

auction price should reflect a higher willingness to pay of the buyer, and a lower reserve price a

lower value of the seller. We formalize this in our structural analysis in Section 5, where auction

prices and reserve prices play key roles in identifying buyer and seller values.

Zi also includes other factors that potentially relate to mediator assignment and to trade prob-

abilities: fixed effects for the auction house location and negotiation date; vehicle mileage, age,

engine displacement, and book price; and the leave-one-out agreement rates of the seller and buyer.

The first regression, (2) with Agreei as the outcome, allows us to explore whether thread charac-

34The leave-one-out agreement rate for seller s(i) is the empirical frequency with which s(i) comes to agreement
based on threads other than i that involved s. In similar notation to the mediator leave-one-out rate, this can be

written Agree
seller

−i,s(i) ≡ 1
|Js|−1

∑
{j:j ̸=i,j∈Js} Agreej , where Js is the set of all threads with s as the seller. The buyer

leave-one-out agreement rate can be written Agree
buyer

−i,b(i) ≡ 1
|Jb|−1

∑
{j:j ̸=i,j∈Jb}

Agreej , where Jb is the set of all
threads with b as the buyer.
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Figure 2: Mediator Assignment Test

(A) Agreement (B) Leave-one-out Agreement

Notes: Figure shows coefficients from (2). Panel A shows coefficients when the outcome is Agreei and panel B
where the outcome is the leave-one-out agreement rate Agree−i,k(i). In addition to the variables listed in the figure,
regressions include fixed effects for auction house locations and negotiation date. Covariates are standardized to have
standard deviations equal to 1. 95% confidence intervals, computed by clustering at the mediator level, surround each
point estimate. Buyer Pr(agree) and Seller Pr(agree) represent buyer and seller leave-one-out agreement.

teristics correlate with the likelihood that the thread ends in agreement. The second regression, (2)

with the leave-one-out agreement as the outcome, speaks to whether these characteristics correlate

with a mediator’s average agreement rate on the mediator’s other threads. Comparing estimates

from these two regressions allows us to examine whether mediators with higher agreement rates are

systematically matched to cars, buyers, or sellers that are more likely to result in an agreement.

Figure 2.A shows estimates from the first regression, with 95% confidence intervals about each

estimate. Other than engine displacement, each feature is significantly related to the likelihood that

a thread ends in agreement. In particular, threads are more likely to end in agreement if they have

a lower reserve price or higher auction price (as foreshadowed in our discussion above), if the car is

a less-expensive car (lower book price), or if the buyer or seller is a priori a more agreeable agent

(i.e., more likely to agree as measured by the buyer’s or seller’s leave-one-out agreement rate).

Figure 2.B shows the coefficients from the second regression, where the outcome is Agree−i,k(i),
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the leave-one-out agreement rate. If good mediators are not systematically assigned to threads that

are a priori more likely to end in agreement, we would expect coefficients from this regression to

be much closer to zero. Figure 2.B confirms this. The results still attest that assignment is not

completely random: better mediators—those with a higher leave-one-out average trade probabilities

— tend to be assigned to threads with slightly higher auction prices and with sellers who are a

priori slightly more likely to agree. However, these effects are small relative to the magnitudes in

panel A. Indeed, the F-statistic decreases from 445 in the first regression to 26 in the second, and

the coefficients are about five times smaller. Thus, while thread-level features do predict realized

agreement, they have much less predictive power for leave-one-out agreement rates. These results

suggest that, while some of the raw heterogeneity in trade probability across mediators arises from

other thread-level characteristics, these characteristics themselves are not strongly correlated with

the assigned mediator’s overall performance in terms of trade probability. We will control for this

non-mediator-related heterogeneity in our analysis below.35

To measure mediator performance incorporating these controls, we expand (1) to estimate an

effect for each mediator conditional on thread-level characteristics, as follows:

Agreei = βk(i) +X ′
iϕ+ ϵi. (3)

In (3), βk(i) is the effect for mediator k and Xi is a vector varying across specifications.36 Following

Lacetera et al. (2016), we reposition estimated mediator effects to be mean zero:

β̂norm,k =


β̂k − 1

M

∑M
j=2 β̂j for k ̸= 1

0− 1
M

∑M
j=2 β̂j for k = 1,

where 1 denotes the omitted mediator in regression (3).

Figure 3 displays estimates of mediator fixed effects from increasingly stringent specifications

for Xi. In the baseline case, which we denote spec 1, Xi includes various thread-level features: the

car’s age, book price, engine displacement and mileage; a dummy for whether the car is sold by a

35Appendix B offers an alternative test of mediator assignment that suggests that mediators are largely randomly
assigned to car types (make and model) and to buyers and that mediator to sellers is less random. This highlights
the importance of controlling for seller fixed effects in our analysis, as we do below.

36We denote this vector Xi to distinguish it from Zi in (2), as the controls in the two regressions only partially
overlap. In particular, depending on the specification, Xi can include seller and buyer fixed effects, rather than just
the buyer and seller leave-one-out agreement rates found in Zi.

15



Figure 3: Mediator Fixed Effects for Trade Probability Under Different Specifications

Notes: Figure shows normalized mediator fixed effect estimates for trade probability under increasingly stringent
specifications for Xi from regression (3).

fleet/lease seller; and reserve and auction prices. In spec 2, we add fixed effects for the car’s make-

model combination and the negotiation date. Spec 3 adds auction house location fixed effects and

spec 4 adds buyer fixed effects.37 Spec 5 replaces buyer with seller fixed effects. The most-saturated

version (spec 6) includes all controls. Seller fixed effects are of particular interest given that Figure

2 suggests that assignment of mediators to sellers may not be entirely random, and certain sellers

may be more prone to agree independent of the mediator. Seller fixed effects help absorb variation

in mediators’ trade probabilities that is due solely to the seller. Spec 5 and spec 6 allow us to

examine whether mediator heterogeneity remains even after controlling for seller effects.

Figure 3 shows results comparing these different specifications, ranking mediator fixed effects

from small to large as in Figure 1. Controls change the shape of the mediator effects curve, but

the heterogeneity remains relatively consistent and large across all specifications. The interquartile

37Our data contains separate lists of buyer, seller, and mediator identities for each auction house location. We
therefore treat these identities as specific to a given location. In practice, it is possible, for example, that the same
seller operates at two different locations in our data, but our analysis will treat this as two distinct sellers. This is
not necessarily a downside for the analysis; rather, we highlight this to clarify that any time we control for seller,
buyer, or mediator identities, those indicators will naturally absorb auction house location effects. Note also that
some fixed-effect cells are singletons (e.g., some seller or buyer cells), and these are observations are naturally dropped
from regressions.
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Figure 4: Mediator Rank Across Specifications

Notes: Figure presents mediators’ rank in trade probabilities across different specifications. Each data point represents
a mediator. Vertical axis shows mediator fixed effects from spec 6, horizontal axis shows fixed effects from other
specifications, and dashed line shows 45-degree line.

range is also large enough to be economically meaningful in each specification: the minimum value

of the 75th to 25th percentile gap is 18.07 percentage points. Figure 4 illustrates how mediator

fixed effects are correlated across specifications. In each panel, vertical axes show mediators’ ranks

(from 1 to 114) as measured by her fixed effect from spec 6. Horizontal axes show mediators’ ranks

from other specifications (1–5). Rankings are highly correlated across specifications.38

4.2 Mediator Effects on Prices. We repeat estimation of (3) using final negotiated prices

38Appendix B includes additional analysis of mediator heterogeneity. Appendix Table B.4 adds additional controls to
the Figure 3 regressions, controlling for the number of previous interactions between a mediator-buyer pair, mediator-
seller pair, or buyer-seller pair. These controls have little to no effect. Appendix Table B.6 examines incremental
changes in adjusted R2 from adding (to a regression where the right-hand side only includes Xi from spec 1) or
subtracting (from spec 6) any of the following fixed effects: mediator, buyer, seller, auction house location, or make-
model combination. The latter two have negligible effects; the other three help explain variation in outcomes.
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(normalized by book prices), denoted Pricei, as the outcome of interest rather than Agreei. Figure

5.B shows the estimated mediator fixed effects under the saturated model (spec 6), along with

pointwise 95% confidence intervals. Panel A shows the trade-probability effects (also under spec 6)

for comparison. The estimated mediator effects for final prices are smaller in magnitude than those

for agreement. A one-standard-deviation increase in mediator performance is only associated with

a 3.8 percentage point increase in the final price, but a 24.9 percentage point increase in the trade

probability. Confidence intervals for each estimated effect are also wider for the price measure: for

113 out of the 114 mediators, the effects are not significantly different from zero. These results are

unsurprising given mediators’ objectives, which the industry clearly dictates as increasing trade.

4.3 Sampling Error. A concern with any study of heterogeneity is that some (and potentially all)

heterogeneity may be driven by sampling error: even if true mediator performance were constant

across mediators, some variance in outcomes would arise in any finite sample. Here we quantify the

variation due to sampling error through a parametric bootstrap approach that takes into account

other factors — such as seller identity or the make and model of the car — that may also affect

trade probability.39 We begin with the null hypothesis that mediators have no effect on trade

probability. We regress Agreei on Xi from spec 6 of (3), without including mediator fixed effects.

Let Âgreei denote the predicted probability of trade from this regression for observation i. We then

generate a large number of simulated datasets, indexed by ℓ, of identical size to the original data.

For simulated dataset ℓ, we generate a synthetic trade indicator for observation i, Ãgree
ℓ

i , which is

equal to 1 with probability Âgreei and 0 otherwise.40

This resampling method preserves much of the structure of the data. It preserves, for example,

the size distribution of mediators; the correlations between trade probabilities and features such as

auction house locations, sellers, buyers, car models, and other controls in Xi; and the correlation

between these features and mediator assignments. For example, if a certain seller tends to have

a higher trade probability in the raw data, the procedure ensures that this seller will also have

higher trade probabilities in the simulated data. If certain mediators are systematically more likely

to interact with particular sellers or car types, this is also preserved, because the outcomes are

synthetically produced but not covariates. The main part of the data structure that is destroyed in

39See Section 10.4 of Efron and Hastie (2021) for a description of the parametric bootstrap. We are grateful to an
anonymous referee whose comments inspired this approach.

40Because we use a linear probability model, in a small fraction of the data, the estimated probabilities Âgreei are
greater than 1 or less than 0; in these cases, we simply set the probability to equal to 1 or 0, respectively.
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Figure 5: Mediator Fixed Effects Under Most-Saturated Specification

(A) Trade probability

(B) Normalized final price

Notes: Panel A shows mediator fixed effect estimates for trade probability along with 95% confidence intervals under
spec 6 of (3). Panel B shows results from the same exercise but using normalized final price as the outcome variable.
Horizontal dashed lines represent the estimated fixed effect for the 25th- and 75th-percentile mediators.

the synthetic data is any correlation between mediator identities and trade probabilities, conditional

on the controls Xi, which is exactly the variation that identifies mediator effects.

We simulate 100 such synthetic datasets and estimate mediator fixed effects in each as in spec

6 of (3). Because mediator identities have no effect on trade probabilities in the synthetic data,

any variance in mediator effects in the synthetic data reflects pure sampling noise. Figure 6.A plots

the CDF of the median bootstrap estimates across these 100 datasets, along with 95% confidence

bands. The figure also shows the CDF of the actual mediator fixed effect estimates from spec 6
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Figure 6: Parametric Bootstrap Test of Heterogeneity from Sampling Error

(A) Trade Probability (B) Final Price

Notes: Panel A shows parametric bootstrap test results for trade probability. Panel B presents results for final price
normalized by book price. To obtain the bootstrap estimates and confidence intervals for trade probabilities, we
estimate a model of trade probabilities using all variables in spec 6 of (3), except that we exclude mediator fixed
effects. For each bootstrap sample, we then generate simulated trade indicators, equal to 1 with probability equal to
the predicted probabilities from the estimated model. We similarly estimate a model of prices using spec 6 of (3), and
then simulate prices using the regression predictions combined with the regression estimate of the error variance. In
each case, we use 100 bootstrap samples. Blue lines show the estimated distribution of fixed effects from the actual
data and black lines show the bootstrap median and 95% pointwise confidence bands.

of (3). The distribution of trade probability fixed effects is quite dispersed, lying well outside the

95% confidence bands of the bootstrap distribution, suggesting that the heterogeneity we find is

not purely due to noise. This same approach admits a one-sided test of the null hypothesis that the

standard deviation of actual mediator fixed effects is no larger than what we would expect solely

due to sampling error. We solidly reject this null: the standard deviation of the actual mediator

fixed effect estimates (0.25) is well outside the one-side 95% bootstrapped confidence value (0.06).

We adopt a similar method to evaluate the effects of mediators on prices, regressing Pricei on

Xi from spec 6 of (3). Let P̂ ricei be the predicted price from this regression for observation i and let

σ̂ be the estimated standard deviation of the residuals. Because prices are continuous rather than

discrete, simulating prices requires a stronger stance on the data generating process. For simulation

ℓ, we generate a synthetic price outcome for observation i, P̃ rice
ℓ

i , by drawing from a N(0, σ̂) and

adding the realizations to P̂ ricei. We create 100 such datasets and estimate mediator effects in

each as in spec 6 of (3) but using P̃ rice
ℓ

i as the outcome.

The results of this exercise are shown in Figure 6.B. The estimated mediator fixed effects for
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prices fall within the 95% confidence band of our bootstrap estimates. Thus, unlike our effects

on trade probabilities, we cannot reject the null that mediators have no effect on prices, and that

any apparent effect observed in Figure 5.B is due to sampling error. This is also confirmed by the

standard deviation of the actual mediator fixed effects for prices, which is 0.038, whereas the 95th

percentile standard deviation across parametric bootstrap samples is 0.06.41

4.4 Other Differences Across Mediators. This section examines several differences across

mediators. First, we show that effective mediators’ threads have a higher tendency to end in

agreement in the first period, and that this fully explains their better performance. Let Agree1i

be equal to 1 if thread i ends in agreement in the first period (meaning the seller accepts the

auction price, the first bargaining offer), and 0 otherwise. Let Agree>1
i be equal to 1 if thread i

ends in agreement some time after the first period, and 0 otherwise. Thus, mechanically, Agreei =

Agree1i + Agree>1
i . We define three tercile groups of mediators, which we call low, medium, and

high, ranked by their estimated fixed effects for trade probability from spec 6 of (3).42 We then

analyze the three components Agreei, Agree
1
i , and Agree

>1
i in these groups.

Table 3 column 1 displays estimates from regressing Agreei on dummies for tercile groups, with

the lowest group as the omitted category. The vector Xi from spec 6 of (3) is also included. We find

higher trade probabilities for medium and high mediators; this is mechanical given their grouping by

trade probabilities. Column 2 displays results when the outcome is instead the first-round agreement

indicator, Agree1i . The coefficients for the medium and high groups are positive and significant,

and similar in magnitude to those in column 1. Column 3 uses instead the later-round agreement

indicator, Agree>1
i . The coefficients are insignificant in both cases, and the standard errors are

tight enough to reject economically large effects. Thus, effective mediators’ increased propensity to

agree in the first period appears to fully explains their better performance.43

We next examine how mediators’ experience affects their trade probabilities. First, Figure 7.A

41We find similar results using final prices normalized by the auction price or reserve price rather than book price
or using an alternative version of the bootstrap test relying only on seller fixed effects (which, again, absorb auction
house location effects) in Xi; See Appendix Figure B.3. Appendix B also proposes a test based on splitting our main
sample in half that also confirms these results.

42For this exercise, as well as for the structural model in Section 5, we take estimated mediator rankings as truth;
that is, we treat the spec 6 estimates from (3) as though they control well enough for covariates that we have a correct
understanding of who the best and worst (and middle-ground) mediators truly are.

43Appendix D replicates all analyses separately for fleet/lease vs. dealer sellers. We find that the null effect in
column 3 of Table 3 is driven by a positive effect for dealer cars and a negative effect for fleet/lease cars. In both
samples, the strong positive correlation between a mediator’s overall trade probability and her first-round trade
probability (column 2) remains.
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Table 3: Agreement Rates in First vs. Later Rounds and Mediator Experience

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i

High 0.254∗∗∗ 0.250∗∗∗ 0.004
(0.010) (0.010) (0.006)

Medium 0.102∗∗∗ 0.098∗∗∗ 0.004
(0.006) (0.006) (0.004)

Experience (years) 0.005∗∗∗ 0.004∗∗∗ 0.001∗ 0.010∗∗∗ 0.019∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001) (0.004) (0.004) (0.002)

Mediator FE Y Y Y
R2 0.371 0.438 0.233 0.398 0.467 0.257 0.416 0.484 0.262
N 71,154 71,154 71,154 51,589 51,589 51,589 51,589 51,589 51,589

Notes: “High” and “Medium” are dummies for a given thread i being mediated by a mediator in the top and middle
tercile of mediator trade probability fixed effects, respectively, where the fixed effects are spec 6 of (3). In Columns 1-3,
where we analyze mediator terciles, the benchmark group is the bottom tercile of mediators. Experience is measured
for a given thread as the time elapsed between the thread mediator’s start date, which we observe in the data, to
the date of the bargaining thread. The dependent variable in columns 1, 4, and 7 is a dummy for the thread ending
in agreement. In columns 2, 5, and 8, the dependent variable is a dummy for the thread ending in agreement in the
first period, and in columns 3, 6, and 9, the dependent variable is a dummy for the thread ending in agreement later
than the first period. The vector Xi from spec 6 of (3) is included as a control in all regressions. The number of
observations is fewer than in Table 1 because experience is not available for some mediators and because singleton
fixed effect cells are dropped from the analysis. Significance levels: *: p < 0.10, **: p < 0.05, and ***: p < 0.01.

shows a scatter plot of mediator experience against mediators’ estimated fixed effects from spec

6 of (3). Experience is measured, for a given thread, as the time elapsed between the mediator’s

employment start date and the start time of the current thread; we then average this across threads

a mediator handles.44 We observe that more experienced mediators are more effective. However, a

large degree of mediator skill is unexplained by experience.

We also quantify experience effects through variants on the following regression:

Agreei = X ′
iξ + ψExperiencek,i + ωi (4)

where Experiencek,i denotes the experience level of mediator k up to the point where thread i

begins, and Xi is as in spec 6 of (3). Table 3 column 4 shows the results: mediator experience is

positively correlated with agreement, an effect that is small in magnitude but statistically significant.

We augment (4) to include mediator fixed effects, exploring how individual mediators’ perfor-

mance changes as they gain experience. Table 3 column 7 shows the results. The coefficient on

experience is positive and significant, suggesting that individual mediators, even those who are poor

performers on average, improve in their trade probability with additional experience, becoming more

like high-skilled mediators. The effects are quantitatively modest: A one-year increase in experience

44We observe mediators’ employment start date in the data.
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Figure 7: Agreement vs. Mediator Experience and Pr(Agreement) vs. Reserve-Auction Gap

(A) Agreement vs. Experience (B) Agreement vs. Reserve-Auction Gap

Notes: Panel A displays a scatter plot of mediators’ estimated fixed effects from spec 6 of (3) vs. average work
experience in years. Panel B shows a binned scatter plot with the probability of agreement on the vertical axis and
the reserve-auction gap on the horizontal axis, with the plot created separately for negotiations handled by high-,
medium-, and low-skilled mediators. The binned scatter plot sets the polynomial degree and number of smoothness
constraint to 1 and uses the bias-corrected confidence interval of Cattaneo et al. (2024).

is associated with a one-percentage point increase in trade probability, a movement upward of about

three slots (relative to the 25th percentile) in the mediator rankings from spec 6 of (3). Mediator

performance thus appears to improve with experience, but some variation in effectiveness remains

that experience cannot explain. More experienced mediators have higher first-round agreement

probabilities (columns 5 and 8) and lower rates of later-round agreement (column 9; the result in

column 6 is not significant at the 0.05 level).45

Table 3 offers two takeaways. First, effective mediators appear to succeed by convincing sell-

ers to concede in the first period more often and this channel appears to explain the entirety of

high-skilled mediators’ better performance.46 Second, experience appears to be an important driver

of mediators’ effectiveness: more experienced mediators have higher trade probability fixed effects,

and mediators (even low-skilled ones) become more effective as they gain experience. A narrative

consistent with these stylized facts is that effective mediators may be able to coordinate buyers and

45In Appendix D we show that the strong positive effects in columns 7 and 8 are driven by negotiations involving
fleet/lease sellers. The negative effects in column 9 appear in both the dealer and fleet/lease samples.

46Our result that better mediators achieve agreement in the first period also suggests that these mediators reduce
delay, which is costly in many bargaining models. The structural analysis in Section 5 allows us to examine whether
the realized welfare gains, including bargaining costs, are higher for these higher-trade-probability mediators.
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sellers on playing an equilibrium that involves sellers conceding faster. The structural exercise in

Section 5 will allow for these possibilities by viewing mediators of different skill levels as correspond-

ing to different equilibria. Our results in Table 3 suggest that the skills required to implement faster

agreement may be difficult to acquire: mediators improve slightly as they become more experienced,

but there is large variation in mediators’ abilities that is not explained by experience. This finding

is consistent with a number of other papers which have documented persistent productivity differ-

ences among individual employees (e.g., salespeople in Jindal and Newberry 2022 or auctioneers in

Lacetera et al. 2016) despite strong incentives for firms to attempt to remove heterogeneity through

training, suggesting that some skills may be difficult to transfer from high to low performers.

Our final investigation in this section looks for evidence regarding the surplus, or gains from

trade, in trades that are consummated by different mediators. The gains from trade can be defined

as the buyer’s willingness to pay (the buyer’s value) less the price at which seller is willing to sell

(the seller’s value). While these objects are unobserved in the data, it is intuitive that a seller

with a higher value would report a higher secret reserve price and that the buyer’s value is related

to the auction price: the last bidder standing in the auction must have a value higher than the

auction price. The model in Section 5 formally derives these and other properties. Here, we simply

use these arguments to motivate that the reserve price minus the auction price — we call this the

reserve-auction gap for brevity — is negatively related to the true surplus.47

Figure 7.B shows a binned scatter plot with trade probability on the vertical axis and the

reserve-auction gap on the horizontal. We plot this separately using high-, medium-, and low-

skilled mediators. Within each group, the higher the reserve-auction gap, the lower the probability

of agreement. This is because a larger reserve-auction gap reflects a greater chance that gains

from trade are small or nonexistent (nonexistent meaning the seller values the car more than the

buyer). Figure 7.B shows that the different mediators achieve a relatively similar probability of

agreement when the reserve-auction gap is small. These low-gap cases likely reflect transactions

where the surplus is large enough for any mediator, regardless of skill, to achieve agreement. Where

mediator skill diverges is for higher reserve-auction gaps. Here, where the true gains from trade

are likely smaller, and hence negotiators are less likely to naturally agree, high-skilled mediators

substantially outperform medium-skilled mediators, who outperform low-skilled mediators. This

47The reserve-auction gap is always a positive number for any observation that enters bargaining: the auction price
being less than the reserve price is why the auction fails and bargaining begins.
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raises the question of whether better mediators largely only capture additional low-surplus trades

missed by other mediators. If so, better mediators may have only minimal effects on welfare, in

spite of their increased trade probability. This question requires a model, to which we now turn.

5 The Effect of Mediators on Welfare

In this section, we construct a structural model to quantify how mediators’ performance gaps

affect buyer, seller, and total welfare. Our goal is to analyze whether mediators who achieve a

higher trade probability also achieve higher overall efficiency, or whether instead these mediators

are simply capturing low-surplus trades (i.e., cases where the buyer values the car only slightly more

than the seller, which adds little to overall efficiency). For this analysis, we construct a structural

model building on the incomplete-information, mechanism design framework for bilateral trade of

Myerson and Satterthwaite (1983) and Williams (1987). Our empirical approach applies that of

Larsen (2021), extended to allow for different mediators to implement different equilibria.

5.1 Conceptualizing Mediators as Implementing Different Equilibria. Mediators could

potentially influence outcomes in a number of ways. To our knowledge, the theory literature of-

fers no model of mediator heterogeneity, but we can extract possible theories that might generate

heterogeneity from the literature that compares mediated to unmediated bargaining. For example,

several theories discussed in Section 2 suggest that mediation can improve efficiency when a media-

tor elicits private information from each party and selectively discloses it (e.g., JPS, Goltsman et al.

(2009), Hörner et al. 2015, Fanning 2021). Heterogeneity could therefore potentially arise if some

mediators are better at information elicitation or optimal disclosure. Alternatively, heterogeneity

might arise if some mediators are better informed than others about agents’ values, a feature of

Gottardi and Mezzetti (2024). Finally, in a setting like ours with multiple equilibria, different medi-

ators could correspond to distinct equilibria. For our model, we take the strong view that mediators

influence outcomes only through the final channel; better mediators do not have (or extract) differ-

ent information from other mediators, but have the ability to coordinate agents on a higher-trade

equilibrium. This structure turns out to be sufficiently flexible to capture large mediator effects on

outcomes. This is because sequential-offer, incomplete-information bargaining games have a rich

set (indeed, a continuum) of qualitatively different equilibria (Ausubel et al. 2002).48 Even with

48This feature of multiple, qualitatively different equilibria is also discussed in Gul and Sonnenschein (1988) in the
context of sequential-offer bargaining games and Satterthwaite and Williams (1989) in the context of simultaneous
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a fixed bargaining protocol and rational agents, a backdrop where mediators implement different

equilibria can yield a wide array of trade probabilities and welfare results across equilibria.49

In addition to its flexibility, this framework is empirically appealing due to several properties

derived in Larsen (2021) that identify model primitives while remaining largely agnostic about equi-

libria. By the revelation principle (Myerson 1979), each BNE has a corresponding direct mechanism

pinning down the probabilities with which buyer and seller types trade. As we show, these different

direct mechanisms are nonparametrically identified in our data. The data also allows us to identify

(or partially identify) agents’ value distributions, which, combined with the direct mechanisms, are

sufficient to quantify welfare under different mediators. Our identification arguments require data

not only from transactions involving mediated bargaining, but also those that ended at other stages

of the game. For example, we need auction and reserve price data for successful auctions. We use

the estimated primitives (buyer values, seller values, and mediators’ direct mechanisms) to estimate

welfare solely within the bargaining stage of the game under different mediator skill levels.50

5.2 Model Setup. Our discussion follows Larsen (2021). Identification relies heavily on a basic

model of the pre-bargaining (auction) stage. We maintain the following assumptions:

(A1) N ≥ 2 risk-neutral bidders participate in an ascending button auction with zero participation

costs. For i = 1, ..., N , each buyer i has a value Y ′γ +W +Bj, with Bj ∼ FB and W ∼ FW ,

and with (X,W ,N ,{Bj}Nj=1) mutually independent.

(A2) A risk-neutral seller has a value Y ′γ + W + S, with S ∼ FS and with S independent of

(Y ,W ,N ,{Bj}Nj=1).

(A3) Post-auction bargaining lasts for up to T < ∞ periods; buyers incur a common bargaining

cost, ηB > 0 (and sellers ηS), for each offer made.

For each auction, we treat each bidder j as having a private value Bj drawn from FB (with

density fB and support [b, b]) and the seller as having a private value, S ∼ FS (with density fS and

support [s, s]), where Bj and S are assumed to be independent for all j. Note that when referring

offers. Larsen (2021) described several examples of equilibria of the bargaining subgame at used-car auctions.
49This is not the case for all games. For example, consider a sealed-bid second-price auction, where, if we were to

assume all agents play dominant-strategies, all agents simply bid their values. There is then no scope for third-party
influence through equilibrium coordination, because equilibrium outcomes are fully pinned down.

50Larsen and Zhang (2018) studied the full auction-plus-bargaining game in this market, finding that increases in
the number of bidders can improve efficiency, consistent with theoretical implications of Williams (1999).
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to the value of the highest bidder – who potentially enters bargaining with the seller – we use the

notation B, without a j subscript. The number of bidders in a given auction is a random variable

N . In addition to their own private values, all agents, the seller and bidders, observe a game-level

heterogeneity component, Y ′γ +W , where Y is a vector observable to the econometrician, W is a

scalar unobserved by the econometrician, and γ is a parameter vector to be estimated.

A1–A2 imply that Bj , S, N , Y , and W are mutually independent. We allow bidders’ values

to be correlated with one another and with sellers, but only through Y and W . We invoke this

assumption because of evidence elsewhere in the literature that an independent private values (IPV)

model, or IPV with unobserved heterogeneity, fits well for used-car auctions, and because allowing

for additional correlation — or for interdependent/common values — is beyond the current state of

empirical methodologies for ascending auctions.51 In estimation we will parse out this game-level

heterogeneity. Here we describe the game conditional on a realization of game-level heterogeneity,

Y ′γ + W . We omit dependence on this realization in our notation, and return to the role of

heterogeneity in Proposition 5. See Appendix C for additional model discussion.

We review the timing of the game, described in Section 3, in the context of our model. Let t

represent the period of the game. Period 0 begins with nature assigning an intermediary, κ (relevant

only if the game reaches mediated bargaining), and with the seller choosing a secret reserve price

R. In period 1, N bidders participate in an ascending auction (which we assume, for simplicity,

follows a button auction format), resulting in an auction price, PA. If PA ≥ R, the seller and

high-bidder trade. Otherwise, the high-bidder is given the opportunity to walk away. If she does

not walk away, the game continues to period 2, the realization of κ is revealed, and the seller can

accept, reject, or counter in response to the auction price. If the seller counters, the game continues

to period 3, the buyer’s turn, and so on.52 Bargaining lasts for up to T periods, which, by A3, is

finite (but potentially large). The final bargained price is above PA; this is the standard outcome

in the game, and we treat it here as a requirement of the auction company (although in practice

this is not explicitly imposed).

We allow κ to take values in {L,M,H, ∅}, standing for low, medium, or high skill levels; a value

51Structural models of similar used-car auctions (but in Korean) in Roberts (2013) and Kim and Lee (2014), found
evidence consistent with IPV. Earlier used-car auctions work (Genesove 1993) found weak evidence of a common
values component at used-car auctions; sellers’ information disclosure requirements have improved since then, arguably
reducing potential adverse selection concerns that could arise in common values setting and rendering the environment
of IPV with unobserved heterogeneity more palatable.

52We will use the terms “high bidder” and “buyer” interchangeably.
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of κ = ∅ means that the negotiation stage took place without a mediator or that the negotiation

failed to meet our sample criteria from Section 3. As described in Section 3, a negotiation can occur

without a mediator if the seller is physically present at the auction sale and accepts or rejects PA

before any mediator involvement. It is also possible for the auctioneer to reject PA on behalf of the

seller if the seller is absent. A negotiation falls outside of our Section-3 sample criteria, for example,

if it is handled by multiple mediators or by a mediator who handled fewer than 50 negotiations

(meaning we lack data to classify the mediator’s skill level). We assume the following:

(A4) κ is independent of (Y ,W ,N ,S,{Bj}Ni=1).

Section 4 provides some evidence that mediator assignment is largely random conditional on

observables. For our structural exercise, A4 is a stronger, unconditional independence assumption,

but we still take a first step of residualizing actions against a large set of observables (a standard

“homogenization” approach in the auction literature; Haile et al. 2003). Conditional independence

would be weaker but would require continued conditioning on observables — or an index of observ-

ables — in subsequent estimation steps, greatly increasing the computational burden.

Payoffs are as follows. If trade occurs at a price P , a buyer with value Bj receives Bj − P and

the seller receives a payoff of P . If trade fails, the buyer receives 0 and the seller receives S (her

private value for the car). Agents also face any incurred bargaining costs. These costs, described in

A3, consist of a disutility ηB that the buyer pays for each period he chooses to continue the game

(by making an offer or by not opting out initially) and similarly for the seller.

Let ρ(S) = R be the seller’s secret reserve price strategy. Let ζj to be the drop-out price of

bidder j in the auction. When R > PA, let πB(PA, B) be the high bidder’s expected value of not

opting out of bargaining, conditional on his value and on the auction price. Let DB
1 = 1 represent

the buyer’s decision to walk away when informed that PA < R (and DB
1 = 0 means not walking

away). Let DB
t ∈ {A,C,Q} be the buyer’s decision to accept, counter, or quit at odd t > 1. Let PB

t

be the buyer’s counteroffer (if the buyer counters) in period t. Let DS
t and PS

t be defined similarly

for even periods t. Let Ht be the history of publicly observed actions up through period t− 1 of the

game. These actions include PA and all previous bargaining offers and period-specific decisions.

We focus on pure strategy BNE of this game.53 An equilibrium in this game is a history-

contingent set of actions σBj (Bj , κ) = {ζj , χ, {DB
t |Ht, κ}j , {PB

t |Ht, κ}j}, where the decisions DB
t

53In incomplete-information sequential bargaining, refinements (such as perfect Bayes equilibrium) do little or
nothing to refine equilibria because beliefs after off-path actions sustain a wide range of behavior (Gul and Sonnenschein
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and offers PB
t included are those for periods in which it is the buyer’s turn. The strategy of a seller

of type S is a history-contingent set of actions σS(S, κ) = {ρ, {DS
t |Ht, κ}, {PS

t |Ht, κ}}. A set of

strategies {σB∗(Bj , κ)}Nj=1 for all buyers and σS∗(S, κ) for the seller is a BNE if, for each player, her

strategy is a best response to opponents’ strategies and players update their beliefs about opponent

values using Bayes rule at each history of the game reached with positive probability. Equilibrium

actions that occur after mediator assignment is revealed are allowed to depend on κ.

5.3 Model Properties. We present several properties that help identify primitives. We continue

to ignore game-level heterogeneity, Y ′γ +W , and we return to it in Proposition 5.

Buyer Values. Our first result addresses bidding behavior in the auction:

Proposition 1. Suppose A1 and A3 hold and consider an arbitrary bidder j. In any BNE, holding

fixed the strategies of all players in the continuation game, strategies of other bidders, and the reserve

price strategy of the seller, it is a weak best response for j to play the following: (i) bid truthfully

in the auction and (ii) enter bargaining only if doing so yields a non-negative expected payoff.

This is akin to the standard truthtelling result in button auctions but here the result is only a

weak best response rather than dominant because of the post-auction subgame, which can poten-

tially condition on auction outcomes in ways that make truthtelling not dominant. The proof of

Proposition 1 shows that the key model features for this result are (i) if a bidder learns PA < R

and she is the high bidder, she can costlessly opt out of bargaining, eliminating any downward bid

shading; and (ii) the bargaining price is weakly greater than PA, eliminating incentive to shade

auction bids upward. As in many prior empirical studies of ascending auctions, having shown ex-

istence, we assume bidders follow this truthtelling strategy, allowing us to infer the distribution of

buyer values from the distribution of auction prices using order statistics.

(A5) Bidders bid truthfully in the auction and enter bargaining only if doing so yields a non-negative

expected payoff.

Under A5, the distribution of auction prices, FPA , is equal to the distribution of the second-

highest order statistic of buyer values, and hence FB is related to FPA and Pr(N = n) (the proba-

1988). Mixed-strategy equilibria may also exist; we focus on pure strategies to facilitate the model properties we exploit
for identification while still being sufficiently flexible to admit a wide range of behavior.
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bility mass function of N) as follows, evaluated at any number v:

FPA(v) =
∑
n

Pr(N = n)
[
nFB(v)

n−1 − (n− 1)FB(v)
n
]

(5)

For any v, FPA(v) can be estimated from data on auction prices, and the right-hand side is

monotonic in FB(v), and thus FB(v) is identified.
54

Seller Values. Let DS = A, without a t subscript (to distinguish this from the period-specific

action described in Section 5.2), represent the event in which the seller takes an action in period 1

or 2 that results in the game ending in agreement at PA. This event occurs either when 1) PA ≥ R

or 2) PA < R, the high bidder does not opt out of bargaining, and the seller accepts the auction

price on her first bargaining turn. Similarly, let DS = Q represent the event in which the seller

takes an action in period 2 that results in the game ending in disagreement in that period. This

event happens when PA < R, the high bidder does not opt out of bargaining, and the seller rejects

PA or quits on her first bargaining turn (rather than accepting PA or making a counteroffer).55

In any BNE, the seller will not accept PA if PA < S (the seller would be better off quitting

and getting S instead of PA) and will not quit if S < PA (the seller would be better off accepting,

receiving PA instead of S). This implies the following bounds:

Proposition 2. Under A1–A5, for any v ∈ [s, s], FS(v) ∈ [Eκ{Pr(DS = A|PA = v, κ)|PA =

v}, Eκ{Pr(DS ̸= Q|PA = v, κ)|PA = v}] = [Pr(DS = A|PA = v),Pr(DS ̸= Q|PA = v)].

The notation Eκ indicates an expectation taken over mediator assignment, which still yields

bounds on FS because, byA4–A5, Pr(S ≤ v|PA = v, κ) = Pr(S ≤ v). The property underlying these

bounds is similar to that of the English-auction bounds in Haile and Tamer (2003) but applied to the

seller’s decision to accept or reject the first bargaining offer (PA). As explained above, period 2 may

or may not involve a mediator interaction. We do not use mediator assignment in estimating seller

bounds but instead estimate bounds that average over mediator assignment (averaging over both

whether a mediator is involved beginning in period 2 and, if so, which mediator is assigned). This

54Equation (5) can be equivalently written FPA(v) =
∑

n Pr(N = n)
[
Fn
B(v) + n (1− FB(v))F

n−1
B (v)

]
. Note that,

throughout the paper, for random variables that can take on infinitely many values (e.g., Y,W,N, S,Bj , R, PA), we
use corresponding lowercase letters to denote realizations. We use v as a generic argument in various functions.

55For purposes of bounding FS , we treat cases where PA < R and the auctioneer rejected PA on behalf of the seller
as cases where the seller herself rejected PA.
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allows us to obtain a single set of bounds on FS and to focus on the different equilibria/mechanisms

mediators implement, which we address below. See Appendix C.9 for additional discussion.

Belief Updating After Auctions. If PA < R, the buyer can opt out of bargaining, and does

so if πB(PA, B) < 0. Define χ(B) by πB(χ(B), B) = 0. When bargaining ensues, both the buyer

and seller are aware that the support of buyer types who would enter bargaining is truncated:

B ≥ χ−1(PA). Similarly, both parties are aware that PA < R means S is truncated: PA < ρ(S)

(recall that ρ(S) ≡ R.) Proposition 3 below states this result, along with monotonicity properties

satisfied by ρ and χ that rely on two additional assumptions:

(A6) The seller’s expected payoff in the bargaining subgame is continuous in the auction price.

(A7) The density fB is positive on [b, b].

A6 is a technical condition that yields differentiability of the seller’s payoff and allows us to

apply the Edlin and Shannon (1998) theorem to prove strict monotonicity of ρ(·). A7 is invoked in

the proof of Proposition 3 to avoid dividing by zero.

Proposition 3. Under A1–A7, conditional on PA = pA, the support of buyer and seller types in

bargaining is [χ−1(pA), b] and [ρ−1(pA), s], where ρ(·) and χ(·) are strictly increasing.

In addition to A6–A7, a component of proving strict monotonicity of ρ(·) is buyers’ ability to

opt out of bargaining after the auction if the expected payoff is negative. This disciplines sellers to

set finite reserve prices. By Proposition 3, the density of seller and buyer types entering bargaining

conditional on PA = pA are fS(s|pA) ≡ fS(s)
1−FS(ρ−1(pA))

and fB(b|pA) ≡ fB(b)
1−FB(χ−1(pA))

. These reflect

Bayes-updated beliefs at the beginning of the bargaining stage. Proposition 3 implies

Pr(DB
1 = 0|PA = pA, PA < R) =

1− FB(χ
−1(pA))

1− FB(pA)
, (6)

an expression that we use below in estimating χ−1(·).

Direct Mechanism. We consider different mediator types κ to be different equilibria of the

bargaining subgame. By the revelation principle (Myerson 1979), any BNE has an equivalent

direct mechanism in which agents truthfully report types to a mechanism designer who ensures

outcomes occur as if the original game had played out. A mechanism is described by an allocation
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function specifying the probability with which a given seller and buyer trade and a transfer function

specifying transfers between agents. For our purposes, we do not need to identify the entire transfer

function, only the expected price of consummated trades, which is observable in the data. Identifying

the allocation function, however, is essential and requires more work.

The allocation function for a given mediator type can be written xκ(s, b; p
A), as the mechanism

can depend on mediator type and PA; this is because outcomes at the auction directly depend on

the realization of PA and outcomes in bargaining can also because PA is the first bargaining offer,

affecting belief updating. We prove the following:

Proposition 4. Under A1–A7, in any BNE, the allocation function for any mediator type κ can

be written xκ(r, b; p
A) ≡ 1

{
b ≥ gκ

(
r, pA

)}
, where gκ(r, p

A) is weakly increasing in r.

This threshold form for the allocation function is a common result in bargaining mechanisms.

Ausubel and Deneckere (1993) referred to this property as the “Northwestern Criterion” as it

implies that trade occurs if and only if players’ types lie northwest of a boundary defined by gκ.
56

Proposition 4 also incorporates the result from Proposition 3 that ρ(·) is strictly increasing, and

thus we define the allocation function as a function of r (which is observable to the econometrician)

rather than s (which is privately known only to the seller). Proposition 4 implies that the function

gκ in 1{b ≥ gκ(r; p
A)} is related to the conditional probability of agreement as follows:

Pr(A|R = r, PA = pA, κ) =
1− FB

(
gκ(r, p

A)
)

1− FB (pA)
. (7)

where A is the event that trade occurs. The denominator accounts for the fact that any buyer in

bargaining has B ≥ PA. The conditional probability on the left of (7) is the key to identifying gκ:

because FB is identified by (5), at a given PA = pA and R = r, the quantile of (1−FB(·))/(1−FB(p
A)

that matches the conditional trade probability reveals the lowest buyer type that trades with a seller

who reports a reserve of R = r. This lowest buyer type is gκ(r, p
A).

Game-level Heterogeneity, We now re-introduce game-level heterogeneity, Y ′γ +W :

Proposition 5. Fix any mediator type κ (thus also holding fixed the BNE) and suppose A1–A7

hold. Suppose, when Y ′γ +W = 0, the equilibrium involves reserve price r; auction price pA; a

56Note that, in a more general framework of mixed strategies, equilibria could exist that correspond to random
allocation functions that yield trade with some probability in (0, 1).
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lowest buyer type who would choose to bargain χ−1(pA); and, for each period t at which the game

arrives, the bargaining offer is Pt = pt and the decision to accept, quit, or counter is Dt = dt. Then,

for any Y ′γ+W = z, the equilibrium will involve reserve price r̃ = r+z; auction price p̃A = pA+z;

the lowest buyer type who would choose to bargain χ−1(p̃A − z) + z; the period t decision dt; and,

for any period t offer that is accepted with positive probability, the period t offer is pt + z.

This result is similar in spirit to other homogenization results (Haile et al. 2003) but applied

here to this specific case of a secret reserve auction followed by bargaining. It implies that the game

is location invariant, allowing us to parse out game-level observable heterogeneity using a linear

regression and unobserved heterogeneity via a deconvolution exercise, described below.

5.4 Evaluating Gains from Trade. The expected gains from trade in the bargaining stage of

the game, under allocation function xκ(r, b; p
A), can be evaluated as

∫ b

b

[∫ b

χ−1(pA)

∫ s

ρ−1(pA)
(b− s)xκ(ρ(s), b; p

A)fS(s|pA)fB(b|pA)ds db

]
fpA(p

A)dpA (8)

We also subtract from this quantity an estimated bound on the loss due to bargaining costs,

described in Appendix C. We evaluate these gains separately for low-, medium-, and high-skilled

mediators. As a counterfactual benchmark, we also compute the infeasible first-best mechanism,

which is simply 1{B ≥ S} — trading whenever gains from trade exist. We also compute the

second-best following Myerson and Satterthwaite (1983) and Williams (1987).57 The Myerson-

Satterthwaite Theorem shows that a gap exists between the second- and first-best; the latter is

infeasible because each party has incentives to retain information rents. Larsen (2021) showed that

inefficiency in the real-world mechanism is even larger than this gap, as the real-world outcome

lies below even the second-best. Our setting allows us to unpack some of this shortfall to examine

whether certain mediators are better at reducing this inefficiency.

Expression (8) shows that the key objects required for evaluating the trade gains are the alloca-

tion functions for each mediator type, xκ(r, b; p
A); the conditional densities fS(s|pA) and fB(b|pA);

the truncated support bounds for the types who enter bargaining, χ−1(pA) and ρ−1(pA); and the

density of auction prices fPA . The truncated supports allow us to compute welfare solely within

the bargaining stage of the game, which is the only stage mediators can potentially influence.

57Appendix Figure C.2 shows the estimated welfare under different mediators relative to the full Pareto frontier of
Williams (1987), of which the Myerson-Satterthwaite second-best is the highest-utility point.
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5.5 Estimation Sample and Steps. Our estimation relies on data that merges our indicators

of mediator type from the mediated negotiation data with an auction-plus-bargaining dataset of

264,996 observations from Larsen (2021). The latter only partially overlaps with the mediated

negotiation data: some observations in the auction-plus-bargaining data end at the auction stage

and have no mediator identifiers, and some observations in the mediated negotiation data are missing

variables found in the auction-plus-bargaining data that are important for our analysis.

The merge yields the following number of observations handled by mediators whom we can

identify as low, medium, or high-skilled, respectively: 11,764 (denote this set by NL), 10,235 (NM ),

10,043 (NH). In 36,400 observations, a mediator identity is recorded but the negotiation does not

meet our sample criteria from Section 3 for classifying mediator skill; e.g., the mediator handles too

few observations. We denote this set Nω. Let NA denote the set of 196,524 observations that ended

at the auction stage, ended with the buyer opting out of bargaining, or ended through bargaining

but with no mediator recorded. Let NB be the union of NL, NM , NH , and Nω (and thus the union

of NA and NB is the full dataset).

The model properties yield identification arguments and corresponding estimation approaches.

To conserve space, we summarize estimation steps here and relegate details to Appendix C. Steps

1–5 do not require conditioning on mediator type, and these steps follow Larsen (2021) closely. Step

6 incorporates mediator type, where we estimate the gκ functions for each mediator type κ.

1. Observed Heterogeneity. By Proposition 5, auction and reserve prices are additively sep-

arable in game-level heterogeneity. We control for this heterogeneity via a stacked linear

regression of auction and reserve prices on a rich set of game-level observables Y , yielding

an estimate of γ in Y ′γ +W . Residuals from this regression correspond to R̃ ≡ R +W and

P̃A ≡ PA +W , where R and PA are the homogenized reserve and auction prices. This step

uses all observations in NA∪NB, in addition to some observations in which auction or reserve

prices are missing (but not both). This improves estimation of γ given the large number of

fixed effects we control for. See Appendix C.

2. Unobserved Heterogeneity. By Proposition 5, the residuals from the Step 1 regressions are

additively separable inW . By independence of R, PA, andW , a convolution argument implies

that the marginal densities fR, fW , and fPA are identified from the joint distribution of R̃ and
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P̃A.58 We estimate these marginal densities fPA , fR, and fW and their corresponding CDFs

using a flexible maximum likelihood approach. This step uses all observations in NA ∪NB.

3. Buyer Values. By A5 and Proposition 1, we can use the CDF FPA , estimated in Step 2,

along with Pr(N = n), to identify and estimate FB by directly solving (5) on a grid of values.

Appendix C contains details about the number of bidders and how Pr(N = n) is estimated.

This step uses all observations in NA ∪NB.

4. Seller Values. Ignoring unobserved game-level heterogeneity, the lower and upper bounds

on FS in Proposition 2 are probabilities conditional on PA. Accounting for unobserved hetero-

geneity, the objects we can estimate in the data instead condition on P̃A, a noisy measure of the

auction price with unobserved heterogeneity included. These objects are Pr(DS = A|P̃A = v)

and Pr(DS ̸= Q|P̃A = v), which we estimate via local linear regressions of the events DS = A

and DS ̸= Q on the noisy auction price, P̃A. Considering the lower bound, the theoretical

counterpart for this conditional probability is a convolution of Pr(DS = A|PA = v) with fW .

The expression for this convolution (in Appendix C) can be used to estimate bounds on FS ,

parsing out W using a flexible parameterization of the bounds (piecewise linear splines) and

minimizing the distance between the estimates of Pr(DS = A|P̃A = v) and its theoretical

counterpart. The upper bound follows similarly. This step uses all observations in NA ∪NB.

5. Belief Updating (Functions ρ(·) and χ−1(·)). For any function FS(·) lying in the estimated

bounds, ρ(s) can be constructed as ρ(s) = F−1
R (FS(s)), with FR replaced with F̂R from Step

2. To estimate χ−1(·), we modify (6) to incorporate unobserved heterogeneity, which becomes

another convolution, and minimize the distance between the left and right-hand sides of (6),

parameterizing χ−1(·) via piecewise linear splines. As indicated by the conditional probability

in (6), this step conditions on observations from NA ∪NB in which R > PA.

6. Direct Mechanisms. To estimate each gκ(·), we modify (7) to include game-level unobserved

heterogeneity – another convolution – and minimize the distance between the left and right-

hand sides of (7), parameterizing gκ(·) via bilinear splines. We create appropriate pseudo

samples to estimate these gκ functions separately by mediator type. To estimate gL, for

example, we combine the set NA with |NB| observations drawn with replacement from the

58A similar convolution argument was first applied to auction-level heterogeneity by Krasnokutskaya (2011).
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NL observations mediated by low-skilled mediators (where | · | denotes the number of elements

in a set). We create similar pseudo samples for medium- and high-skilled mediators. This

allows each gκ function to be estimated as if using a full auction-plus-bargaining dataset with

only one mediator type while maintaining the same size of the dataset and same proportion

of observations ending at the auction or bargaining stage.

5.6 Estimated Allocation Threshold Functions by Mediator Type. The estimated gκ(R,P
A)

functions for the three mediator types are shown in Figure 8, with units in $1,000. This figure

contains similar information to the model-free reserve-auction gap plot in Figure 7.B, but offers

additional insights through the lens of the structural model, which allows us to plot and interpret a

function of values (e.g., B) rather than just an object related to values (PA). To aid visualization,

we plot R on the horizontal axis and B on the vertical, and hold PA fixed at $2,000 below the

game-level heterogeneity components, Y ′γ +W . After subtracting the heterogeneity components,

because heterogeneity enters additively, values and prices (such as R, PA, and B) will range from

negative to positive. For example, a reserve price of R = −1 in Figure 8 means $1,000 below the

car’s game-level heterogeneity component. Each mechanism yields trade if B lies above a given

gκ(R,P
A) line. The contour plot and corresponding numbers show the amount of mass under the

joint pdf of B (conditional on B > PA) and R.

Figure 8 shows a clear ordering of mediator types: low-skilled mediators implement a higher

threshold function, consummating fewer efficient trades, than do medium-skilled mediators, who in

turn consummate fewer efficient trades than high-skilled mediators (the lowest function vertically).

This structural exercise reveals that, at very high reserve prices (or, equivalently in our model, high

seller values), the assigned mediator makes little difference, suggesting that, when the seller’s value

for the car is high relative to the buyer’s, the negotiation is likely to fail regardless of the mediator

skill. For very low reserve prices, the different gκ functions again align almost perfectly, suggesting

that the negotiation is likely to succeed regardless of mediator skill. It is for the middle range of

reserve prices — around $700 below to $700 above the game-level heterogeneity component — where

mediator skill appears to have an effect. At a reserve price equal to the game-level heterogeneity

component (shown as zero on the horizontal axis), a low-skilled mediator only successfully closes a

deal for buyers who have a value of at least -$500 (i.e., $500 below the heterogeneity component).

Faced with the same seller reserve price situation, a medium-skilled mediator is able to generate
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Figure 8: Direct Mechanisms g(·) Functions for Different Mediator Types

Notes: Figure displays estimates of g(R,PA) for low- (blue), medium- (red), and high-skilled (yellow) mediators,

where the auction price is held at a value of $2,000 below the heterogeneity value (Y γ + W ) for the car; that is,

PA = −2, as units are $1,000. Trade occurs if B ≥ g(R,PA). Contour plot and corresponding numbers show the

amount of mass under the joint pdf of B (conditional on B > PA) and R.

trades for buyers with values approximately above -$900, whereas a high-skilled mediator captures

trades even for lower buyer values, when the buyer’s value exceeds about -$1,700.

5.7 Welfare Results. Because FS is only partially identified, we obtain bounds on trade gains. We

first evaluate bounds on the difference in trade gains, from (8), between a given real-world mediator’s

mechanism and the first- or second-best mechanism, for the average negotiation.59 Figure 9.A

shows, in blue, bounds on the difference between the first-best and real-world outcomes, separately

for negotiations mediated by low-, medium-, or high-skilled mediators.60 These represent bounds

on the deadweight loss in bargaining — gains that real-world bargaining fails to capture but that

59Proposition 6 of Larsen (2021) showed that, across all possible FS within the seller CDF bounds, an upper bound
on the gap between trade gains in the first-best and in the real-world bargaining is given by the difference between
(8) evaluated at the upper bound seller CDF and (8) evaluated at the lower bound seller CDF. A lower bound on the
trade gains difference is given analogously. This same bounding property applies to the gap between trade gains under
any two different mediator types (high- vs. low-skill, say). For consistency, we follow this same approach (evaluating
trade gains at the lower bound and upper bound seller CDFs) when evaluating the gap between the real-world and
second-best outcomes, but, unlike the gap between the real-world and first-best outcomes, we have no theoretical result
proving that this yields a bound on the difference across all seller CDFs. The qualitative implications from examining
first- and second-best mechanisms (relative to any of the mediator mechanisms) are quite similar; this is because the
first- and second-best are similar in this market; see Larsen (2021).

60Dashed lines show 95% bootstrapped confidence sets for these bounds. Confidence bounds throughout this section
are constructed via a nonparametric percentile bootstrap, using 200 bootstrap replications of our estimation procedure
and reporting the 0.025 quantile of the estimated lower bound on an object of interest and the 0.975 quantile of the
estimated upper bound; these are conservative by a Bonferroni-style argument.
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would be realized in a first-best world because they correspond to a buyer valuing the car more

than the seller. A larger number in this figure thus represents a larger loss relative to the first-best

efficient outcome. Yellow bars show similar bounds comparing to the second-best outcome.

In Figure 9.A, under each mediator type, the outcome is slightly closer to the second-best than

to the first-best; this is because the second-best falls short of the first-best (the inefficiency described

by Myerson and Satterthwaite 1983). The interesting finding from this figure is that high-skilled

mediators appear better at reducing some of the deadweight loss between the real-world outcome

and these theoretical benchmarks. This deadweight loss is at least $100, regardless of the mediator,

but for high-skilled mediators we can reject the largest efficiency shortfalls (those greater than $500),

and we fail to reject these levels for low-skilled mediators.

Figure 9: Surplus Differences Across Mediators

(A) Real-world vs. 1st/2nd Best (B) Real-world Diff. Across Mediators

Notes: Panel A displays, in solid blue, bounds on the difference in total surplus between first-best (1st) and real-
world bargaining (RW), separately for threads mediated by low, medium, and high-skilled mediators; and solid yellow
displays bounds on the difference between the second-best (2nd) and real-world outcomes. Panel B displays, in solid
blue, bounds on the difference in total surplus in the real-world mechanism between high vs. medium-skilled mediators
(H-M), medium vs. low-skilled (M-L), and high vs. low-skilled (H-L); solid red lines display bounds on the difference
in seller surplus; and solid yellow lines display bounds on the difference in buyer surplus. All bounds are computed
by evaluating differences at the upper and lower bounds on FS . Whiskers show 95% confidence intervals on these
bounds constructed via bootstrapping with 200 replications. Units on the vertical axis are $1,000.

Our primary result is in Figure 9.B, where we show realized surplus differences for the average

negotiation mediated by high- vs. medium-skilled (H-M), medium- vs. low-skilled (M-L), and high-

vs. low-skilled (H-L) mediators. These total surplus differences are in solid blue. Solid yellow and
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red bars show buyer and seller surplus separately. We observe a statistically significant difference in

total surplus for all three pairwise comparisons, with a surplus increase of about $150–250 between

high- vs. medium-skilled mediators, $50–175 for medium- vs. low-skilled, and $200–400 for high-

vs. low-skilled. This implies that mediators who achieve higher trade probabilities also achieve

a statistically significant increase in total welfare. Relative to the shortfall from the theoretical

benchmarks shown in Figure 9.A, these quantities represent a meaningful improvement in efficiency.

A priori, it is unclear whether mediators’ improvements in surplus would accrue mostly to buyers

or sellers: a high-skilled mediator could achieve higher total surplus by affecting one or both of the

agents’ surplus. Figure 9.B shows that higher-skilled mediators tend to improve seller surplus, and

that we cannot reject a null effect on buyer surplus. This result, combined with the fact that

mediators have little effect on trade prices, suggests that, regardless of mediator assignment, more

surplus tends to accrue to sellers than to buyers, and hence increases in trade probability and total

surplus affect seller surplus more than buyer surplus.61 Part of this asymmetry is attributable

to the finding in Figure 8 that the shift from gL(·) to gH(·) is largely a vertical shift, meaning

that the additional sellers who trade under high-skilled mediation are quite similar to those who

trade under low-skilled mediation, whereas the additional buyers are low-value buyers, and thus the

improvement in seller surplus is larger.

Table 4: Auction House Revenue Under Different Mediator Types

Low Medium High

Revenue 0.1352 0.1683 0.2025
(0.002) (0.002) (0.001)

High - Medium Medium - Low High - Low

Revenue Difference 0.0341 0.0331 0.0672
(0.002) (0.002) (0.002)

Notes: Table displays average auction house revenue per sales attempt under different mediator types, as well the

differences between average revenues. Standard errors, computed via 200 bootstrap replications, are in parentheses.

A natural question is how large the revenue gains are for the auction house company from

having a better mediator. The company collects fees from buyers and sellers only when trade

occurs (see Appendix C.8). These fees are observable in the auction-plus-bargaining data, and thus

we can estimate the fees collected under different mediator skill levels. Table 4 displays average

61The evidence in Larsen (2021), which does not condition on mediator assignment, is consistent with this idea.
There, like in this paper, only bounds on surplus are available, but the upper bound on seller surplus is about 2 to
3.5 times larger than the upper bound on buyer surplus; see Table 3 and Table A.4 of Larsen 2021. Appendix C.10
of the current paper, where we discuss the full Pareto frontier, contains additional discussion.
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auction house revenue per sales attempt under high-, medium-, and low-skilled mediators, where this

revenue, for negotiations handled by a given mediator type, is simply the trade probability multiplied

by the average auction house fees collected from negotiations that ended in trade. Average revenue

per sales attempt is $203 for high-skilled mediators, $168 for medium-skilled mediators, and $135 for

low-skilled mediators. Thus, high-skilled mediators improve auction house revenue by about 50%

relative to low-skilled mediators. These numbers are also meaningful relative to the total surplus

differences between high- and low-skilled mediators discussed above ($200–400).

6 Conclusion

In this paper, we have shown that mediators have statistically significant and economically large

effects on bargaining outcomes. The 75th-percentile intermediary is 18.07 percentage points more

likely to close a deal than the 25th percentile intermediary. The estimated mediator effects are

robust to a variety of different controls, and are not driven by sample noise. Effective mediators

tend to achieve trade quickly, and particularly stand out above low-performing mediators in situa-

tions where agreement does not look like a foregone conclusion (i.e., when the auction price is not

close to the reserve price). Mediators appear to become more effective with experience, but there

is substantial variation in mediator effectiveness left unexplained by experience. Our structural

exercise demonstrated that better mediators not only increase trade probabilities but also have real

effects on realized gains from trade. Myerson and Satterthwaite (1983) showed that incomplete-

information bilateral bargaining under overlapping supports generically results in deadweight losses

— cases where a buyer values the item more than the seller but they nonetheless fail to trade.

These represent potential gains from trade left on the table. Our findings suggest that real-world

bargaining falls even farther from the first-best outcome than implied by Myerson and Satterthwaite

(1983), but that some of this shortfall can be overcome by high-performing mediators who are able

to execute a mechanism/equilibrium lying closer to the efficient outcome. We see these findings

as potential starting points for future experimental, theoretical, and empirical work in incomplete-

information bargaining settings. A natural next step would be to design laboratory experiments to

analyze more in-depth the question of how good mediators achieve a higher trade probability or

to identify interventions that could shift play to better equilibria. We hope these findings can also

motivate theoretical investigations explicitly allowing for mediator heterogeneity.
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A Proofs

Proofs in this section follow Larsen (2021) with minor modifications to accommodate mediators.

A.1 Preliminaries. We first state preliminary lemmas. Let Ht ≡ {Pτ}t−1
τ=1 represent the set of

offers made in periods 1 through t − 1 of bargaining.62 Let DS
t ∈ {A,Q,C} represent the seller’s

decision at t, and let DB
t+1 ∈ {A,Q,C} represent the buyer’s decision at t + 1. As in Section 5,

κ ∈ {L,M,H, ∅} is the mediator type.

The seller’s payoff at period t of the bargaining is as follows. Conditional on a realization of

Ht = ht, which includes the buyer’s most recent offer (pBt−1), a seller of type S = s, chooses to

accept (A), quit (Q), or counter (C), yielding the following payoffs for t < T − 1 and for any κ:

A : pBt−1

Q : s

C : V S
t (s|ht, κ) = max

p

{
pPr

(
DB

t+1 = A|{ht, p}, κ
)
+ sPr

(
DB

t+1 = Q|{ht, p}, κ
)
− ηS

+ Pr
(
DB

t+1 = C|{ht, p}, κ
)
EPB

t+1

[
max

{
PB
t+1, s, V

S
t+2

(
s|{ht, p, PB

t+1}, κ
)} ∣∣∣∣∣{ht, p}, DB

t+1 = C, κ

]}

where p is the counteroffer chosen by the seller. The seller’s counteroffer payoff takes into account

that the buyer may either accept, quit, or counter. In the latter case, the seller receives her expected

payoff from being faced with the decision at t+ 2 to accept, quit, or counter.

The buyer’s payoff at t + 1 is defined similarly, the buyer receiving b − p if he accepts a price

p, 0 if he quits, and an expected counteroffer payoff if he counters. Conditional on a realization of

Ht+1 = ht+1, which includes the seller’s most recent offer (pSt ), a buyer of type B = b faces the

following payoffs for t < T − 2 and for any κ:

A : b− pSt

Q : 0

C : V B
t+1 (b|ht+1, κ) = max

p

{
(b− p) Pr

(
DS

t+2 = A|{ht+1, p}, κ
)
− ηB + Pr

(
DS

t+2 = C|{ht+1, p}, κ
)

62The player with the period t turn has not yet made an offer, so this offer does not enter into Ht.
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× EPS
t+2

[
max

{
b− PS

t+2, 0, V
B
t+3

(
b|{ht+1, p, P

S
t+2}, κ

)} ∣∣∣∣∣{ht+1, p}, DS
t+2 = C, κ

]}

where p is the counteroffer chosen by the buyer. The expected payoff of a buyer of type B = b from

entering bargaining when R > pA, conditional on winning the auction, is

πB(pA, b) = Eκ

[
(b− pA) Pr

(
DS

2 = A|pA, κ
)

+ Pr
(
DS

2 = C|pA, κ
)
EPS

2

[
max

{
b− PS

2 , 0, V
B
3

(
b|{pA, PS

2 }, κ
)} ∣∣∣∣∣pA, DS

2 = C, κ

]]
− ηB

This expression is the payoff to the buyer from stating the auction price as a counteroffer, which is

how the bargaining game begins. Note that πB(pA, b) does not depend on κ, the mediator type, as

this is modeled as being revealed only after the buyer’s decision to opt out of bargaining or not.

Lemma 1. If A1–A3 are satisfied, then for any finite T , any realized history up to period t < T ,

and any κ, the payoff from countering (for the player whose turn it is to counter at period t) is

weakly increasing in the player’s type.

Proof. Fix κ. The proof proceeds by induction on the number of periods remaining. WLOG, we

prove the result in the case where the buyer moves last. Suppose one period remains (the seller’s)

out of T total, after which the buyer can only accept or quit. Suppose this node is reached on path.

At a given realization of HT−1 = hT−1, the seller’s payoff from countering at price p is

US
T−1(s, p|hT−1, κ) ≡ pPr(DB

T = A|{hT−1, p}, κ) + s(1− Pr(DB
T = A|{hT−1, p}, κ))− ηS

Let p∗(s|hT−1, κ) ∈ argmaxp U
S
T−1(s, p|hT−1, κ), so V

S
T−1(s|hT−1, κ) = US

T−1(s, p
∗(s|hT−1, κ)|hT−1, κ).

Let VT−1(s, s
′|hT−1, κ) (with four arguments rather than three) be the payoff to a type-s seller who

mimics type s′ < s. Clearly VT−1(s, s|hT−1, κ) ≥ VT−1(s, s
′|hT−1, κ) because VT−1(s, s|hT−1, κ) is

the maximized counteroffer payoff given the seller’s true value, s. It remains to be shown that

VT−1(s, s
′|hT−1, κ) ≥ VT−1(s

′, s′|hT−1, κ).

Below, p∗(s′|hT−1, κ) is the optimal offer for a type-s′ seller given hT−1. Observe that

VT−1(s, s
′|hT−1, κ) = p∗(s′|hT−1, κ) Pr(D

B
T = A|{hT−1, p

∗(s′|hT−1, κ)}, κ)

+ s(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1, κ), κ}))− ηS , and
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VT−1(s
′, s′|hT−1, κ) = p∗(s′|hT−1, κ) Pr(D

B
T = A|{hT−1, p

∗(s′|hT−1, κ)}, κ)

+ s′(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1, κ)}, κ))− ηS

Thus,

VT−1(s, s
′|hT−1, κ)− VT−1(s

′, s′|hT−1, κ) = (s− s′)(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1, κ)}, κ)) ≥ 0

Therefore, VT−1(s, s|hT−1, κ) ≥ VT−1(s
′, s′|hT−1, κ), and the seller’s counteroffer payoff is weakly

increasing in her type when there is one period remaining.

To complete the proof, let V S
T−(t−1)(s|hT−(t−1), κ) denote the seller’s counteroffer payoff with

t − 1 periods remaining, and suppose V S
T−(t−1)(s|hT−(t−1), κ) is weakly increasing in s. For s′ < s,

when there are t periods remaining, VT−t(s, s|hT−t, κ) ≥ VT−t(s, s
′|hT−t, κ) by the same argument

as above. It remains to be shown that VT−t(s, s
′|hT−t, κ) ≥ VT−t(s

′, s′|hT−t, κ). Note,

VT−t(s, s
′|hT−t, κ)− VT−t(s

′, s′|hT−t, κ)

= (s− s′) Pr
(
DB

T−(t−1) = Q|{hT−t, p
∗(s′|hT−t, κ)}, κ

)
+ Pr

(
DB

T−(t−1) = C|{hT−t, p
∗(s′|hT−t, κ)}, κ

)
× EPB

T−(t−1)

[
max

{
PB
T−(t−1), s, V

S
T−(t−2)

(
s, s|{hT−t, p

∗(s′|hT−t, κ), P
B
T−(t−1)}, κ

)}
− max

{
PB
T−(t−1), s

′, V S
T−(t−2)

(
s′, s′|{hT−t, p

∗(s′|hT−t, κ), P
B
T−(t−1)}, κ

)} ∣∣∣∣∣{hT−t, p
∗(s′|hT−t, κ)}, DB

T−(t−1) = C, κ

]

is non-negative. Therefore, VT−t(s, s|hT−t, κ) ≥ VT−t(s
′, s′|hT−t, κ), completing the proof. The

proof that the buyer counteroffer payoff is increasing in b follows by the same steps.

Lemma 2. In any equilibrium with truthtelling in the auction, fB being positive everywhere on the

support of B implies fPA is positive everywhere on the support of B.

Proof. fB > 0 implies FB is strictly increasing. Equation (5) shows that, under truthtelling in the

auction, FPA is then also strictly increasing, and so fPA > 0 on the support of B.

Proof of Proposition 1: Consider an arbitrary bidder of type B = b. A bidder’s strategy is the

price at which to stop bidding. Suppose the current auction price is p̄ and suppose the bidder is

one of at least two bidders still remaining. The auction eventually ends at some price pA ≥ p̄.
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Suppose, for now, that, off the equilibrium path, when pA < R, the bidder only enters bargaining

if doing so yields a non-negative payoff. This is always satisfied on path, but if all bidders were to

drop out of bidding immediately, a bidder would only face the decision to enter bargaining or not

off path, where optimality is not required.

If b > p̄, it is optimal for the bidder to remain in the auction, as dropping out would yield 0 and

staying in would yield a non-negative expected payoff because there is some chance the bidder wins

at pA < b. To see the expected payoff of remaining is non-negative, consider the case where pA ≥ R;

in this case, the car sells through the auction and the bidder receives a positive payoff. Consider

the case where pA < R; in this case, the bidder has the option to enter bargaining, and only chooses

to if it yields a non-negative expected payoff. Recall that the bidder only pays bargaining cost ηB

if he chooses not to opt out.

If b < p̄, the buyer cannot receive a positive expected payoff from remaining in the auction. To

see this, note that if the bidder remains in the auction there is a chance that he will win at pA > b.

If this occurs and pA ≥ R, the car sells through the auction and the bidder receives b−pA < 0. If, on

the other hand, the bidder wins and pA < R, the bidder’s payoff conditional on entering bargaining

will necessarily be negative because the final bargained price is required to be greater than pA (as

stated in Section 5.2) and hence, in this case, the bidder opts out of bargaining, receiving 0.

Now suppose the equilibrium involves (off path) a bidder choosing to enter bargaining even

when doing so yields a negative payoff. Holding all other parts of equilibrium strategies fixed as

described in Proposition 1, the bidder would have a weak best response of bidding truthfully and

only entering bargaining when doing so yields a non-negative payoff.

Proof of Proposition 3: Note that for b′ > b, πB(χ(b), b′) > 0. This follows by several points: (i)

by Lemma 1, V B
3 (·) is weakly increasing in b for any κ; (ii) the term (b− pA) appearing in the Eκ[·]

expression in πB(pA, b) is strictly increasing in b; (iii) combining facts (i) and (ii) and averaging

over κ implies that πB(pA, b) is strictly increasing in b. Thus, χ(b′) > χ(b), and hence χ is strictly

increasing, and χ−1 exists and is also strictly increasing.

To see that χ−1(pA) > pA, note that a buyer pays ηB > 0 if he does not opt out of bargaining,

and the best possible outcome a buyer can expect from bargaining would be to only have to pay

pA. Therefore, for any auction price pA, there exists some buyer with type close to pA, say pA + ε,

where ε < ηB, who would prefer to opt out of bargaining rather than receive a payoff of (at most)
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ε− ηB, which is negative. Strict monotonicity of ρ(·) is shown in Lemma 3.

When bargaining occurs, it is common knowledge among the two bargaining parties s satisfies

ρ(s) ≥ pA and b satisfies χ(b) ≥ pA, implying s ∈ [ρ−1(pA), s] and b ∈ [χ−1(pA), b].

Lemma 3. If A1–A7 are satisfied, then in any BNE the seller’s optimal secret reserve price, ρ∗(s),

is strictly increasing in s and satisfies ρ∗(s) ≥ s.

Proof. Suppose for now that there is some positive probability that the buyer does not opt out of

bargaining when R > PA. A seller of type S = s chooses ρ(s) to maximize

EPA

[
EB

[
PA ∗ 1

{
PA ≥ ρ(s)

}
+ s ∗ 1

{
PA < ρ(s), πB(PA, B) < 0

}
(9)

+ πS
(
PA, s

)
∗ 1

{
PA < ρ(s), πB(PA, B) ≥ 0

} ∣∣∣∣∣PA

]]

This term consists of 1) PA, which the seller receives if it exceeds the reserve price; 2) s, which the

seller receives if the auction price is below the reserve price and the buyer opts out of bargaining;

and 3) the seller’s bargaining payoff, πS
(
PA, s

)
= Eκ[max

{
PA, s, V S

2

(
s|PA, κ

)}
], which the seller

receives when PA < R and bargaining occurs. (9) can be re-written as

∫ b

ρ
pAfPA(pA)dpA +

∫ ρ

b

[∫ χ−1(pA)

pA
sfB(b)db+

∫ b

χ−1(pA)
πS

(
pA, s

)
fB(b)db

]
fPA(pA)

1− FB(pA)
dpA

=

∫ b

ρ
pAfPA(pA)dpA +

∫ ρ

b

[
s
(
FB(χ

−1(pA))− FB(p
A)

)
+ πS

(
pA, s

) (
1− FB(χ

−1(pA))
) ] fPA(pA)

1− FB(pA)
dpA

A6 implies πS(·, s) is continuous and thus the payoff is differentiable. Differentiating using

Leibniz Rule yields the following, with respect to ρ:

∂

∂ρ
= fPA(ρ)

[
−ρ+ s

FB(χ
−1(ρ))− FB(ρ)

1− FB(ρ)
+ πS (ρ, s)

1− FB(χ
−1(ρ))

1− FB(ρ)

]
(10)

We next show that fPA(ρ) > 0 for any ρ in the support of R. To see this, first note that fPA(v) > 0

for all v ∈ [b, b] by Lemma 2. Second, choosing any ρ < b would be dominated by a reserve price

of b because every buyer has a value of at least b. Third, a seller would be indifferent between

any reserve price above b (because no buyer would be willing to pay more than b). Therefore, any

ρ /∈ [b, b] would be weakly dominated, and so we can remove fPA(ρ) from the above expression
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without dividing by zero. Also note that 1− FB(ρ) > 0 because fB is positive by A7.

By Lemma 1, V S
2

(
s|PA, κ

)
is weakly increasing in s for any κ, and thus πS

(
pA, s

)
is weakly

increasing in s, so ∂
∂ρ is weakly increasing in s. Topkis’s Theorem then implies that ρ∗(s) is

weakly increasing in s. A stronger, strictly increasing result for ρ∗(s) is then obtained as follows.

The proof of Proposition 3 demonstrates (due to costly bargaining) that χ−1(pA) > pA, and thus

FB(χ
−1(ρ)) > FB(ρ). Combining these arguments implies that ∂

∂ρ is strictly increasing in s, which

in turn implies, by the Edlin and Shannon (1998) Theorem, that ρ∗(s) is strictly increasing on the

interior of the support of R. Let r and r be the infimum and supremum of ρ(s) that are optimal

for any s. If the support of R is an interval, then ρ∗(s) will be strictly increasing on (r, r). Now

suppose the support of R is not an interval, i.e. suppose there exists a point or points on the interior

of [r, r] that are not optimal for any s ∈ [s, s]. Such points are discontinuities of the function ρ∗(s).

By the weakly increasing result from above (due to Topkis’s Theorem), any such discontinuities are

positive jumps in the function ρ∗(s), and therefore ρ∗(s) is strictly increasing on (r, r) even if the

support of R is not an interval. This same argument implies ρ∗(s) is strictly increasing at r and r.

The fact that ρ∗(s) ≥ s follows from a simple rationality argument (no seller would offer a

reserve price less than s given that a reserve price of s yields a weakly higher payoff), but it can

also be seen by noting that the first-order condition above implies that the reserve price is given by

a convex combination of s and a quantity weakly greater than s (i.e. πS(ρ, s)).

If the buyer opts out of bargaining with probability one when R > PA then the expression in

(10) becomes ∂
∂ρ = fPA(ρ) [−ρ+ s], implying ρ∗(s) = s, again satisfying the proposition.

Proof of Proposition 4: Theorem 1 of Storms (2015) (included below as Lemma 4, adapted to

this setting) implies that, in any BNE of this game, conditional on κ and on PA = pA, for each

seller type s, there is a cutoff value gκ,0(s, p
A) such that trade occurs if and only if the buyer’s

type b satisfies b ≥ gκ,0(s, p
A). Given the strict monotonicity of ρ(·) (Proposition 3), such a cutoff

function also exists with realizations of S replaced with realizations of the reserve price R.

Lemma 4. (Due to Storms 2015) If A1–A7 are satisfied, then, conditional on any realization of

the auction price PA = pA, in any BNE of the bargaining subgame, for each seller type s there is a

cutoff value gκ,0(s, p
A) such that s trades with a buyer b if and only if b ≥ gκ,0(s, p

A).

Proof. Fix κ throughout this proof and omit dependence on it for the sake of brevity. Fix PA = pA.

We first prove a preliminary property. Fix any arbitrary BNE. Let Pr(A = 1|b, ht) represent the
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trade probability for a buyer who mimics the strategy of a buyer of type b when the history so

far in the game is ht. Here, A ∈ {0, 1} is a random variable indicating whether or not trade

occurs, where, from the buyer’s perspective, the seller’s value is unknown. Let y(b, ht) represent

the expected transfer from playing such an action. Also, let ht(s, b) denote the history of the game

when players’ types are s, b and when they play their equilibrium strategies.

We will discuss properties that must hold at histories that have a positive probability of being

played in equilibrium (i.e., histories that at least some buyer and seller pair would play). In such

histories, in any BNE, each buyer type must weakly prefer to play his own strategy from any

history onward to playing that of another type. Thus, for b′ > b, we have bPr(A = 1|b, ht) −

y(b, ht) ≥ bPr(A = 1|b′, ht)−y(b′, ht) and b′ Pr(A = 1|b′, ht)−y(b′, ht) ≥ b′ Pr(A = 1|b, ht)−y(b, ht).

Combining inequalities demonstrates that, for b′ > b (and similarly for s′ < s),

Pr(A = 1|b′, ht) ≥ Pr(A = 1|b, ht) (11)

Pr(A = 1|s′, ht) ≥ Pr(A = 1|s, ht) (12)

Lemma 4 can then be shown by contradiction. Such a contradiction would be a triple s, b, and

b′ with b′ > b such that s eventually (at some unspecified time period of the game) trades with b,

but does not at any period of the game reach agreement with a type b′. For the sake of clarity, we

will give such triples a name, referring to them as Type A triples. Let h∗t be the longest history of

play among all Type A triples such that the strategy for b is the same as that for b′ up to time t

when the seller’s type is s (that is, h∗t = ht(s, b) = ht(s, b
′)). Throughout the remainder of the proof,

let s, b, and b′ be a Type A triple at which h∗t is achieved. The result in (11) implies that b′ must

trade with weakly greater probability than b from h∗t onward. This weak inequality, combined with

(s, b, b′) being a Type A triple, implies that there must be some seller type s′ who reaches history

h∗t against both b and b′ and who trades with b′ but not b. Now consider two cases:

1. Case where s′ > s. Since s does not trade with b′ from the history ht+1(s, b
′), s cannot trade

with any types b̃ < b′ from ht+1(s, b
′), or else (s, b̃, b′) would form a counterexample to h∗t

because it would constitute a Type A triple with buyers having t + 1 periods of identical

strategies. But by (12), s must trade more often than s′ conditional on the history ht+1(s, b
′),

and hence there must be some type b′′ > b′ such that b′′ eventually trades with s but not with

s′ when the history is ht+1(s, b
′). The triple (s′, b′, b′′) then gives a contradiction because it
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constitutes a Type A triple with buyers having t+1 stages of their strategies being identical.

2. Case where s′ < s. Since s trades with b from the history ht+1(s, b), s must trade with all

types b̃ > b from ht+1(s, b), or else (s, b, b̃) would form a counterexample to h∗t because it

would constitute a Type A triple with buyers having t+ 1 periods of identical strategies. By

(12), s′ must trade more often than s conditional on the history ht+1(s, b). It follows that

there must be some type b′′′ < b that trades with s′ but not s. The triple (s′, b′′′, b) then gives

a contradiction because it constitutes a Type A triple with buyers having t+1 stages of their

strategies being identical.

Proof of Proposition 5: Let B̃ ≡ B+W ∼ FB̃, with density fB̃, and S̃ ≡ S+W . For this proof,

let the realization of W be w. That the auction price will be additively separable in w is obvious,

given that there is no incentive for bidders to deviate from truthful bidding by Proposition 1. To

show that bargaining offers are additively separable, the proof proceeds by induction on the number

of periods remaining. Before proving this result, we highlight here that Proposition 5 only states

that bargaining offers will be additively separable if they are accepted with positive probability; the

equilibrium framework does not rule out equilibria in which a player makes an offer that would not

be accepted by any type, and additive separability will not necessarily hold for such offers.

Suppose there is one period remaining in the bargaining game: it is the seller’s turn and after

her turn the buyer can only accept or quit (we prove the result in the case where the buyer moves

last; analogous reasoning proves that the result also holds if the seller moves last). Suppose for

simplicity that the equilibrium does not entail the buyer rejecting all offers with probability one in

the final period (if not, the seller would not choose to counter in period T − 1). In the final period,

a buyer with type B̃ = b̃ will accept a price, p̃, if and only if p̃ ≤ b̃. In period T − 1, the seller of

type S̃ = s̃ chooses p̃∗ to solve the following problem (where h̃T−1 is the history of offers prior to

period T − 1 and κ is the mediator’s type):

p̃∗ ∈ argmax
p̃

{
p̃Pr(B̃ ≥ p̃|h̃T−1, κ) + s̃Pr(B̃ < p̃|h̃T−1, κ)− ηS

}
= w + argmax

p

{
pPr(B ≥ p|h̃T−1, κ) + sPr(B < p|h̃T−1, κ)− ηS

}
Therefore, the penultimate bargaining offer in the heterogeneous setting will be w above the bar-

gaining offer from the homogeneous good setting, and similarly for the seller’s maximized payoff.
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Note also that, if p̃BT−2 = pBT−2+w, then the seller would also then quit, accept, or counter in period

T − 1 with the same probability as in the homogeneous case.

Now suppose p̃ST−3 = pST−3 +w and consider the buyer’s payoff in period T − 2 from accepting,

quitting, or countering. Let all (̃·) expressions represent the heterogeneous model expressions.

A : b̃− p̃ST−3 = b− pST−3

Q : 0

C : Ṽ B
T−2

(
b̃|h̃T−2, κ

)
= max

p̃

{
(b̃− p̃) Pr

(
DS

T−1 = A|{h̃T−2, p̃}, κ
)
− ηB

+ Pr
(
DS

T−1 = C|{h̃T−2, p̃}, κ
)
EP̃S

T−1

[
max

{
b̃− P̃S

T−1, 0
} ∣∣∣∣∣{h̃T−2, p̃}, DS

T−1 = C, κ

]}
= V B

T−2 (b|hT−2, κ)

The last line follows by removing w from each expression. Thus, the buyer’s payoffs in period

T − 2 are the same as in the homogeneous case, and hence the buyer’s probabilities of accepting,

countering, or quitting at period T − 2 are the same as in the homogeneous case, and the buyer’s

counteroffer is w higher than in the homogeneous case.

Now suppose p̃BT−4 = pBT−4 + w and consider the seller’s payoff at period T − 3:

A : p̃BT−4 = w + pBT−4

Q : s̃ = w + s

C : Ṽ S
T−3

(
s̃|h̃T−3, κ

)
= max

p̃

{
p̃Pr

(
DB

T−2 = A|{h̃T−3, p̃}, κ
)
+ s̃Pr

(
DB

T−2 = Q|{h̃T−3, p̃}, κ
)

+ Pr
(
DB

T−2 = C|{h̃T−3, p̃}, κ
)

× EP̃B
T−2

[
max

{
P̃B
T−2, s̃, Ṽ

S
T−1

(
s̃|{h̃T−3, p̃, P̃

B
T−2}, κ

)} ∣∣∣∣∣{h̃T−3, p̃}, DB
T−2 = C, κ

]
− ηS

}

= w +max
p

{
pPr

(
DB

T−2 = A|{hT−3, p}, κ
)
+ sPr

(
DB

T−2 = Q|{hT−3, p, κ}
)

+ Pr
(
DB

T−2 = C|{hT−3, p}, κ
)

× EPB
T−2

[
max

{
PB
T−2, s, V

S
T−1

(
s|{hT−3, p, P

B
T−2}, κ

)} ∣∣∣∣∣{hT−3, p}, DB
T−2 = C, κ

]
− ηS

}

53



Thus, the seller’s payoffs and counteroffer at period T − 3 are w higher than in the homogeneous

case, and the seller’s probabilities of accepting, quitting, or countering are the same as in the

homogeneous case.

To complete the proof, assume these same separability properties hold in periods T − (t−1) and

T − (t− 2). It follows (by the same reasoning as above), that at T − t (the seller’s turn), the seller’s

payoffs and counteroffer are w higher than in the homogeneous case, and the seller’s probabilities

of accepting, quitting, or countering are the same as in the homogeneous case; at T − (t + 1) (the

buyer’s turn), the buyer’s payoffs and probability of accepting, quitting, or countering are the same

as in the homogeneous case and the buyer’s counteroffer is w higher. We omit the steps as they are

analogous to those above. This completes the proof regarding actions in bargaining.

The separability result for χ−1 then follows immediately: given that the buyer’s bargaining

payoff is the same as in the homogeneous good case, the probability of the buyer not walking away

from bargaining must also be the same, i.e., Pr(B̃ ≥ χ̃−1(p̃A)) = Pr(B ≥ χ−1(pA)). This in turn

implies χ̃−1(p̃A) = χ−1(pA) + w.

Now consider the seller’s secret reserve price in the setting with game-level heterogeneity w.

Suppose for now that the equilibrium does not entail the buyer opting out of bargaining with

probability 1 when R > PA. From the proof of Lemma 3, the derivative of the seller’s payoff with

respect to the seller’s choice of secret reserve price, r̃ = ρ(s̃), is

∂

∂r̃
= fP̃A(r̃)

[
−r̃ + s̃

FB̃(χ̃
−1(r̃))− FB̃(r̃)

1− FB̃(r̃)
+ π̃S (r̃, s̃)

1− FB̃(χ̃
−1(r̃))

1− FB̃(r̃)

]
(13)

where π̃S denotes the seller’s bargaining payoff similarly as in the proof of Lemma 3 but for the

heterogeneous scenario. In particular, π̃S (r̃, s̃) = Eκ

[
max

{
r̃, s̃, Ṽ S

2 (s̃|r̃, κ)
}]

. From the additive

separability property of the seller’s bargaining payoff shown above, Ṽ S
2 (s̃|r̃, κ) = V S

2 (s|r̃ − w, κ)+w,

and it follows that

π̃S (r̃, s̃) = Eκ

[
max

{
r̃ − w, s, V S

2 (s|r̃ − w, κ)
}
+ w

]
= πS (r̃ − w, s) + w,

where we applied the independence of W and κ to pull w out of the expectation. Using (13), we
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the replace s̃ with s+ w and π̃S (r̃, s̃) with πS (r̃ − w, s) + w and rearrange to obtain

∂

∂r̃
= fPA(r̃ − w)

[
−r̃ + (s+ w)

FB(χ
−1(r̃ − w))− FB(r̃ − w)

1− FB(r̃ − w)
+
(
πS (r̃ − w, s) + w

) 1− FB(χ
−1(r̃ − w))

1− FB(r̃ − w)

]
= fPA(r̃ − w)

[
−(r̃ − w) + s

FB(χ
−1(r̃ − w))− FB(r̃ − w)

1− FB(r̃ − w)
+ πS (r̃ − w, s)

1− FB(χ
−1(r̃ − w))

1− FB(r̃ − w)

]

Therefore, the optimal secret reserve price in the heterogeneous setting is w above the optimal

reserve in the homogeneous setting. Now suppose the equilibrium does involve the buyer opting

out of bargaining with probability 1 when R > PA. In this case, the expression in (13) becomes

∂
∂r̃ = −r̃ + s̃, and thus the optimal secret reserve price is s+ w, again satisfying the proposition.

This also implies a generalization of Proposition 4: For any κ, at a general realization W = w,

trade occurs if and only if b̃ ≥ gκ(r̃, p̃
A) ⇒ b ≥ gκ(r̃ − w, p̃A − w) = gκ(r, p

A).

B Additional Results Related to Sections 3–4.

We first describe additional data-cleaning steps. In 9.66% of threads, a buyer who is not the high

bidder contacts the auction house with an offer to be considered if negotiations with the high

bidder fall through or if the seller (or auctioneer) already rejected the auction price. We drop these

threads. We also drop observations in which the following variables lie outside their respective 0.005

and 0.995 percentiles: the auction price, reserve price, book price, and final price normalized by

book price. We drop observations for which key variables are missing or a bargaining sequence is

clearly misrecorded or incomplete. Finally, we drop a small number of bargaining threads (less than

0.02% of threads) that extend longer than one week.

As highlighted in Section 3, when the auction price falls short of the reserve price, the buyer

may sometimes walk away before negotiations begin. In observations where this is indicated in the

data, a mediator identity is sometimes recorded, suggesting this decision may be influenced by a

mediator, but text notes (available only for some observations in the data) often indicate that, in

such cases, the mediator is recording a walk-away decision that happened prior to any mediator

involvement. We focus our analysis in Section 4 only on stages of the game occurring after the buyer

has passed the opt-out stage of the game. Section 5 models (and uses data from) these walk-away

decisions as a strategic decision of the buyer taking place before mediator involvement.

B.1 Descriptive Statistics by Auction House Location. In Table B.1, we report means from
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Table B.1: Descriptive Statistics at Bargaining-Thread Level by Auction House Location

Auction House 1 Auction House 2 Auction House 3 Auction House 4 Auction House 5 Auction House 6

Agreement reached 0.600 0.560 0.514 0.700 0.645 0.630
Final price ($) 5,193 7,603 5,657 5,054 5,803 5,760
Book price ($) 6,089 9,082 7,184 6,561 6,852 7,135
Auction price ($) 4,890 7,662 5,543 4,994 5,597 5,880
Reserve price ($) 6,574 9,228 7,690 6,682 7,122 7,703
No reserve 0.265 0.126 0.275 0.264 0.154 0.312
# Offers in a thread 1.346 1.577 1.593 1.215 1.435 1.426
Length of a thread (hours) 7.719 5.928 5.357 5.777 4.131 5.073
Fleet/lease car 0.396 0.446 0.440 0.536 0.530 0.475
Car age (years) 7.057 4.938 6.584 6.529 6.623 5.985
Mileage 97,257 75,367 94,090 97,548 97,549 91,050
Engine displacement (liters) 3.359 3.789 3.523 3.618 3.803 3.646
No. Mediators 16 19 11 31 10 27
No. Sellers 975 746 614 1,802 778 1,311
No. Buyers 1,065 725 441 1,894 701 1,432
No. Threads 13,846 6,998 9,057 19,130 6,766 19,293

Notes: This table shows the means from Table 1 separately by auction house, as well as the number of mediators,
sellers, buyers, and threads at each auction house.

Table B.2: Descriptive Statistics at Mediator-Thread Level by Auction House Location

Auction House 1 Auction House 2 Auction House 3 Auction House 4 Auction House 5 Auction House 6

Agreement reached 0.572 0.540 0.518 0.663 0.632 0.625
Final price/book price ($) 0.816 0.884 0.816 0.808 0.868 0.833
Final price/reserve price ($) 0.788 0.839 0.766 0.764 0.793 0.795
Final price/auction price ($) 1.013 1.027 1.032 1.024 1.022 1.017
Fleet/lease car 0.421 0.385 0.324 0.491 0.436 0.475
Female 0.500 0.353 0.222 0.517 0.600 0.462
# Threads mediated 865.375 368.316 823.364 617.097 676.600 714.556
Years of employment 4.218 3.451 2.191 6.684 8.806 1.547
No. Mediators 16 19 11 31 10 27

Notes: This table shows the means from Table 2 separately by auction house.

Table 1 separately by the six auction house locations. These locations differ somewhat in their

volume, inventory, and negotiation outcomes. Locations 1, 4, and 6 have the most negotiations

and most distinct buyers and sellers. About half of all mediators are at locations 4 or 6. Average

agreement rates differ across locations, ranging from 0.514 to 0.70. Location 2 stands out with newer

(lower car age and higher mileage) and higher-priced cars. The fraction of cars sold by fleet/lease

sellers is lowest at location 1 (0.396) and highest at location 4 (0.536). Table B.2 reports means

at the mediator level, as in Table 2, separately by auction house location. The average years of

employment for a mediator range from 1.547 in location 6 to 8.806 in location 5. Location 3 has

the smallest fraction of female mediators (0.222), and location 5 the largest (0.6).

B.2 Threads Handled by Multiple Mediators. Our main sample limits to threads for which a

single mediator handled a given thread. We now examine statistics for threads where one mediator
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handles the first offer of the bargaining thread but at some point in the thread a different mediator

takes over. Table B.3 replicates Table 1 among threads handled by multiple mediators, showing

that threads handled by multiple mediators tend to correspond to newer and more expensive cars;

tend to take longer, both in terms of the number of offers in the thread and the length of time; and

are also less likely to reach agreement, by about 41 percentage points. This difference in agreement

rates persists even after controlling for all controls (other than mediator identities) in spec 6 of (3).63

These threads may represent more challenging (less-likely-to-agree) cases that are passed from one

mediator to another.

Table B.3: Threads with Multiple Mediators

Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.212 0.408 0 1
Final price 6,958 4,962 1,500 13,750
Bluebook price 7,680 5,098 1,925 14,750
Auction price 5,896 4,664 950 12,500
Reserve Price 7,853 5,117 2,300 15,000
# Offers in a thread 2.401 0.802 2 4
Length of a thread (hours) 12.626 21.529 1.47 28.2
Fleet/lease car 0.575 0.494 0 1
Car age (years) 5.394 3.533 1 11
Mileage 86,313 50,100 26,912 152,006
Engine displacement (liters) 3.648 1.443 2 5.7
No. Threads 37,486

Notes: Table shows descriptive statistics as in Table 1 but for threads handled by multiple mediators.

As a test of whether the exclusion of multiple-mediator threads is consequential, we replicate

spec 6 of (3) using an augmented sample that pools single-mediator and multiple-mediator threads.

We do this in two different ways. First, we code the mediator who starts a thread as though she

handles the whole thread. We then repeat but code the mediator who ends thread as though she

handles the whole thread. Figure B.1 shows a scatter plot of the main mediator rankings (spec 6 of

(3)) against these alternative versions, with the starting-mediator results in the left panel and the

ending-mediator results in the right panel. In both cases, we observe a strong positive correlation

with our main mediator rankings, suggesting that the main rankings are not substantially driven by

our choice to omit multiple-mediator threads. We focus only on single-mediator threads in the body

63This is based on a regression (not shown) of the agreement indicator on these controls using all single- and
multiple-mediator threads.
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Figure B.1: Multiple-Mediator Threads vs. Single-Mediator Threads

(A) First Mediator (B) Last Mediator

Notes: Each plot shows mediators’ ranks based on the estimated mediator fixed effects from spec 6 of (3) using
single-mediator threads (on the vertical axis) and compares it to rankings (on the horizontal axis) constructed from
an augmented sample that includes threads handled by a single mediator and threads handled by multiple mediators.
For estimates in the left (right) panel, we code the mediator who starts (ends) a thread as though she handles the
whole thread. We add a 45 degree dashed line as a reference.

of the paper because these are the threads where it is more straightforward to attribute outcome

variation to mediator variation.

B.3 An Alternative Assignment Test. Here we randomly shuffle a car-type (make-by-model)

identifier across observations within a given auction house location, year, and month. We repeat

this 500 times. We perform an analogous procedure shuffling buyers or sellers instead of car types.

Figure B.2 plots the number of unique car makes, buyers, and sellers that a mediator interacts with

in the simulated data, against the mean number of unique car makes, buyers, and sellers that the

mediator interacts with in the real data. Each data point represents one mediator. If mediators

are indeed randomly assigned to buyers, for example, mediators should interact with roughly the

same number of unique buyers in the real data as in the shuffled data, so all points in panel (B)

should lie close to the 45-degree line; conversely, if buyers are assigned mediators non-randomly, a

mediator should see more unique buyers in the shuffled dataset than in the real dataset.
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Figure B.2: Random Assignment Test

(A) Car (B) Buyer (C) Seller

Notes: Each data point is a mediator. The x-axis shows the number of car make-models (panel A), buyers (panel
B), or sellers (panel C) that a mediator interacts with in the data. The y-axis shows the corresponding numbers of
interactions in the randomly reshuffled data.

In panels (A) and (B), most points lie close to the 45-degree line, implying that assignment of

mediators to car types and to buyers is approximately random by this measure. Panel (C) shows that

mediators interact with fewer sellers in the real data than they do in the shuffled data, suggesting

that assignment of mediators to sellers is less likely to be completely random, and highlighting the

importance of the seller fixed effects we include in our preferred specification, spec 6 of (3).

B.4 Controlling for Previous Interactions Between Mediators/Agents. Here we examine

the extent to which heterogeneity is due to repeated relationships between mediators and agents.

For example, it is possible that mediators we identify as highly skilled are only effective when

working with particular buyers. To explore this possibility, we re-estimate spec 6 of (3) (from

Figure 3) with additional controls for the number of interactions (other than the current thread)

between the current mediator and buyer, mediator and seller, or seller and buyer. Table B.4 shows

that the coefficients on these interaction terms are quantitatively small and, for most of the terms,

not statistically significant at conventional levels. We also find that mediator fixed effects estimated

under the specifications in Table B.4 are nearly perfectly correlated with our main estimates.

B.5 Differences in Agreement by Gender. Table B.5 shows differences in agreement by

mediator gender. In column 1 we regress thread-level agreement on mediator gender, with no other

controls. Columns 2–3 include all controls from spec 6 of (3) except for mediator fixed effects.
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Table B.4: Effects of Repeated Interactions

(1) (2) (3) (4)

Mediator-buyer interactions -0.000165∗ -0.000226∗∗

(0.000093) (0.000105)
Mediator-seller interactions 0.000025 0.000026

(0.000024) (0.000025)
Buyer-seller interactions 0.000234 0.000549

(0.000302) (0.000350)

Mean(interactions) 2.772 4.183 1.403 .
Median(interactions) 1 1 1 .
N 71,093 71,093 71,093 71,093

Notes: Table shows estimates of (3) under spec 6 with additional controls for number of previous interactions between
pairs of agents. An observation is a thread. The outcome variable is the agreement dummy. Mean(interactions) refers
to the mean number of interactions between a given mediator-buyer pair, mediator-seller pair, or buyer-seller pair
(and similarly for the median). The number of observations is fewer than in Table 1 because singleton fixed effect
cells are dropped from the analysis. Significance levels: *: p < 0.10, **: p < 0.05, and ***: p < 0.01.

Table B.5: Mediator Performance Variation by Gender

(1) (2) (3)
Agreement Agreement Agreement

Gender(Female=1) 0.112∗∗∗ -0.003 -0.003
(0.004) (0.005) (0.014)

Specification No Controls All Controls All Controls
R2 0.013 0.386 0.386
N 73,262 69,290 69,290

Notes: Table shows differences in agreement by mediator gender. In column 1 we regress thread-level agreement on
mediator gender, with no controls. Columns 2–3 include all controls from spec 6 of (3) except for mediator fixed effects.
Columns 1–2 report heteroskedasticity-robust standard errors, and column 3 mediator-level clustering. The number
of observations is fewer than in Table 1 both because the gender indicator is not available for some observations and
because singleton fixed effect cells are dropped from the analysis.

Columns 1–2 report heteroskedasticity-robust standard errors, and column 3 uses clustering at the

mediator level. Column 1 suggests that female mediators outperform male mediators, but after

including other controls this effect is small and statistically indistinguishable from zero.

B.6 Quantifying Variation Explained by Mediators and Other Factors. In Table B.6 we

display the adjusted R2 of regression (3) under various scenarios, both with the agreement indicator

as the outcome variable and with final price (normalized by book price) as the outcome variable.

The controls in our regressions, including the fixed effect indicators, are correlated, and thus the

implications for the adjusted R2 from additional controls varies greatly depending on the order in

which we add them. In this analysis, we take two different approaches to quantify the contribution

of a given set of controls to the adjusted R2. Panel A reports the adjusted R2 when we only include
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our baseline controls (reserve price, auction price, book price, car age, mileage, engine displacement,

and date fixed effects), as in spec 1 of (3) and then when we add only one set of fixed effects to

those baseline controls. Panel B shows the adjusted R2 from spec 6 of (3) and with one set of

fixed effects removed from that full model. Qualitative implications are similar in both panels.

For the agreement regressions, we find that buyer, seller, and mediator fixed effects all change the

adjusted R2 noticeably, with seller fixed effects having the largest impact, and other fixed effects

have little impact on the adjusted R2. For example, panel A shows that adding seller fixed effects

to the baseline controls increases the adjusted R2 from 0.0603 to 0.2612, whereas adding mediator

fixed effects to the baseline controls increases the adjusted R2 from 0.0603 to 0.195. For the price

regressions, make-model fixed effects and buyer fixed effects have the largest effects, but the shifts

are smaller than for the agreement regressions.

Table B.6: Adjusted R2 Under Various Specifications

Panel A Agreement Adjusted R2 Final Price Adjusted R2

Baseline 0.0603 0.4077
Baseline + Make-Model FE Only 0.0689 0.4486
Baseline + Auction House Location FE Only 0.0681 0.4081
Baseline + Buyer FE Only 0.1091 0.4481
Baseline + Seller FE Only 0.2612 0.4339
Baseline + Mediator FE Only 0.195 0.4099

Panel B Agreement Adjusted R2 Final Price Adjusted R2

All variables from Spec 6 0.3074 0.4908
All except Make-Model FE 0.3046 0.4632
All except Auction House Location FE 0.3074 0.4908
All except Buyer FE 0.286 0.4674
All except Seller FE 0.2247 0.4798
All except Mediator FE 0.2861 0.4906

Notes: Table shows adjusted R2 from estimating (3) under various scenarios. Panel A shows adjusted R2 when we
only include our baseline controls (reserve price, auction price, book price, car age, mileage, engine displacement, and
date fixed effects) and then when we add various sets of fixed effects to those baseline controls. Panel B shows the
adjusted R2 in the most saturated specification (spec 6) and then again with one set of fixed effects removed.

B.7 Alternative Bootstrap Tests of Variation Due to Sampling Error. Figure B.3 panels A

and B show results of the bootstrap procedure for prices as described in Section 4.3 (using Xi from

spec 6 of (3)) but normalizing by reserve prices (panel A) or auction prices (panel B) rather than
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book prices. Figure B.3 panels C and D show results of the bootstrap test from Section 4.3 but using

only seller fixed effects in Xi.
64 The results are similar to those in the main text: the distribution

of mediator fixed effects for trade probabilities lies well outside the bootstrap confidence intervals,

whereas the distribution of fixed effects for prices lies largely within the confidence intervals.

Figure B.3: Alternative Bootstrap Tests of Heterogeneity from Sampling Error

(A) Final Price Over Reserve Price (B) Final Price Over Auction Price

(C) Trade Prob., Xi = Seller Fixed Effects (D) Final Price, Xi = Seller Fixed Effects

Notes: Panels A and B show results as in Figure 6.B but where the outcome is final price divided by reserve price in
panel A and final price divided by auction price in panel B. Panels C and D show results as in Figure 6 but where we
only use seller fixed effects (which also absorb auction house location fixed effects) to predict trade probabilities and
prices. In each case, we use 100 bootstrap samples. Blue lines show the estimated distribution of fixed effects from
the actual data and black show the bootstrap median and 95% pointwise confidence bands.

B.8 Split-sample Test of Fixed Effect Significance. As an alternative test of whether esti-

64Recall that seller (and buyer) identifiers in our data are unique for each auction house, and thus seller (or buyer)
fixed effects also absorb auction house fixed effects.
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Figure B.4: Split-sample Test of Fixed Effect Significance

(A) Trade Probability (B) Final Price

Notes: Each data point is a mediator. The x-axis shows mediators’ rank in the first-half sample. The y-axis shows
mediators’ rank in the second-half sample. Dashed line is 45-degree line. Correlation coefficients are also shown.
Trade probability fixed effects are in panel A and price fixed effect in panel B.

mated mediator heterogeneity is due to random chance, we randomly split the main dataset into

two halves and estimate mediator fixed effects using the first and second halves separately. Figure

B.4 plots the estimated mediators’ rank from the first subsample on the x-axis and the rank from

the second subsample on the y-axis. Under the null hypothesis that mediators have no effect on

trade outcomes, the entirety of the estimated dispersion in mediator fixed effects would be driven

by sampling error. As a result, in the split-sample experiment, mediators’ ranks in the two samples

would be uncorrelated. Panel A shows a strong positive correlation (with a correlation coefficient

of 0.862) for trade probability fixed effects. Panel B shows no correlation (-0.024) for price fixed

effects. These results are consistent with our findings that mediators primarily differ in their ability

to help agents reach agreement, not in the prices at which trade occurs.

C Additional Model and Estimation Details for Welfare Analysis

Before fleshing out estimation details, we first make several remarks regarding the model. While we

must choose a specific ordering for the purposes of our model, several aspects of the end of period 1

and the beginning of period 2 can sometimes differ in practice from the way we model them. First,

in some cases, the high bidder chooses to walk away soon after the auction, while in other cases he
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waits several hours to call the auction company to opt out (as long as the seller has not yet accepted

or rejected PA). Our data do not allow us to distinguish between cases, but we can see whether

agents agree or not, and at what price, which suffices for estimating model primitives.

Second, there are some sales in which the auction house states that PA is considered binding,

meaning the highest bidder is not allowed the initial walk-away option. We do not have clear

indicators in the data as to which observations had this binding feature, although we are told this

is quite common for fleet/lease sales; this is one motivation for our exploration of results separately

by dealers and fleet/lease sellers in Appendix D. Incorporating binding PA would complicate the

model by making bids depend on anticipated bargaining outcomes, potentially incentivizing bidders

to shade their bids to avoid bargaining costs. A binding auction price scenario also complicates the

proof of strictly increasing secret reserve prices, as buyers no longer have the option to opt out. For

simplicity, we treat all auctions as though, when R > PA, the highest bidder is always given the

option to walk away from bargaining before the seller can accept or reject PA.

Third, as described in Section 3, there are some cases where the seller does not report a reserve

price, usually meaning the seller wishes the auction house to contact her regardless of the outcome,

similar to a situation with a binding PA. Several steps in our identification and estimation strategy

require observing reserve prices, so we do drop these observations except in controlling for observable

heterogeneity (as described in Section 5.5) and we do not model the seller’s extensive-margin decision

to report a secret reserve price vs. not. As described in Section 3, agreement is equally likely in

observations with or without reserve prices reported.

We now turn to estimation details. Estimation requires several assumptions beyond those de-

scribed in the model setup. Below, let FR, FPA , and FW represent CDFs of R, PA, and W . Define

the full game as the game beginning with period 0 (as described in Section 5.2) and a κ bargaining

subgame as the subgame that begins after a buyer chooses not to opt out of bargaining and the

mediator’s type κ is revealed to all parties.

(A8) FR, FPA, and FW have densities fR, fPA, and fW satisfying the following: (i) the characteris-

tic functions of fR and fW have only isolated real zeros; (ii) the real zeros of the characteristic

function of fPA and the real zeros of its derivative are disjoint; and (iii) E[W]=0.

(A9) Random variables (S,{Bj}Nj=1,W ,N) are identically and independently distributed across in-

stances of the game.
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(A10) All observations in the data arise from the same equilibrium of the full game. All observations

in the data with the same assigned mediator type κ are generated by the same equilibrium of

a κ bargaining subgame.

A8 lists sufficient conditions from Evdokimov and White (2012) for proving identification of fR,

fPA , and fW from the joint distribution of R +W and PA +W . A9 is common in the empirical

literature on games, abstracting away from dynamics across instances of the game. Versions of

A10, a data generation assumption, are common in structural work. In particular, in a setting with

multiple equilibria, to estimate equilibrium objects, the researcher must typically assume the data

is generated by a single equilibrium. In our setting, the analogous assumption is that equilibrium

objects that do not depend on mediator assignment (such as ρ and χ) are constant (generated by

a single equilibrium) across all observations in the data and equilibrium objects that do depend on

mediator assignment (gκ) are constant across observations in which the assigned mediator was κ.

C.1 Observed Heterogeneity. For observation i, the raw reserve and auction prices, denoted

Rraw
i and PA,raw

i , are modeled as

 Rraw
i

PA,raw
i

 =

 Y ′
i γ

Y ′
i γ

+

 R̃i

P̃A
i

 , (14)

where R̃i = Ri +Wi, P̃
A
i = PA

i +Wi. As in the standard homogenization approach (Haile et al.

2003), we estimate γ through a linear regression of reserve and auction prices on observables Yi,

and the residuals provide an estimate of R̃i and P̃
A
i . Variation in these two quantities can then be

attributed to unobserved game-level heterogeneity and to players’ private values.

For this linear regression, we include a rich set of controls, far more than in our specifications

in Section 4 because it comes from the broader dataset of all cars running through the auction

mechanism (not just observations that reached mediated negotiation), where more controls are

available, and because a rigorous set of controls helps to make the independence assumptions of the

model as plausible as possible. As in Larsen (2021), Yi includes the following: fifth-order polynomials

in the book price, odometer reading, run number within an auction-house-by-day combination, and

run number within an auction-house-by-day-by-lane combination (where run number refers to the

order in which cars are auctioned); the number of previous attempts to sell the car; the number

of pictures displayed for the car on the auction company website; a dummy for whether or not

65



the odometer reading is considered accurate, and the interaction of this dummy with the odometer

reading; the interaction of the odometer reading with car-make dummies; dummies for each make-

model-year-trim-age combination (where age refers to the age of the vehicle in years); dummies for

condition report grade (ranging from 1-5, observed only for fleet/lease vehicles); dummies for the

year-month combination and for auction house location interacted with hour of sale; dummies for

32 different vehicle damage categories recorded by the auction house; dummies for each seller who

appears in at least 500 observations; dummies for discrete odometer bins (four equally sized bins for

mileage in [0, 20000), eight equally sized bins for mileage in [20000, 100000), four equally sized bins

for mileage in [100000, 200000), one bin for mileage in [200000, 250000), and one bin for mileage

greater than 250000); several measures of the thickness of the market during a given sale.65

Note that, in this homogenization regression, observable heterogeneity, Y ′
i γ, enters both auction

and reserve prices identically, a result that follows from Proposition 5. To examine the validity of this

property, we perform the homogenization step in two separate regressions, one using only auction

prices as the outcome and one using only reserve prices, using the same vector of observables Yi in

each case. This exercise yields predicted values that we denote Y ′
i γ̂PA and Y ′

i γ̂R. The correlation

between the Y ′
i γ̂ we use in the body of the paper and either of these two different predicted values

is about 0.99. The correlation between residual auction prices using these two different regressions

(that is, the correlation between PA
i −Y ′

i γ̂PA and PA
i −Y ′

i γ̂R) is 0.7812. The analogous correlation for

reserve price residuals is 0.7732. Thus, the outputs from this process (which are then used as inputs

for Step 2 of our estimation) are highly correlated regardless of whether we use reserve or auction

prices as the regression outcome with which we estimate γ. Our main observable heterogeneity

results pool both outcomes together.

C.2 Unobserved Heterogeneity. We apply a result due to Kotlarski (1967), which implies that

observations of R̃ = R +W and P̃A = PA +W are sufficient to recover fW , fR, and fPA . We

estimate these using a flexible likelihood approach. The likelihood of the joint density of (R̃, P̃A) is

L(fPA , fR, fW ) =
∏
i

[∫
fPA(p̃Ai − w)fR(r̃i − w)fW (w)dw

]
(15)

65These market thickness measures are computed as follows: for a given car on a given sale date at a given auction
house, we compute the number of remaining vehicles still in queue to be sold at the same auction house on the same day
lying in the same category as the car under consideration. The six categories we consider are make, make-by-model,
make-by-age, make-by-model-by-age, age, or seller identity.
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We approximate each of the densities fPA , fR, and fW using fifth-order Hermite polynomials (as in

Gallant and Nychka 1987). A similar identification argument was applied in Li and Vuong (1998)

and then applied to unobserved auction-level heterogeneity first by Krasnokutskaya (2011). The

authors use kernel estimation approaches rather than a likelihood approach. We found the flexible

likelihood approach stable and straightforward, as in Freyberger and Larsen (2022).

C.3 Buyer Values. The left-hand side of (5) is FPA , which is estimated in Step 2. The object

Pr(N = n) is the distribution of the number of bidders in the auction. Larsen (2021) discussed

several approximations for Pr(N = n) and showed that welfare estimates are relatively insensitive to

these choices. In particular, Larsen (2021) demonstrated that, in a certain class of specifications for

Pr(N = n) (Poisson), the distribution of valuations for the bidder who enters the bargaining game

is analytically invariant to the distribution of N . Moreover, even under non-Poisson distributions,

Larsen (2021) showed that the approximation for Pr(N = n) makes little difference for final welfare

estimates: the choice of Pr(N = n) affects estimates of FB, but has little to no effect on the

distribution of buyer values conditional on the auction price, FB(b)
1−FB(b(pA))

, which is what matters

for evaluating (8). Following Larsen (2021), we approximate Pr(N = n) using the distribution of

the lower bound on the number of bidders in each auction. This lower bound is observable on an

auction-by-auction basis for a subset of auctions for which we have bid logs, recording each bid placed

during the auction process. We observe these bid logs for a total of 113,497 auctions (primarily

fleet/lease sales). With estimates of FPA and Pr(N = n), FB is nonparametrically estimable by

solving (5) on a grid of points v. The estimate of FB is shown in Figure C.1.A.

C.4 Seller Values. To estimate lower and upper bounds on FS from Proposition 2, but taking

into account unobserved heterogeneity, we parameterize each bound as a flexible piecewise linear

spline, denoted FL
S (·, θS,L) and FU

S (·, θS,U ). Denote the fixed vector of spline knots {vSk }
KS
k=1, which

we choose to be KS = 200 uniformly spaced knots between the 0.001 and 0.999 quantiles of P̃A.

We use minimum distance to estimate θS,L and θS,U :

min
θS,L,θS,U

KS∑
k=1

{[
P̂r(DS = A|P̃A = vSk )

(∫
M̂S(v

S
k , z)dz

)
−
∫
FS(v

S
k − w; θS,L)M̂S(v

S
k , w)dw

]2
+

[
P̂r(DS ̸= Q|P̃A = vSk )

(∫
M̂S(v

S
k , z)dz

)
−
∫
FS(v

S
k − w; θS,U )M̂S(v

S
k , w)dw

]2}
(16)
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Here, MS(v, w) ≡ fPA(v − w)fW (w) is the joint density of PA and W , an estimate of which can

be constructed using the estimated densities from Step 2. The objects Pr(DS = A|P̃A = v) and

Pr(DS ̸= Q|P̃A = v) are, respectively, the probabilities that a seller accepts or does not quit,

conditional on the realization of P̃A. We estimate these objects via local linear regressions.

Following Larsen (2021), we impose the following constraints in (16): (i) FL
S lies graphically

above FR and graphically below FU
S ; (ii) FL

S and FU
S lie in [0, 1]; (iii) FL

S and FU
S are weakly

increasing; and (iv) FL
S (v) and F

U
S (v) are equal to 0 for any v < vS1 and equal to 1 for any v > vSKS

.

These last three constraints ensure that FL
S and FU

S will correspond to proper distribution functions.

Condition (iv) merits additional discussion. By construction, the seller bounds are conditional on

a buyer action (the auction price). If the support of auction prices in the data is wide enough that

sellers accept or reject extreme auction prices with probability 1, the bounds will be surjective,

mapping to each point in [0,1]. Otherwise, while still valid, the bounds may be wide near the tails,

failing to reach 0 or 1. We find that this is not an issue for FL
S , which is surjective, or for the right

tail of FU
S , which attains a value of 1, meaning condition (iv) does not bind for these cases. It does

bind, however, for the left tail of FS
U . This means that, without condition (iv), we would be unable

to reject the true FS containing mass well below vS1 . We choose to assign all of this mass exactly at

vS1 . While somewhat arbitrary, this choice has the following motivation: Because vS1 approximates

the lowest auction price (and hence, the lowest realization of B), condition (iv) essentially imposes

that s ≥ b, i.e., the lowest price any seller would accept is bounded below by the lowest buyer value.

More importantly, however, Figure 8 suggests that the left tail of FS is relatively inconsequential

for our comparison of efficiency for different mediator skill levels, as differences across mediators

are small when dealing with very low-value sellers. Figure C.1.A shows estimates of FL
S and FU

S , as

well as FB. FB (and hence, FPA) has very little mass below -$5,000, illustrating the point that, at

these low values, an assumption is needed to truncate FU
S .

C.5 Belief Updating. Taking unobserved heterogeneity into account, (6) becomes

Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃) =

∫
1− FB(χ

−1(p̃A − w))

1− FB(p̃A − w)

(
Mχ(p̃

A, w)∫
Mχ(p̃A, z)dz

)
dw (17)

where Mχ(p̃
A, w) ≡ fPA(p̃A − w)(1 − FR(p̃

A − w))fW (w) is the likelihood of the event (PA =

p̃A − w, P̃A < R̃,W = w). We approximate hχ(·) ≡ 1 − FB(χ
−1(·)) as a flexible piecewise linear

spline. We estimate Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃) via local linear regression and estimate
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hχ(·) by minimizing the distance between the left and right-hand sides of (17). We then back out

χ̂−1(pA) = F̂−1
B (1− ĥχ(p

A)).

C.6 Direct Mechanisms. Taking unobserved heterogeneity into account, (7) becomes

Pr(A|R̃ = r̃, P̃A = p̃A) =

∫
1− FB

(
gκ(r̃ − w, p̃A − w)

)
1− FB (p̃A − w)

(
Mgκ(r̃, p̃

A, w)∫
Mgκ(r̃, p̃

A, z)dz

)
dw (18)

where Mgκ(r̃, p̃
A, w) ≡ fR(r̃−w)fPA(p̃A−w)fW (w) is the joint density of (R,PA,W ). We approx-

imate hgκ(r, p
A) ≡ 1−FB(gκ(r,pA))

1−FB(pA)
using a flexible bilinear spline parameterized by 25 knots in each

dimension, uniformly spaced between the 0.001 and 0.999 quantiles of R̃ and P̃A. We estimate the

spline parameters by minimizing the distance between the left- and right-hand sides of (18).66

This requires first estimating the conditional probability Pr(A|R̃ = r̃, P̃A = p̃A), which we

do using a tensor product of cubic b-spline functions with fifteen uniformly spaced knots in each

dimension. With estimates of ĥgκ(r, p
A), we then obtain ĝκ(r, p

A) = F̂−1
B (1−(1−F̂B(p

A))ĥgκ(r, p
A)).

C.7 Bargaining Cost Bounds. To incorporate bargaining costs into the surplus estimates, we

subtract an upper bound on expected losses due to bargaining costs from our surplus estimates.

This yields a lower bound on surplus measures incorporating bargaining costs. In contrast, the

upper bound on our surplus measures does not need to be adjusted, because treating the expected

loss due to bargaining costs as though it were zero yields an upper bound on these surplus measures.

We bound these losses following Larsen (2021). First, bounds on ηB and ηS can be obtained from

the difference between consecutive bargaining offers. Consider offers made in periods 1 through 3 of

the bargaining game. Because an agent who counters must prefer the situation in which (i) she must

pay the cost of countering (ηS or ηB) but her counteroffer is accepted with probability one to the

situation in which (ii) she accepts the most recent opponent offer, it must be true that PS
2 −ηS ≥ PB

1

for the seller and B −PB
3 − ηB ≥ B −PS

2 for the buyer. Note that if (i) is not preferred to (ii), the

agent should not counter. Rearranging these inequalities yields pS2 −pB1 ≥ ηS and pS2 −pB3 ≥ ηB. We

compute the minimum (across all observations) of pS2 − pB1 in 200 nonparametric bootstrap samples

and use as our (conservative) upper bound on ηS the 0.95 quantile of these minima across bootstrap

replications. We follow a similar procedure with pS2 − pB3 for an upper bound on ηB.

66We impose several constraints in estimation: (i) hg(r, p
A) ∈ [0, 1]; hg(r, p

A) being decreasing in r and (ii)

gκ(r, p
A) ≥ g

κ
(r, pA) ≡ max{pA, ρ−1(r)} ⇒ hgκ ≤ 1−FB(g

κ
(r,pA))

1−FB(pA)
. We enforce (ii) by evaluating ρ−1(r) = F−1

S (FR(r))

at FS = F̂L
S . Condition (ii) ensures that the estimated gκ do not allow trade when S > B.
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With these bounds on ηB and ηS , we compute upper bounds on the total expected loss for a

buyer or seller due to bargaining costs as follows. Recall that the bargaining costs are incurred each

time an agent makes an offer. Let T be a random variable representing the period the game ends.

The buyer’s and seller’s expected loss incurred due to bargaining costs are given by ηBE [⌊T /2⌋] and

ηSE [⌊(T − 1)/2⌋], respectively, because by period t of the game the buyer has made a total of ⌊ t
2⌋

offers (where ⌊·⌋ is the floor function), and similarly for the seller. Because different mediators (i.e.,

different equilibria of the bargaining subgame) may take a different number of periods in bargaining,

we compute this upper bound on losses separately for each κ. Our estimated upper bounds on the

total loss to buyers due to bargaining costs are $1, $40, and $20 for low-, medium-, and high-skilled

mediators, respectively. The corresponding estimated bounds for sellers are $4, $6, and $2.

C.8 Auction House Fees. As explained in Appendix E of Larsen (2021), these fees are largely

fixed fees (with only a small price-based commission), and we treat them as fully comprised of a

fixed fee. Our notion of buyer and seller values, B and S, embed these fees. Specifically, let hB and

hS represent the fee paid to the auction house by the buyer and seller if trade occurs, and let B∗

be the buyer’s willingness to pay ignoring this fee, and S∗ the seller’s willingness to sell ignoring

this fee. The random variables of which we identify (or bound) distributions of B = B∗ − hB and

S = S∗ + hS . Our estimates of total surplus under different mediators (as well as our calculations

of first-best and second-best surplus) do not include any surplus accrued to the auction house from

fees. We treat fees as fixed, to be paid in any mechanism, including theoretical benchmarks.

C.9 Estimating Distributions Separately by Mediator Type. Figure C.1.A displays the

estimated FB in the solid blue line and the estimated bounds on FS in the dashed red line. To

explore whether mediator types indeed appear to face the same distribution of buyer and seller

values (as assumed in A4), Figure C.1.B displays these same objects estimated separately using

the pseudo samples described in Section 5.5, one for each mediator type. The different estimates

of FB in panel B are indistinguishable from one another, lending support to A4. For FS , we only

have bounds, and thus we cannot concretely confirm or deny whether the true FS is the same

across mediator types. However, if we were to find large regions of the CDF bounds that do not

overlap between different mediator types, this would be evidence that the FS is not the same across

mediator types. We find the opposite: the estimated bounds on FS differ slightly by mediator type

but overlap substantially, allowing for a single FS (faced by all mediators) contained in the bounds.
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Figure C.1: Estimated Value Distributions

(A) Main Estimates (B) Estimation by Mediator Type

Notes: Panel A displays, in solid blue, the estimated FB and, in dashed red, the bounds on FS from the body of

the paper. Panel B shows these same objects estimated separately using the different pseudo samples (described in

Section 5.5) for different mediator types. In panel B, the solid lines represent estimates of FB and the dashed lines

bounds on FS estimated separately using the different mediator pseudo samples (represented by different colors). The

estimates of FB in panel B are indistinguishable across mediator types. Units on the vertical axes are $1,000.

The small differences we do see in the FS bounds across mediator types can be explained by

how the bounds are constructed. The bounds use all observations of the game, including those that

end by a successful auction (where PA ≥ R). As explained in the discussion of Proposition 2, the

lower bound corresponds to the probability, conditional on PA, that the seller takes an action at

or before the second period of the game that leads to trade; this action is either to choose a low

enough R such that R ≤ PA or, when R > PA, to choose to accept the PA in person or through

mediated bargaining over the phone. Only in mediated bargaining (reached by 26% of observations;

see Section 3) can mediators influence trade and, consequently, estimated FS bounds.

Mediator-specific FS bounds are less useful for our main evaluation of efficiency, where we

evaluate welfare at different choices of FS within the bounds. Evaluating welfare at different bounds

for different mediator types, when these bounds overlap, would mistakenly attribute differences in

the bounds at which we evaluate welfare to differences in actual welfare across mediator types.

Instead, we use a fixed set of FS bounds in evaluating welfare; these bounds average over mediator

types, which Section 5.3 shows contain the true CDF of seller values under the model’s assumptions.
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C.10 Pareto Frontier. Figure C.2 displays the second-best (ex ante efficient) Pareto frontier,

which can be referred to as the Myerson-Satterthwaite and Williams frontier, along with the first-

best frontier.67 Dashed lines indicate 95% confidence intervals. We also show, in the colored

dots, the estimated surplus/gains from trade in the real world mechanisms corresponding to each

mediator type, with lines protruding from those points indicating 95% confidence intervals in each

dimension (expected buyer gains on the vertical axis and expected seller gains on the horizontal

axis). Panels on the left show the full Pareto frontier, and panels on the right zoom in to show

the region surrounding the mediator-specific outcomes. Panels on top are evaluated at the FS

lower bound and panels on the bottom at the FS upper bound. The results are consistent with

higher-ability mediators achieving outcomes that are more efficient (i.e., further to the northeast).

The up-close results using the FS lower bound (panel B) show some outcomes lying beyond the

Pareto frontier, but with confidence intervals overlapping those of the frontier, and thus we cannot

reject that the ordering is due to sampling error. However, it is possible to obtain such an ordering

within our framework because theory only suggests that the real-world mechanism should lie within

the frontier at the true distributions FB and FS , but we only have bounds on the latter. We evaluate

the frontier at the upper and lower bounds while holding fixed the conditional probabilities of trade

in that data that are used to estimate the gκ functions. We estimate FB and bounds on FS (and

these together determine the second-best frontier) separately from our estimation of the real-world

mechanism, without enforcing that the latter lie within the frontier. The point estimates in Figure

C.2.B suggest that enforcing such a constraint could potentially tighten the lower bound on FS .

Imposing such a constraint in estimating FS bounds would not be straightforward, however, as

the second-best frontier is itself a solution to an optimization problem (described in Myerson and

Satterthwaite 1983 and Williams 1987) that depends on FB as well as FS .

The extreme left and right points on the frontier correspond respectively to the buyer-optimal

mechanism (which can be implemented by a take-it-or-leave-it offer by the buyer) and seller-optimal

mechanism (a take-it-or-leave-it offer by the seller); see Williams (1987). Under the lower bound

on FS , the real-world outcomes lie relatively close to the middle of the frontier, whereas they lie

relatively close to the seller-optimal mechanism under the FS upper bound. This result is at least

partially explained by the fact that the theoretical buyer-optimal mechanism could involve the buyer

67Myerson and Satterthwaite (1983) characterized the mechanism on the frontier that is closest to the first-best (ex
post efficient) outcome line. Williams (1987) characterized the full Pareto frontier. Our numerical computation of
these mechanisms follows the construction in these papers.
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making an offer that lies well below the auction price, whereas the real-world mechanism enforces

that post-auction bargaining offers lie above the auction price, as explained in Section 5.2.

Figure C.2: Pareto Frontier

(A) Using Seller Lower Bound (B) Using Seller Lower Bound (Zoomed In)

(C) Using Seller Upper Bound (D) Using Seller Upper Bound (Zoomed In)

Notes: Each panel displays estimated expected seller and buyer surplus on the ex-post efficient frontier (in black), on

ex-ante efficient frontier (in green), and in real-world bargaining under different mediator types (low in blue, medium

in red, and high in yellow). Top panels use FS lower bound and bottom panels use upper bound. Panels on right are

zoomed-in versions of the left. Units = $1, 000.

D Analyzing Fleet/lease and Dealer Sales Separately

This section analyzes dealer vs. fleet/lease sellers separately. This analysis is motivated by several

comments we gathered in conversations with industry participants. First, as described in Section
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4.1, we are told that fleet/lease sellers are more likely than dealer sellers to be assigned their default

mediator in negotiations. Second, in at least one auction house location, mediators handling the two

different types of sellers do so in different rooms, with mediators handling fleet/lease sellers being

instructed to be less aggressive. Third, as described in Appendix C, auction sales for fleet/lease

cars often have a binding auction price, meaning that the highest bidder is not allowed to walk

away from negotiations before the seller has the opportunity to decide whether to accept or reject

the auction price. Finally, fleet/lease sellers generally have more cars to sell on a given day and

hence may have less information about any given car. Any of these reasons could lead to different

implications for mediator heterogeneity for the two different types of sellers.

The sample in the body uses mediators who handled at least 50 total negotiations, whether these

correspond to dealers or fleet/lease sellers. Thus, some mediators in the main sample may handle

few dealer cars or few fleet/lease cars. Here we exploit a sample (the dealers sample) involving only

dealer sellers and limiting to mediators who handled at least 25 such dealer sales. There may be

mediators in our main dataset who handled 50 total sales but only 10 dealer sales, and thus these

mediators would not be included in the dealers sample. There may also be mediators who handled

30 dealer sales but less than 50 sales in total, and thus the dealers sample is not a strict subset of the

main sample. The same construction and arguments apply to the fleet/lease sample we use here.

We impose this 25-negotiations criterion to create samples with a sufficient number of observations

per mediator. Tables D.1–D.4 and Figures D.1–D.9 are replications of all tables and figures from

the body of the paper using these dealers and fleet/lease samples separately.

The results are largely qualitatively similar in the two samples. In both samples, and in the

main sample, we document significant heterogeneity in mediator fixed effects that persists after

including a rich set of controls and that is not solely due to sampling error. We also find that better

mediators (those who achieve a higher trade probability) achieve more efficient outcomes. Some

results differ between the two samples. We now discuss similarities and differences in more detail.

Table D.1 shows that dealer sales involve less agreement, lower prices, older (and higher-mileage)

cars, and slightly more bargaining offers per thread. Table D.2 shows that mediators of the two

different types of cars handle a similar number of threads on average. The average mediator in the

fleet/lease sample has slightly more years of employment and is more likely to be female. The ratio

of the final price to the auction price or reserve price is similar in the two samples. Figures D.1–D.6

show strikingly similar qualitative and quantitative results in the two samples.
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In Table D.3, we find that, in both samples, higher-skilled mediators are more likely than lower-

skilled mediators to end the negotiation with agreement in the first period of bargaining (column

2), and that the effects of mediator skill on first-round agreement are much larger than those on

later agreement (comparing columns 2 and 3). However, the small effects we do see in column 3

are different in sign between the two samples, suggesting that high-skilled mediators are more likely

than low-skilled mediators to achieve later round agreement when interacting with dealer sellers but

not with fleet/lease sellers. The effects on later periods in the main analysis (Table 3) average over

these two effects, finding a null effect of mediator skill on later period agreements. A key takeaway

is that the effect sizes are small in column 3 relative to column 2 in both panels, consistent with the

main results. Table D.3, columns 4–6 (as well as Figures D.7.A and D.7.C) confirm that mediator

experience correlates positively with agreement. Columns 7–8 of Table D.3, which include mediator

fixed effects, show a significant and positive effect for fleet/lease cars of within-mediator experience

on the overall probability of agreement or first-round agreement. We find an insignificant effect in

these same columns for dealer cars. In both samples, column 9 shows that mediator experience is

associated with a lower likelihood of ending in agreement at later bargaining periods.

Figure D.7 panels B and D show a larger gap between the agreement probabilities (as a function

of the reserve-auction gap) for different mediator types in the fleet/lease sample than in the dealers

sample. In both cases, the agreement probability is decreasing as the reserve-auction gap increases,

and in both cases the gap between the lines corresponding to high-skilled vs. medium-skilled media-

tors appears to widen as the reserve-auction gap increases. The gap between the lines corresponding

to high- and low-skilled mediators appears to be closer to constant.

In Figure D.8, where we show the estimated gκ functions, among dealer cars (panel A), we find

a clear ordering between high- and low-skilled mediators, with high-skilled mediators facilitating

more efficient trades; this can be seen by the yellow line lying largely below the blue line, meaning

more buyer types trade under the high-skilled mediator mechanism. Medium-skilled mediators

are not clearly ordered in dealer sales, appearing to allow fewer buyer types to trade than low-

skilled mediators. Among fleet/lease sales (panel B), the order is instead quite clear across the

low, medium, and high gκ(·) functions, with higher-skilled mediators allowing more buyer types to

trade.68 Finally, the key takeaways from comparing efficiency at different mediator skill levels are

68Note, as mentioned in the body of the paper, this figure only shows cross-sections (evaluated at PA=-$2,000) of
the two-dimensional surfaces corresponding to the gκ functions. Across the full surface, the gM (·) function implies
more trade than the gL(·) function even in the dealers sample, just not at the cross-section in Figure D.8.A.
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similar in the two samples (Figures D.9.A and D.9.C). One distinction between the two samples is

that, in the dealers sample (Figures D.9.B), we find high-skilled mediators increase seller surplus,

with no statistically significant effect on buyers, and we find the opposite in the fleet/lease sample

(Figures D.9.D). The effect on total surplus of high-skilled vs. low-skilled mediation is positive in

both samples. The implications for fees (Table D.4) are also similar in the two samples.

Table D.1: Dealer vs. Fleet/lease Sales: Descriptive Statistics at Bargaining-Thread Level

Panel A: Dealer Sales
Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.475 0.499 0 1
Final price ($) 5,578 5,209 800 13,300
Book price ($) 6,795 5,318 1,500 14,600
Auction price ($) 5,551 5,114 800 13,100
Reserve Price ($) 7,212 5,574 1,800 15,400
No reserve 0.193 0.394 0 1
# Offers in a thread 1.602 0.803 1 3
Length of a thread (hours) 6.358 16.374 0.298 21.3
Car age (years) 7.036 3.705 2 12
Mileage 97,602 51,253 31,820 162,679
Engine displacement (liters) 3.619 1.490 2 5.7
No. Threads 39,563

Panel B: Fleet/lease Sales

Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.789 0.407 0 1
Final price ($) 5,618 4,741 900 12,200
Book price ($) 7,133 5,189 1,650 14,350
Auction price ($) 5,591 4,728 850 12,200
Reserve Price ($) 7,521 5,166 2,000 14,700
No reserve 0.323 0.467 0 1
# Offers in a thread 1.159 0.476 1 2
Length of a thread (hours) 5.066 13.005 .376 6.68
Car age (years) 5.602 3.329 2 10
Mileage 88,707 50,437 28,718 151,612
Engine displacement (liters) 3.575 1.563 2 5.7
No. Threads 35,369

Notes: Statistics at the thread level in the dealers (panel A) vs. fleet/lease (panel B) samples, as in Table 1.
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Table D.2: Dealer vs. Fleet/lease Sales: Descriptive Statistics at Mediator Level

Panel A: Dealer Sales
Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.484 0.146 0.325 0.639
Final price/book price 0.854 0.0872 0.76 0.951
Final price/reserve price 0.804 0.0584 0.739 0.869
Final price/auction price 1.031 0.0441 1 1.05
Female 0.357 0.482 0 1
# Threads mediated 439 524 30 1,090
Years of employment 3.933 4.469 0.375 10.5
No. Mediators 90

Panel B: Fleet/lease Sales

Mean Std. Dev. 0.1 Quantile 0.9 Quantile

Agreement reached 0.705 0.199 0.444 0.929
Final price/book price 0.813 0.0885 0.712 0.916
Final price/reserve price 0.799 0.077 0.711 0.898
Final price/auction price 1.009 0.016 1 1.02
Female 0.525 0.502 0 1
# Threads mediated 431 654 33 1,091
Years of employment 4.753 5.625 0.41 10.6
No. Mediators 82

Notes: Statistics at the thread level in the dealers (panel A) vs. fleet/lease (panel B) samples, as in Table 2.
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Figure D.1: Dealer vs. Fleet/lease Sales: Mediator Differences in Trade Probability

(A) Dealers

(B) Fleet/lease

Notes: Replication of Figure 1 on the dealers and fleet/lease samples separately.
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Figure D.2: Dealer vs. Fleet/lease Sales: Assignment Test

(A) Agreement, Dealers (B) Leave-one-out, Dealers

(C) Agreement, Fleet/lease (D) Leave-one-out, Fleet/lease

Notes: Coefficients of (2), as in Figure 2 but estimated separately on the dealers sample (panels A and B) and
fleet/lease sample (panels C and D).
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Figure D.3: Dealer vs. Fleet/lease Sales: Mediator Fixed Effects for Trade Probability Under
Different Specifications

(A) Dealers

(B) Fleet/lease

Notes: Replication of Figure 3 separately on the dealers and fleet/lease samples.
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Figure D.4: Dealer vs. Fleet/lease Sales: Mediator Rank Across Specifications

(A) Dealers

(B) Fleet/lease

Notes: Replication of Figure 4 separately for the dealers and fleet/lease samples.
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Figure D.5: Mediator Fixed Effects Under Most-Saturated Specification

(A) Trade Probability, Dealers (B) Normalized Final Price, Dealers

(C) Trade Probability, Fleet/lease (D) Normalized Final Price, Fleet/lease

Notes: Replication of Figure 5 separately on the dealers and fleet/lease samples.
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Figure D.6: Dealer vs. Fleet/lease Sales: Bootstrap Test of Heterogeneity from Sampling Error

(A) Trade Probability, Dealers (B) Final Price, Dealers

(C) Trade Probability, Fleet/lease (D) Final Price, Fleet/lease

Notes: Parametric bootstrap test results, as in Figure 6, but using the dealers sample (panels A and B) and fleet/lease
sample (panels C and D).
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Table D.3: Agreement Rates in First Later Rounds and Mediator Experience

(a) Dealers

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i

High 0.210∗∗∗ 0.181∗∗∗ 0.028∗∗∗

(0.012) (0.011) (0.009)
Medium 0.103∗∗∗ 0.085∗∗∗ 0.018∗∗∗

(0.008) (0.007) (0.006)
Experience (years) 0.010∗∗∗ 0.008∗∗∗ 0.002∗ -0.006 0.004 -0.011∗∗

(0.001) (0.001) (0.001) (0.006) (0.006) (0.005)

Mediator FE Y Y Y
R2 0.333 0.348 0.255 0.363 0.385 0.293 0.373 0.394 0.298
N 36,481 36,481 36,481 25,392 25,392 25,392 25,392 25,392 25,392

(b) Fleet/lease

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i Agreei Agree1,i Agree>1,i

High 0.307∗∗∗ 0.335∗∗∗ -0.028∗∗∗

(0.010) (0.011) (0.005)
Medium 0.197∗∗∗ 0.233∗∗∗ -0.035∗∗∗

(0.010) (0.011) (0.005)
Experience (years) 0.002∗∗ 0.001 0.001∗ 0.023∗∗∗ 0.030∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001) (0.004) (0.005) (0.002)

Mediator FE Y Y Y
R2 0.350 0.383 0.202 0.361 0.392 0.213 0.397 0.429 0.219
N 33,066 33,066 33,066 24,730 24,730 24,730 24,730 24,730 24,730

Notes: Estimates as in Table 3, but separately using dealers and fleet/lease samples.

Table D.4: Auction House Revenue Under Different Mediator Types

A. Dealers Low Medium High

Revenue 0.1171 0.1363 0.1486
(0.002) (0.002) (0.002)

High - Medium Medium - Low High - Low

Revenue Difference 0.0124 0.0192 0.0315
(0.003) (0.003) (0.003)

B. Fleet/lease Low Medium High

Revenue 0.1515 0.2103 0.2469
(0.005) (0.002) (0.001)

High - Medium Medium - Low High - Low

Revenue Difference 0.0366 0.0589 0.0954
(0.002) (0.005) (0.005)

Notes: Results as in Table 4 but estimated separately using the dealers vs. fleet/lease samples.
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Figure D.7: Agreement vs. Mediator Experience and Pr(Agreement) vs. Reserve-Auction Gap

(A) Dealers, experience (B) Dealers, reserve-auction gap

(C) Fleet/lease, reserve-auction gap (D) Fleet/lease, experience

Notes: Estimates as in Figure 7, but separately using the dealers vs. fleet/lease samples.
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Figure D.8: Dealer vs. Fleet/lease Sales: Direct Mechanisms g(·) Functions for Different Mediator
Types

(A) Dealers (B) Fleet/lease

Notes: Estimates of g(R,PA), as in Figure 8, but separately using the dealers vs. fleet/lease samples.
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Figure D.9: Dealer vs. Fleet/lease Sales: Surplus Differences Across Mediators

(A) RW vs. 1st/2nd Best, Dealers (B) Diff. Across Mediators, Dealers

(C) RW vs. 1st/2nd Best, Fleet (D) RW vs. 1st/2nd Best, Fleet

Notes: Estimates as in Figure 9 but estimated separately using the dealers vs. fleet/lease samples.
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