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Abstract

We show how to measure the welfare effects arising from increased data availability.
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plus across borrower types. We show that under certain assumptions the magnitudes of
these welfare changes can be estimated using only quantity and price data. Applying our
methodology to bankruptcy flag removal, we find that in a counterfactual world where
bankruptcy flags are never removed from credit reports, previously-bankrupt borrowers’
surplus decreases substantially, whereas efficiency increases only modestly.
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1 Introduction

The past half century saw an explosion of data that lenders can use to screen and score potential

borrowers. In principle, increasing data availability should allow lenders to charge interest

rates that are more closely aligned with borrowers’ true risks, thereby improving the efficiency

of credit allocation and raising social welfare. But data may also lead to changes in interest

rates, shifting the distribution of social surplus between lenders and borrowers of different risk

levels. How can we quantify the effects of increased data availability on social welfare and the

distribution of surplus between lenders and different kinds of borrowers?

This paper develops a tractable framework for measuring the welfare effects of increased

data availability, viewing changes in data access as enabling a form of third-degree price dis-

crimination. In an empirical application to consumer lending markets, we show that keeping

prior bankruptcy information on consumer credit reports would substantially reduce the social

surplus of previously-bankrupt borrowers while only slightly increasing allocative efficiency in

credit markets.

Whether lenders should be permitted to leverage granular data has been central to pol-

icy debates.1 Recent policy decisions, such as the 2022 removal of medical debt collections

under $500 from U.S. credit reports, highlight the tension between personalized pricing and

redistribution. Laws such as the General Data Protection Regulation (GDPR) in the EU and the

Fair Credit Reporting Act (FCRA) in the US aim to balance these tradeoffs by limiting the use

of certain borrower data. For example, the European Data Protection Supervisor (2021) rec-

ommended allowing lenders to use some data for personalized pricing but “clearly delineating

the categories and sources of personal data that may be used for the purpose of creditworthiness

assessment.” Regulatory scrutiny of personalized loan pricing has intensified as banks have

increased their spending on IT and technology: this spending rose to $74 billion in 2022, an

increase of 37% from 2017.

We develop a model to assess how data shapes welfare in credit markets, where competitive

lenders serve both high- and low-cost borrowers. In the absence of data, lenders cannot distin-

1Lenders have screened borrowers based on informal data since antiquity (Calomiris and Neal, 2013). Modern
credit scoring systems emerged in 1958 with Fair Isaac and Company (FICO), and expanded over subsequent
decades. The introduction of machine learning techniques and alternative credit data, such as VantageScore,
likely had significant welfare implications that our framework can help quantify.
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guish high- and low-cost borrowers. Suppose, counterfactually, that data was available, and

lenders could always distinguish high-cost consumers from low-cost consumers: how would

this change each borrower group’s consumer surplus and total social welfare?

Since consumer loans generally involve upfront borrowing and staggered repayment, fol-

lowing Marshall (1920) and Vives (1987), we think of consumption over future periods as a

“large composite good” and approximate future-period utility as linear. Marshallian consumer

surplus —the “area under the demand curve”—is then exactly equal to the dollar value con-

sumers derive from borrowing. This allows us to define surplus in consistent dollarized units

across consumer groups with different default rates, providing a microfoundation for the clas-

sical “surplus trapezoid” diagrams in the consumer lending setting.

Data policy entails a tradeoff between efficiency and redistribution. Retaining data raises

social welfare by improving credit allocation, but also transfers surplus from high-cost to

low-cost borrowers. The welfare gains scale quadratically with data-induced price changes,

whereas the redistribution effects scale linearly; thus, the transfer effects tend to dominate

when data-induced price changes are small. Regulators may be willing to limit data availabil-

ity in settings where the resulting cross-subsidies are deemed valuable enough to justify the

efficiency losses.

If loan demand is approximately linear in payments, the welfare and transfer effects of data

can be expressed as simple functions of observed loan prices and quantities, with and without

data. We apply this finding in the context of consumer bankruptcy flag removal. Under the

Fair Credit Reporting Act (FCRA), flags indicating the occurrence of consumer bankruptcy are

removed after seven (ten) years after a Chapter 13 (Chapter 7) bankruptcy filing. We exploit

within-consumer variation, comparing loan terms just before and after flag removal to estimate

counterfactual outcomes for previously-bankrupt borrowers. For never-bankrupt borrowers,

we back out counterfactual prices using the lenders’ zero-profit condition, and infer quantity

changes by assuming equal demand elasticities across groups. With these price and quantity

changes in hand, we can then calculate the welfare and redistribution effects under a policy

that never removes bankruptcy flags.

Our empirical application studies the social welfare losses and transfers induced by bankruptcy

flag removal policy in the US auto lending market, using administrative data from TransUnion.
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A difference-in-differences design shows that individuals whose flags are removed experience a

17-point increase in credit scores, a 22.6-basis-point reduction in interest rates, and an $18 in-

crease in borrowing. Using lenders’ zero-profit condition and the assumption of equal demand

elasticities, we back out the smaller price decrease and quantity increase that never-bankrupt

individuals would counterfactually face. Our estimates imply that, if flags were never removed,

social welfare would increase modestly, by $598,000 a year in aggregate; however, roughly $19

million in borrower surplus each year would be transferred from the previously-bankrupt to the

never-bankrupt. In other words, the counterfactual policy generates only about $0.03 in social

surplus for every dollar redistributed between groups. Thus, while the current policy generates

allocative inefficiencies, its welfare costs are fairly small relative to its redistributional effects.

Our baseline model is stylized and makes strong assumptions in some settings. In theoret-

ical extensions, we discuss how our approach can be extended to incorporate forces such as

imperfect competition, adverse selection, interest rate menus, and endogenous default. While

we frame our results around the application to bankruptcy flag removal, our methodology

can be applied in any setting where lenders acquire pricing data which is informative about

consumers’ default risks.

This paper joins together two literatures: work on data in financial markets and work on

price-theoretic approaches to study markets. Theoretical work illustrating different channels

through which data can affect lending market outcomes include Begenau et al. (2018), Ace-

moglu et al. (2019), Farboodi et al. (2019), Farboodi and Veldkamp (2020), Jones and Tonetti

(2020), He, Huang and Zhou (2020), and Liu et al. (2023).2 Empirical papers on data include

Tang (2019), who uses data from a Fintech to value privacy; Nelson (2018) and Blattner and

Nelson (2021), who use structural models to analyze the efficiency and distributional con-

2There is a large theoretical literature studying the welfare effects of data sharing policies in credit markets in
particular. These papers largely emphasize different channels to our paper. Pagano and Jappelli (1993) analyze
lenders’ incentives to share information, and how information sharing can alleviate adverse selection. Vercammen
(1995), Padilla and Pagano (2000), and Elul and Gottardi (2015) focus on how the threat of updating credit
scores and thus interest rates dynamically affect borrowers’ default incentives. Kovbasyuk and Spagnolo (2021)
and Blattner et al. (2022) apply Bayesian persuasion methods to analyze optimal information structures in credit
markets, taking into account adverse selection and dynamically evolving consumer types. Chatterjee et al. (2020)
emphasize how credit scores are a substitute for dynamic reputation in incentivizing repayment. Relative to the
literature, our paper emphasizes exogenous heterogeneity in the willingness to pay for credit; this is key to creating
allocative efficiency gains from information revelation, which is a core focus of our analysis. In the baseline model,
we abstract away from forces such as dynamic types, reputation, moral hazard and adverse selection, though we
discuss the effects of many of these effects in extensions and appendices.
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sequences of information removal in the credit card market; and Fuster et al. (2022), who

analyze the distributional effects of machine learning models in credit markets.

Our contribution to the data literature is to develop a price-theoretic approach to quantify

the welfare and transfer effects of data. In the baseline, we make a number of simplifying

assumptions relative to purely theoretical and structural papers. The benefit of these simplifi-

cations is that we attain sharp qualitative results about the effects of data in credit markets, and

a simple “sufficient-statistics” approach to empirically estimate the effects of data. We show

theoretically and empirically that—somewhat surprisingly—when data is not very informative

about default rates, the transfer effects of data availability are large relative to the effects on ag-

gregate welfare. We view our contribution as complementary to richer structural approaches,

and we discuss in extensions and appendices the extent to which our methodology is robust to

other theoretical channels we disregard in the baseline.

Our price-theoretic approach builds classical ideas about consumer and producer surplus

and deadweight loss triangles (Harberger, 1964), brought into the context of insurance markets

by Einav et al. (2010), and extended to credit markets in DeFusco et al. (2022). Our paper

applies this price-theoretic approach to data addition or removal in credit markets, showing

how price and quantity information are sufficient to measure data-induced changes in surplus

and welfare. DeFusco et al. (2022) focuses on adverse selection—costs depending on prices—

but does not discuss data policy. In the baseline, we assume away adverse selection but address

data policy with adverse selection briefly in an extension of the model. Beyond the different

focus, our paper also uses a different microfoundation from DeFusco et al. (2022), allowing

us to show that the price-theoretic approach can still be used when incorporating realistic

model features such as multiple periods, costly default, arbitrary lender cost structures, and

extensive and intensive margins of loan demand. Another closely related paper is Liberman et

al. (2019), who analyze the effect of information removal in Chile. Applying a similar price-

theoretic methodology based on Einav et al. (2010), Liberman et al. estimate the surplus

effects of removing default data from credit reports. Our analysis is complementary to that of

Liberman et al. We build a microfounded model and illustrate the assumptions under which

demand and supply curves can be interpreted in terms of consumer utility in the setting of

credit markets. We simplify by assuming away adverse selection in the baseline model. This
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delivers a sharper qualitative insight: data is always welfare-improving in our setting, since

it eliminates deadweight loss triangles for both groups, though the welfare effects of data

addition may be small relative to the transfer effects. This helps to rationalize the finding of

Liberman et al. (2019) that, under a variety of assumptions, data removal seems to reduce

social surplus. In terms of data, our setting has the advantage that we observe prices, whereas

Liberman et al. (2019) infer prices from observed default rates.

This paper is also related to papers around the classic idea that third-degree price discrim-

ination has ambiguous effects on social welfare (Schmalensee, 1981; Varian, 1985, 1989). A

related recent paper is Chen and Schwartz (2015), who theoretically analyze price discrimina-

tion for a monopolist with information about costs, and also find that differential pricing tends

to improve pricing more generally than in the classic case.

More broadly, this paper also contributes to an empirical literature on the consequences

of bankruptcy, and specifically bankruptcy flag removal. Musto (2004) is the first paper to

study the empirical effects of flag removal, studying the impact on credit scores and default.

Several studies, including Herkenhoff et al. (2021), Bos et al. (2018), Dobbie et al. (2020),

and Gross et al. (2020), study how bankruptcy flag removal affects credit access, employ-

ment, entrepreneurship, consumption, and other outcomes. A recent literature on household

bankruptcy also links theory to empirics. Gross et al. (2021) study the economic consequences

of bankruptcy, Indarte (2021) studies moral hazard and liquidity in bankruptcy, Argyle et

al. (2022) study disparities, and Dávila (2020) provides a theoretical framework for optimal

bankruptcy exemptions. Relative to this literature, we are the first to quantify the relative

magnitudes of the welfare and transfer effects of flag removal, showing that the allocative ef-

ficiency losses from flag removal are small relative to the induced transfers, in the context of

auto lending.

2 Model

This section formalizes how to quantify the efficiency and redistributive effects of data in credit

markets. In our framework, data enables a form of third-degree price discrimination based on

consumers’ underlying costs. In the absence of data, lenders charge the same pooling rate
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across consumers with different costs. The introduction of data allows lenders to align prices

more closely with costs. The improved alignment enhances allocative efficiency by reducing

underprovision and overprovision of credit, but also redistributes surplus across lenders and

borrowers with different costs.

There are two groups of consumers—high-cost and low-cost—who borrow to finance a

one-time expenditure in period t = 0, paying back their loans over periods t = 1 . . . T . High-

cost consumers (H) default on loans at the higher rate δH . Low-cost consumers (L) default

on loans at the lower rate δL. Consumers borrow from a set of competitive firms who post

identical interest rates.

In a world without data, lenders cannot distinguish H and L consumers, and thus are

constrained to set equal prices for these two groups. Our goal is to estimate how market

outcomes would change in a counterfactual world where data is available, so lenders can

distinguish H and L consumers and set separate prices for the two groups. Since most of our

results apply symmetrically across groups, rather than introducing a group subscript, we will

occasionally state results for the H group, understanding that they apply analogously to the L

group.

2.1 Consumers

Consider first a single consumer i, who wishes to finance a one-time expenditure in period t =

0; in our setting, for example a large durable asset such as an auto purchase. The borrower’s

utility is:

ui,0

�

ci,0

�

︸ ︷︷ ︸

Purchase

+
T
∑

t=1

β t (1−δ)t u
�

ci,t

�

︸ ︷︷ ︸

Pa yment

+
T
∑

t=1

(1−δ)t−1δ

T
∑

t̃=t

β t̃u (cD)

︸ ︷︷ ︸

De f aul t

(1)

In words, the consumer gets concave utility ui,0

�

ci,0

�

from period-0 consumption. The con-

sumer defaults at exogenous rate δ each future period t = 1 . . . T , which is δH for high-cost

consumers and δL < δH for low-cost consumers. With probability (1−δ)t , the consumer

reaches period t without defaulting, consuming ct and for utility β tu
�

ci,t

�

. With probability

(1−δ)t−1δ, she defaults in period t. Default may be harmful for future-period consumption,

for example due to collateral repossession, or because the consumer has more difficulty bor-
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rowing in the future; we incorporate this by assuming that, after period-t default, the borrower

consumes cD in each period t through T .

Loans are self-amortizing with fixed payments, so if the principal is L and the interest rate is

r, the borrower pays Lφ (r) each future period, where φ (r) follows the amortization formula:

φ (r)≡
r (1+ r)T

(1+ r)T − 1
(2)

The function φ (r), which is increasing in r, can thus be thought of as the dollar payment in

each future period for each dollar borrowed. We will generally useφ (r) instead of r to measure

prices; while the notation is slightly tedious, this facilitates interpretation of our estimates

because dollars are a more intuitive measure of welfare than interest-rate points.

The borrower is endowed with wealth wt in period t, and is completely liquidity-constrained,

so she consumes:

ci,0 = wi,0 + Li, ci,t = wi,t − Liφ (r) (3)

We simplify the general problem by approximating consumer utility in payment period t =

1 . . . T by a linear function:

u
�

ci,t

�

≈ u
�

wi,t

�

+ u′
�

wi,t

� �

ci,t −wi,t

�

= u
�

wi,t

�

− u′
�

wi,t

�

Lφ (r) (4)

Combining (1), (3), and (4), we can thus write the borrower’s optimization problem as:

V (r) =max
Li

ui,0

�

wi,0 + Li

�

+

T
∑

t=1

β t (1−δ)t
�

u
�

wi,t

�

− u′
�

wi,t

�

Liφ (r)
�

+
T
∑

t=1

(1−δ)t−1δ

T
∑

t̃=t

β t̃u (cD) (5)

For technical convenience we assume there is an interest rate r̄ high enough that all consumers

stop borrowing.

Let L∗i (r) denote the solution to (5), as a function of r. Differentiating (5) using the enve-
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lope theorem, we have:

dV
dr
= −

�

T
∑

t=1

β t (1−δ)t u′
�

wi,t

�

�

︸ ︷︷ ︸

U til i t y weight

�

L∗i (r)
dφ
dr

�

︸ ︷︷ ︸

Pa yment change

(6)

The “payment change” term in (6) captures how an increase in r increases payments in each

future period t = 1 . . . T , and the “utility weight” term captures the sum of the discounted

marginal utility in each future period t, multiplied by the probability (1−δ)t of reaching period

t without defaulting.

The linearity assumption in (4) makes the utility weight term in (6) constant, so changes in
dV
dr are driven entirely by loan demand L∗i (r). This makes the consumer’s preferences quasilin-

ear in future-period payments, eliminating income effects. Hicksian and Marshallian demand

thus coincide, and compensating variation (CV), equivalent variation (EV), and Marshallian

consumer surplus (CS) are always equal. In the general case, CS differs from CV or EV, but the

differences tend to be small when price changes and income effects are small.3

The classical justification for quasilinear utility is that, if a good is “small” as a fraction

of overall consumption, utility concavity for the remaining “composite good” can be approx-

imately ignored (Marshall, 1920; Vives, 1987). In our setting, loans reallocate consumption

between a single present period and multiple future periods; our linearity assumption similarly

ignores concavity over the “composite” future-period good.

We can define Marshallian consumer surplus for a single consumer simply as the integral

over loan demand, dividing out the utility weight term in (6):

CSi (r) =

∫ r̄

r

L∗i (r)
dφ
dr

dr (7)

An interpretation of CSi (r) is that, from (6), the consumer is indifferent between borrowing

at r, and borrowing nothing and receiving CSi (r) dollars in each future period conditional on

not defaulting. Technically, this statement follows from the fact that CS is equal to compen-

sating variation in quasilinear settings. To see this formally, note that we defined r̄ as a rate

3See, for example, Willig (1976), Chipman and Moore (1980), Jehle and Reny (2011, pp. 179–183), and
Mas-Colell et al. (1995, pp. 80–91).
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high enough that the consumer borrows nothing; the utility of borrowing at r relative to not

borrowing at all is thus:

V (r)− V (r̄) =

�

T
∑

t=1

β t (1−δ)t u′
�

wi,t

�

��

∫ r̄

r

L∗i (r)
dφ
dr

dr

�

(8)

From (4), the RHS is exactly the borrower’s total utility gain from receiving a lump-sum of
∫ r̄

r
L∗i (r)

dφ
dr dr dollars in each period t = 1 . . . T , conditional on not defaulting.

Expression (7) naturally suggests we can define total surplus across consumers in the H

group as:

CSH (r)≡
∑

i∈AH

CSi (r) =

∫ r̄

r

ΛH (r̂)
dφ (r̂)

d r̂
d r̂ (9)

Where AH is the finite set of high-cost consumers, and we use ΛH (r) to denote aggregate H

group loan demand:

ΛH (r) =
∑

i∈AH

Li (r) (10)

The definitions for the L group are analogous.

Expressions (7) and (9) measure consumers’ utility in the unintuitive units of dollars in

each non-default future period. We thus normalize by multiplying by the expected number of

non-default periods, for example:

DCSH (r) =ψH

∫ r̄

r

ΛH (r̂)
dφ (r̂)

d r̂
d r̂ (11)

ψH = (1−δH)

�

1− (1−δH)
T

δH

�

(12)

and analogously for the L group. For example, if DCSH is $1 million, this implies that H

consumers would approximately require payments summing to $1 million to be willing to

completely stop borrowing.4 While the notation is slightly complex, (11) simply corresponds to

the integral of loan quantity over changes in interest rates, multiplied by a constant adjustment

factor ψH which depends on default rates.

In our empirical application, we will measure changes in dollarized consumer surplus aris-

4If we interpret the $1 million as a lump-sum, the interpretation is approximate because (12) and (11) simply
sum dollars across future periods, ignoring discounting.
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ing from an increase in interest rates from r to r̃ as:

DCSH (r̃)− DCSH (r) = −ψH

∫ r̃

r

ΛH (r̂)
dφ (r̂)

d r̂
d r̂ (13)

Expressions (11) and (13) have the simple “welfare trapezoid” interpretation, shown in Figure

1: consumer surplus is the trapezoid corresponding to the integral of demand quantity over

prices. We thus fit into a recent literature applying “price-theoretic” concepts of money-metric

surplus to credit markets (Einav et al., 2010; DeFusco et al., 2022).

2.2 Producers

Loans are produced by a group of competitive lenders. We assume that lending has constant

marginal costs: within each group, there is some interest rate at which lenders make zero

profits regardless of the amount they lend. This break-even interest rate is the higher rate

rH, f air for the H group, and the lower rate rL, f air for the L group. Our baseline exercise requires

that lenders’ marginal costs are constant; this assumes away any fixed costs of lending, as well

as any forces that would make break-even rates dependent on loan amounts, such as adverse

selection or moral hazard. However, we do not need to take a stance on what exactly the

structure of lenders’ marginal costs is, and how rH, f air and rL, f air are connected to the default

rates δH ,δL. We discuss how to relax this assumption and incorporate information asymmetry

in Appendix B.6.5

5As a simple example, suppose that lenders must pay some origination cost cH , cL per dollar they lend to the
H and L groups: we may have cH > cL , for example, if screening is more costly for riskier borrowers. Lenders
may also have expected default-related losses of ζH ,ζL , per dollar lent. Lenders’ expected dollar profits at rate r,
per dollar lent, are thus:

LψHφ (r)
︸ ︷︷ ︸

Ex pected Loan Pa yment

− L
︸︷︷︸

U p f ront Amount Lent

− LcH
︸︷︷︸

Origination Costs

− LζH
︸︷︷︸

De f aul t Losses

The break-even interest rate rH, f air thus solves:

ψHφ
�

rH, f air

�

− 1− cH − ζH = 0

Hence, at any other rate r, lenders earn the spread

ψHφ (r)− 1− cH − ζH =ψH

�

φ (r)−φ(rH, f air)
�

on the loan amount. We define rL, f air correspondingly. Similarly, any other source of marginal costs—which scale
linearly in the amount lent L—can be thought of incorporated within the definition of rH, f air and rL, f air .
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Lenders make or lose money at any interest rates other than rH, f air , rL, f air . Analogous to

(11), we define producer surplus for group H at rate rH as:

PSH (rH) =ψHΛH (rH)
�

φ (rH)−φ
�

rH, f air

��

(14)

We define producer surplus for the L group analogously. In words, producers’ dollar profits

at rate rH are the per-period difference between the actual priceφ (rH) and the break-even price

φ
�

rH, f air

�

per dollar of loans, multiplied by loan volume Λ (rH) and the expected number of

non-default periods ψH . We then use (14) to define producers’ zero-profit condition.

Assumption 1. Suppose that no data is available, so producers cannot distinguish L consumers

from H consumers, and thus set a pooled price rpool . We assume that rpool must make producer

surplus sum to zero across the two groups:

ψLΛL

�

rpool

� �

φ
�

rpool

�

−φ
�

rL, f air

��

=ψHΛH

�

rpool

� �

φ
�

rH, f air

�

−φ
�

rpool

��

(15)

In words, the total dollar gains from lending to L consumers above their break-even rate, on

the LHS, must equal the dollar losses from lending to H consumers below their break-even rate,

on the RHS. In our empirical application, this has the effect of weighting per-period payments

slightly lower for the high-cost group, since they default more often and thus make payments

with lower probability; however, the ratio ψL
ψH

is not far from 1 in our application. As with con-

sumer surplus, (15) is not totally innocuous: it assumes producers do not discount, and ignore

idiosyncratic risk from individual defaults. We will ultimately find that the welfare effects for

the L group are small overall; slightly different specifications of the zero-profit condition are

thus unlikely to have large effects on our headline results.

2.3 Intuition

Our framework shows that changing data availability in credit markets can be thought of as a

form of third-degree price discrimination. Figure 1 shows a stylized illustration of the H and L

groups. In the absence of data, lenders cannot distinguish these groups, so they charge rpool

for both groups, determined by the zero-profit condition (15). This pricing scheme is socially
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Figure 1: Price Discrimination in Credit Markets

(a) High Cost

r

Λ

Demand

MC

Λ1,HΛ2,H

rpool

rH, f air

(b) Low Cost

r

Λ

Demand

MC

Λ1,L Λ2,L

rpool

rL, f air

This figure illustrates how third-degree price discrimination affects welfare in credit markets. Suppose there are
two groups of prospective borrowers, high-cost (panel a) and low-cost (panel b). The red lines show the cost of
serving borrowers in each group, and the blue lines show borrowers’ demand curves. Lenders are initially unable
to distinguish between these borrowers, so they set the pooled price rpool . Once lenders are able to distinguish
between these prospective borrowers, they set rH, f air for the high-cost group (a) and rL, f air for the low-cost group
(b). The dark gray shaded triangles illustrate the increase in social welfare for each group after the price change.
In panel (a), the light gray shaded area shows the decrease in consumer welfare from the price change. In panel
(b), the sum of the light gray shaded rectangle and the dark gray shaded triangle represents the increase in
consumer welfare after the price change.

inefficient, generating two deadweight loss triangles (dark gray areas): credit is underprovided

to low-cost borrowers, and overprovided to high-cost borrowers.

If lenders can distinguish between these consumer groups, prices increase to rH, f air for the

high-cost group, and decrease to rL, f air for the low-cost group. Social surplus increases for

both groups, since both DWL triangles are eliminated. The division of surplus also changes,

since the pooling cross-subsidy between groups is eliminated. H borrowers’ surplus decreases

by the light gray area in the left panel of Figure 1, and L borrowers’ surplus increases by the

sum of the light gray and dark gray areas on the right panel of Figure 1.

An interesting feature of Figure 1 is that the DWL triangles scale quadratically with price

changes, whereas the consumer surplus transfer trapezoids scale approximately linearly. Thus,

when rpool is close to the break-even rates rH, f air , rL, f air , the ratio of the DWL triangles and the

transfer trapezoids decreases towards zero. Figure 1 thus has a nuanced conclusion: data is
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always welfare-increasing, but when data has a small effect on prices, the cross-subsidy effects

of data tend to be large relative to the welfare effects.

Our conclusions differ from the classic literature on third-degree price discrimination in

that we assume that lenders are competitive, and data is informative about consumers’ costs.

In the classic setting, sellers have market power, and data is informative only about consumers’

demand (Schmalensee, 1981; Varian, 1985, 1989). It is well-known that the welfare effects

of third-degree price discrimination are ambiguous in the classic setting. Appendix Figure E.1

shows the intuition: monopolists set prices above cost for both groups, and data may increase

prices for one group and decrease prices for another, leading to partially offsetting changes in

social welfare, so the sign of the net welfare effect is indeterminate.6

2.4 Estimation: General Data Policies

Our framework is particularly straightforward to implement empirically if we assume that loan

demand in each group is linear in the payment function φ (r):

Λ (r) = a− bφ (r) (16)

Consumer, producer, and total surplus then have the following expressions.

Claim 1. Suppose lenders receive data which allows them to distinguish between the H and L

groups, so interest rates for the H group shift from rpool to rH, f air . The net increase in lenders’

profits on group H is:

ψHΛH

�

rpool

� �

φ
�

rH, f air

�

−φ
�

rpool

��

(17)

The net decrease in H borrower surplus is:

ψH

�

φ
�

rpool

�

−φ
�

rH, f air

��

�

ΛH

�

rpool

�

+ΛH

�

rH, f air

�

2

�

(18)

6A related paper is Chen and Schwartz (2015), who analyze the case where a monopolist has information
about costs, showing that welfare increases for a broader class of demand functions than the general case. We
simplify further by assuming perfect competition in our baseline, implying that data is always welfare-improving
in our setting.
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Social welfare increases by:

1
2
ψH

�

φ
�

rH, f air

�

−φ
�

rpool

�� �

ΛH

�

rpool

�

−ΛH

�

rH, f air

��

(19)

All expressions for the L group are analogous.

Intuitively, the expressions in Claim 1 are simply the geometric areas of the correspond-

ing rectangular and triangular areas in Figure 1. These are straightforward to estimate, re-

quiring only default rates to estimate the ψ term, and the prices rH, f air , rpool and quantities

ΛH

�

rH, f air

�

,ΛH

�

rpool

�

at the pooled and fair interest rates.

A convenient feature of Claim 1 is the break-even interest rates rH, f air , rL, f air are directly in-

ferred from the prices that customers face when lenders are able to distinguish the two groups,

so we do not need to take a stance on how default rates affect lenders’ break-even rates. Es-

sentially, the core inputs into Claim 1 are loan rates and loan quantities with and without data;

default rates for each group are needed only to compute the ψ term, which is used only to

convert welfare into comparable dollarized units for each group.

2.5 Estimation: Bankruptcy Flag Removal

In our empirical application, we analyze the removal of bankruptcy flags from credit reports.

In our framework, consumers who have never declared bankruptcy correspond to the low-

cost group, who default at lower rates, while consumers with a prior bankruptcy correspond

to the high-cost group, who default at higher rates. Among the previously-bankrupt, we dis-

tinguish two subgroups: “bankruptcy-with-flag” consumers, whose credit files still display the

bankruptcy flag, and “bankrupt-no-flag” consumers, who have declared bankruptcy far enough

in the past that, under current policy, bankruptcy flags are removed from their credit reports.

Importantly, lenders cannot distinguish bankrupt-no-flag consumers from never-bankrupt con-

sumers, and therefore apply pooled pricing to these groups in the status quo.

Our goal is to estimate how outcomes would differ in a counterfactual world where bankruptcy

flags are never removed, allowing lenders to separate previously bankrupt consumers from oth-

ers indefinitely. Although we do not observe an explicit change in flag policy, the staggered tim-

ing of flag removals allows us to observe a transition in which high-cost (previously-bankrupt)
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individuals move from being separated (with-flag) to being pooled (no-flag) with low-cost

consumers. This variation maps into our model and enables a multi-step estimation strategy,

described in Sections 2.5.1 and 2.5.2, to recover the components of Claim 1.

2.5.1 High-Cost/Previously-Bankrupt Borrowers

We can estimate the quantities in Claim 1 for the previously-bankrupt H group by analyzing

how prices and loan quantities change around bankruptcy flag removal. Under current policy

in the US, bankruptcy flags are removed from credit reports 7 to 10 years after bankruptcy,

meaning that H customers, who lenders can distinguish from L customers, transition to be-

coming indistinguishable from L customers sharply after a cutoff in time.

Under our assumption that the H consumers have equal loan demand and default rates

just before and after flag removal, customers should face the higher rate φ
�

rH, f air

�

just before

flag removal, and the lower rate φ
�

rpool

�

just afterwards. In response, these customers should

increase borrowing, from ΛH

�

rH, f air

�

to ΛH

�

rpool

�

. We can thus estimate these four quantities,

and thus all surplus expressions in Claim 1, simply by observing customers’ interest rates and

loan quantities just before and after bankruptcy flags are removed.

2.5.2 Low-Cost/Never-Bankrupt Borrowers

To identify counterfactual price changes for the never-bankrupt L group, we use lenders’ zero-

profit condition, (15). Rearranging:

φ
�

rL, f air

�

−φ
�

rpool

�

= −
ψHΛH

�

rpool

�

ψLΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

��

(20)

The LHS of (20) is the price decrease that L consumers would face, if lenders could dis-

tinguish them permanently from H individuals. The RHS says that this can be estimated by

multiplying the price change for H consumers by the ratio of loan volumes between the two

groups, and a ψ-ratio term accounting for default rate differences between the groups. In our

empirical application, the L group is much larger than the H group, so the ratio ΛH
ΛL

is small,

and the counterfactual price change for the L group will be fairly small.

We then need to calculate the induced change in loan quantities for the never-bankrupt
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L group. This could be calculated by multiplying the price change in (20) by an estimate

of the demand elasticity for the L group.We assume that demand elasticities are equal across

groups, although in principle these could be estimated separately given another source of price

variation.

Assumption 2. At the price rpool , demand elasticities are equal across the L and H groups; that

is, the slopes of demand bL and bH satisfy:

bL

ΛL

�

rpool

� =
bH

ΛH

�

rpool

� (21)

Given this assumption, we can calculate the counterfactual quantity change facing the L

group based on the price change; we can then calculate changes in consumer surplus and social

welfare for this group using the expressions in Claim 1. While Assumption 2 is somewhat ad-

hoc, our main quantitative results are not very sensitive to it. We show in Appendix B.1 that

the social welfare effects of data policy are driven predominantly by the smaller H group, so

errors in estimating outcomes for the larger L group actually have relatively little effect on our

conclusions.

2.6 Discussion of Model Assumptions

Choice of Welfare Weights. Our approach builds on the tradition of Marshallian partial-

equilibrium welfare analysis (Marshall, 1920). We take no explicit stance on welfare weights

across groups: the implicit stance is that welfare is measured in dollars, and classic results

imply that any Pareto-optimal outcome must maximize the sum of money-metric utility across

agents. This approach has the benefit of being easily interpretable. We will find that bankruptcy

flag removal burns around $0.03 of social surplus per dollar redistributed across groups. The

normative judgment of whether the policy’s benefits outweigh its costs is left to policymakers.7

Demand Margins. Our model and empirical analysis ignores loan rejections. In practice,

some prospective borrowers may be rejected by all lenders, and may thus be unable to borrow

at any price. We cannot capture welfare for these hypothetical borrowers, since we cannot
7An alternative approach is to directly specify welfare weights on each agent, and then solve for optimal

policy. In such approaches, welfare weights and optimal policy are entangled: there is little we can say about
how efficient a policy is, independent of the particular welfare weights chosen.
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estimate their willingness-to-pay. We do not expect this to be a substantial concern in the

auto loan setting we analyze, since many lenders specialize in serving riskier borrowers, so we

believe the vast majority of borrowers can get a loan offer at some price in our setting.

Interest Rate Menus. We assumed that borrowers can borrow any amount at a fixed rate

r. In reality, borrowers may face a menu of interest rate–LTV (Loan-to-Value) combinations,

typically subject to a maximum loan size. Data policy may affect both the structure of the

menu and the loan size cap. In Appendix B.2, we show that our results still hold if data policy

primarily influences outcomes through shifting interest rates. However, our analysis does not

fully capture welfare effects if data policy primarily influences the size of binding loan size

caps.

Default. Appendix B.3 explores extending the model to incorporate richer default behavior

and post-default outcomes. Our baseline results hold even if borrowers default optimally, and

regardless of how default affects consumption, as long as the interest rate does not influence

post-default outcomes. However, if loan rates affect consumption after default, an additional

term appears in the derivative of V (r), meaning our measures will tend to understate the

effects of interest rates on welfare. We are unable to quantify these effects in our setting, so

we ignore this effect in our analysis.

Default Rate Heterogeneity. Appendix B.4 analyzes the case where default rates may be

heterogeneous within groups. We show that Claim 1 remains approximately accurate as long

as default rates are not too different within data groups, and demand elasticities are not too

correlated with customers’ default rates within groups.

Market Power. Appendix B.5 extends the framework to imperfect competition. In general,

if data availability changes the markups that lenders can charge, outcomes are known to be

complex (He et al., 2020; Huang, 2022). Nonetheless, we show that with additional data

markups can be accommodated. Surprisingly, under a certain set of parameter restrictions—

when the demand elasticities in the two borrower groups are equal, and when markups pre-

and post-data availability are the same—the existence of markups does not, in fact, affect

the welfare gains from data availability. While this set of assumptions may not always be

satisfied exactly in reality, this finding suggests that the existence of markups per se does not

dramatically affect our results.
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Adverse Selection. In the main text, we assume that there is no selection—that is, that

costs depend on borrowers’ types but are not correlated with borrowers’ willingness to pay. In

Appendix B.6, we discuss how adverse selection could be accomdated in our framework.

3 Empirical Application

We now apply our framework to the specific setting we study empirically: bankruptcy flag

removal. In the US, under the Fair Credit Reporting Act (FCRA), bankruptcy flags must be re-

moved from credit records after ten years. There are two main types of consumer bankruptcy

in the US: Chapter 7 (liquidation) and Chapter 13 (reorganization). Chapter 7 bankruptcy

flags are typically removed 117 to 118 months after filing, while Chapter 13 bankruptcy flags

are typically removed seven years after filing. Hence, previously-bankrupt individuals whose

flags have been removed are pooled with never-bankrupt individuals. Flag removal can thus

be thought of as a form of data policy: in a counterfactual world in which flags were never

removed, social welfare would be higher, previously-bankrupt borrowers would be worse off,

and never-bankrupt borrowers would be better off. This application illustrates the tradeoff in-

herent in our model. On the one hand, counterfactually keeping bankruptcy flags on consumer

credit records increases efficiency, as lenders can use this information in pricing loans. On the

other hand, keeping flags would make previously-bankrupt borrowers worse off, as they would

face higher interest rates.

3.1 Data

To implement our analysis, we use the Booth TransUnion (TU) Consumer Credit Panel.8 The

data is an anonymized 10% sample of all TU consumer credit records from 2009 to 2020. We

restrict the sample to the 2009-2018 period to allow at least two years for delinquency real-

izations after account openings. The sample is a panel. Individuals in the initial sample have

their information updated monthly, and each month a new 10% sample of first time borrow-

ers is added. At a monthly frequency, the data contain basic information about borrowers and

8These data, along with similar credit panel data, are described in more detail in Keys et al. (2020) and Yannelis
and Zhang (2021).
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loans, including the original balance, the current balance, the Vantage (credit) score, scheduled

payments, the maturity of the loan, geography and importantly bankruptcy flags.

Our main outcomes of interest related to the welfare framework are credit scores, interest

rates, new loan balances, and charge-offs. We do not directly observe interest rates, but we

back them out from scheduled payments using the amortization formula.9 To avoid selection

concerns, we predict interest rates for all individual-month observations. We predict interest

rates using a third-order polynomial of current and up to nine months lagged scores, and time

and cohort dummies.10 We measure balances as the sum of the balances of the new auto loan

accounts that an individual opens in a given month, and as zero when the individual does

not open an account in a given month. Charge-offs are measured as whether a loan becomes

charged-off within two years of the account opening. We collapse the data to the borrower-

month level, and restrict the sample to individuals who ever had a Chapter 7 or Chapter 13

bankruptcy flag and observations within six months around flag removal.

Table 1: Summary Statistics

This table displays basic summary statistics for the main analysis variables: the mean, median, and standard
deviation. The first three columns show the statistics for the full sample, the next triplet for individuals pre-flag
removal, and the final three columns show summary statistics post-flag removal. Source: TransUnion.

Full Pre Post

Mean Median SD Mean Median SD Mean Median SD
Credit Score 630.67 638.00 83.76 620.63 631.00 76.68 639.28 643.00 88.47
Interest Rate 8.78 7.66 4.31 9.02 7.96 4.30 8.57 7.43 4.30
Quantity Opened
Cond. on Opening 20783 19484 10773 20332 19031 10495 21143 19842 10976

Quantity Opened 326.38 0.00 2915.35 306.50 0.00 2792.55 343.41 0.00 3016.52
If Charged-off 0.02 0.00 0.15 0.02 0.00 0.15 0.02 0.00 0.15

Table 1 presents summary statistics for our main analysis variables. There are 865,499

individuals in our final sample over 13 months totaling 11,251,487 individual-month obser-

vations. In 1.57 percent of the individual-month observations at least one auto-debt account

is opened, and the average opening balance conditional on opening is $20,783. Hence, the

average monthly account opening is $326.38. The average rate is 8.78%. The average credit

score in our sample is 631. Table 1 also shows summary statistics pre and post flag removal.

9Specifically, we let the monthly payment A= P×i
1−(1+i)−n , where P is the principal, n is the maturity, and i is the

interest rate. We use a root-solving algorithm to solve for i. Note that we use scheduled, and not actual payments
to construct interest rates.

10Appendix C shows the effect of flag removal on observed interest rates with fundamentally similar conclusions.
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Following flag removal, mean credit scores increase, interest rates decrease and borrowing

amounts increase. Of course, these changes may be due to both bankruptcy flag removals, and

secular time trends, which motivates our empirical strategy.

Now, following the steps we have set up in Section 2.5, we show how we estimate coun-

terfactual price and quantity changes for previously-bankrupt borrowers in Subsection 3.2 and

for never-bankrupt borrowers in Subsection 3.3. We summarize our results in Subsection 3.4.

3.2 Previously-Bankrupt Borrowers

3.2.1 Design for Flag Removal

We argued in Subsection 2.5 that, in a counterfactual world where bankruptcy flags were never

removed, previously-bankrupt borrowers whose flags are removed would see an increase in in-

terest rates and decrease in loan quantities, reflecting their visible higher risk to lenders. More-

over, somewhat surprisingly, the magnitudes of the counterfactual rate increase and quantity

decrease can be estimated simply by comparing rates and quantities between individuals ob-

served in the present world, just before and after bankruptcy flags are removed from credit

reports. To estimate these quantities empirically, we use variants of the following specifica-

tion:

yi t = γc + γt +δ
y
1[F lagRemoved] + βX i t + ϵi t (22)

where yi t are outcomes for individual i in month t, γc are cohort fixed effects, γt are calendar

period fixed effects, X i t are individual controls, and ϵi t is an error term which we assume is

uncorrelated with 1[F lagRemoved], conditional on observables. We cluster standard errors at

the level of the month in which the bankruptcy flag is removed. 1[F lagRemoved] is an indica-

tor of whether bankruptcy flags have been removed. The main coefficients of interest are the

δ y terms, which identify the difference in the outcome yi t following the removal of informa-

tion; as we argued in Subsection 2.5.1, under the assumptions of our framework, δ y is directly

informative about the difference between separating and pooling prices
�

φ(rH, f air)−φ(rpool)
�

and quantities
�

ΛH(rH, f air)−ΛH(rpool)
�

for the H group.

We explore three primary outcomes: Vantage credit scores, interest rates, and loan amounts.

We observe credit scores and loan quantities in all time periods. We only observe interest rates
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conditional on contracting. Hence, we additionally assume that these reflect the lowest avail-

able offer rates for a contract.11

The coefficient δ y captures the difference in the outcome yi t under the assumption that

nothing changes other than the removal of information on previous bankruptcies. More pre-

cisely, we assume that flag removal is orthogonal to the error term ϵi t . A potential concern is

that, due to removal of individual flags at different points in time, the estimates for δ y may be

biased by individuals leaving the control group and the heterogeneity of the treatment effect

over time (Goodman-Bacon, 2021; Barrios, 2021). To address this concern, we first provide

sharp graphical evidence of breaks when flags are removed, and then implement modern dy-

namic difference-in-difference estimators in Appendix D.

To provide graphical evidence that the observed effects are indeed driven by flag removals,

we further estimate an event-study regression to evaluate the identifying assumption using the

following variant of equation (22):

yi t = γc + γts +
6
∑

t=−6

δt{ei t = t}+ βX i t + ϵi t (23)

where γc are cohort-month and γts are year-month by score bucket fixed effects.12

We plot the coefficients δt , along with a 95% confidence interval. The coefficients capture

the difference in an outcome in each month before and after flag removal. We exclude the rel-

ative time dummy for period -1 as well as relative time dummy for period -6 due to collinearity

arising from the age-period-cohort problem common in similar specifications.13

11We focus on the case where the bankruptcy decision is already determined, and focus on the allocative effects.
Appendix B.7 discusses the case where flag removal impacts the filing decision. We construct a simple model in
which borrowers strategically decide whether to file for bankruptcy, and bankruptcy has social deadweight loss
costs. In the model, borrowers default more than is socially optimal; removing the flag causes borrowers to default
more, increasing the magnitude of this distortion. In a back-of-envelope calculation, we find that these costs can
be large relative to the allocative welfare costs that we consider here. A policymaker interested in evaluating the
full costs of bankruptcy flag removal should thus estimate these costs and take them into account. However, there
is no evidence that we are aware of showing that flag removal impacts the decision to file. In fact, only a small
fraction of bankrupt individuals seem to be aware of flag removal policies: just 9.2% of Chapter 7 filers correctly
guess the number of years remaining for their flag (Gross et al., 2020, Table 6). In this paper, we thus focus only
on quantifying the costs that bankruptcy flag removal imposes on allocative welfare.

12We measure score buckets by sorting individuals into one of 20 score buckets in the month before flag removal,
and hold the sorting constant throughout the 13 months observed.

13To ensure that our results are not dependent on this design choice, we implement a stacked difference-in-
difference comparing individuals with flag removal to individuals with bankruptcy flag removal 12 to 17 months
later in Appendix D.
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3.2.2 Effects of Flag Removal

We begin with graphical evidence showing point estimates of equation (23). The figures show

specifications including cohort and score bucket by year-month fixed effects. Figure 2 shows

estimates of the coefficients δt , where the outcomes are credit scores, interest rates, and loan

quantities. The top panel shows the Vantage score, the middle panel shows interest rates

at origination, and the bottom panel shows loan quantities. Consistent with prior work, we

see a very sharp increase—almost 20 credit score points—for previously-bankrupt individu-

als following the flag removal. This translates into a reduction in borrowing costs. Interest

rates for previously-bankrupt individuals show a clear drop following the flag removal, when

these previously-bankrupt borrowers become indistinguishable from never-bankrupt individu-

als. Consistent with the decline in interest rates, we see a sharp rise in loan volumes. There is

an approximately $20 increase in auto loan openings.

We next quantify the visual results in a regression framework. Table 2 presents variants of

equation (22). Column (1) includes a linear time trend. Column (2) adds time period fixed

effects. Column (3) adds cohort fixed effects, based on the bankruptcy filing date. Column (4)

includes both cohort and year-month fixed effects. And, finally, column (5) includes cohort and

score bucket by time period fixed effects. We measure score buckets by sorting individuals into

one of 20 such score buckets in the month before flag removal and hold the sorting constant

throughout the 13 months observed. In the top panel, the outcome is the Vantage credit score;

in the middle panel, it is interest rates; and in the bottom panel, it is loan volumes.

The results are broadly in line with the graphical evidence. The top panel of Table 2 in-

dicates that bankruptcy flag removals lead to a 17.1- to 17.2-point increase in credit scores,

or an approximate 2.76% increase in credit scores. The middle panel indicates that this is

associated with a 21- to 23-basis-point decrease in interest rates, or a 2.4%-2.5% decrease in

interest rates. The bottom panel shows that average new auto loan balances increase by $17.7

to $18.4, or 5.8%-6%. In the majority of our specifications and in our preferred specification,

the effect is significant at the 1% level. In columns (1) and (3), the effect size for loan quantities

is significant at the 5% level.
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Figure 2: Credit Scores, Interest Rates, and Loan Balances

Panel A: Credit Scores

Panel B: Interest Rates

Panel C: Loan Volumes

This figure shows estimates of the coefficients δt from the following specification yi t = γc + γts +
6
∑

t=−6

δt{ei t =

t}+ βX i t + ϵi t , along with a 95% confidence interval. In Panel A, the outcome yi t is credit scores; in Panel B, it
is interest rates; and in Panel C it is loan volumes. γc are cohort fixed effects, and γts are time period by score
bucket fixed effects. Standard errors are clustered at the cohort level. Source: TransUnion.
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Table 2: Credit Scores, Interest Rates, and Loan Volumes

This table shows estimates of the coefficients δ y from the following specification yi t = γc + γt +
δ y
1[F lagRemoved] + βX i t + ϵi t . In the top panel, the outcome yi t is the Vantage Score, in the middle panel

the outcome is interest rates, while in the bottom panel it is loan volumes. Interest rates are predicted with a
polynomial of current and past credit scores, period, and cohort fixed effects. γc are cohort fixed effects, and γt
are time period fixed effects. Standard errors are clustered at the cohort level. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Source: TransUnion.

(1) (2) (3) (4) (5)

Panel A: Credit Scores

1[FlagRemoved] 17.216∗∗∗ 17.147∗∗∗ 17.216∗∗∗ 17.125∗∗∗ 17.118∗∗∗

(0.298) (0.258) (0.298) (0.239) (0.237)

Constant 620.075∗∗∗ 621.165∗∗∗ 620.075∗∗∗ 621.448∗∗∗ 621.452∗∗∗

(0.488) (0.497) (0.188) (0.129) (0.128)
Observations 11,251,487 11,251,487 11,251,487 11,251,487 11,251,487
Adjusted R2 0.012 0.017 0.017 0.018 0.813

Panel B: Interest Rates

1[FlagRemoved] -0.218∗∗∗ -0.226∗∗∗ -0.218∗∗∗ -0.226∗∗∗ -0.226∗∗∗

(0.018) (0.006) (0.018) (0.004) (0.004)

Constant 9.109∗∗∗ 8.979∗∗∗ 9.109∗∗∗ 8.898∗∗∗ 8.898∗∗∗

(0.096) (0.024) (0.018) (0.002) (0.002)
Observations 11,251,487 11,251,487 11,251,487 11,251,487 11,251,487
Adjusted R2 0.003 0.044 0.044 0.046 0.878

Panel C: Loan Volumes

1[FlagRemoved] 18.344∗∗ 17.926∗∗∗ 18.344∗∗ 17.979∗∗∗ 17.793∗∗∗

(6.270) (4.049) (6.270) (4.017) (4.010)

Constant 299.363∗∗∗ 310.897∗∗∗ 299.363∗∗∗ 316.696∗∗∗ 316.796∗∗∗

(7.473) (2.901) (3.098) (2.163) (2.159)
Observations 11,251,487 11,251,487 11,251,487 11,251,487 11,251,487
Adjusted R2 0.000 0.001 0.001 0.001 0.002
Linear Time Trend Yes Yes Yes No No
Year-month FE No Yes No Yes No
Cohort FE No No Yes Yes Yes
Year-month by Score Bucket FE No No No No Yes
Clustered SE Cohort Cohort Cohort Cohort Cohort
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3.2.3 Welfare Estimates

Using our regression estimates, we can now calculate the quantities:

φ
�

rH, f air

�

,φ
�

rpool

�

,ΛH

�

rH, f air

�

,ΛH

�

rpool

�

allowing us to calculate the consumer surplus decrease, and welfare increase, that would be

generated for the H group in a counterfactual world where bankruptcy flags are never re-

moved. We set rH, f air equal to 9.02%, the average interest rate for borrowers before their flags

are removed in the data. After flag removal, previously-bankrupt individuals are pooled with

never-bankrupt individuals; the pooled rate rpool is equal to the pre-flag removal rate plus our

regression coefficient, 9.02% + δInterestRate. To simplify surplus accounting and to stay in ac-

cordance with our theory, we express these in terms of repayment fractions, φ. φ
�

rH, f air

�

is

2.077% of the original loan balance per month, and the pooling payment, φ
�

rpool

�

, is 2.066%.

Note, also, that we show both φ
�

rH, f air

�

and φ
�

rpool

�

for expositional purposes here and in

Figure 3; however, from Claim 1, only the difference φ
�

rpool

�

−φ
�

rH, f air

�

matters for welfare

and surplus, meaning that our results are functionally driven mainly by the regression estimate

δInterestRate, with the levels of rH, f air and rpool playing a small role.

We observe total loan quantity prior to flag removal: for previously-bankrupt individuals

before flag removal, roughly 18.1% of individuals open a loan each year, and the average loan

size conditional on opening a loan is $20,332. We assume that previously-bankrupt individu-

als with or without flag have similar demand at the same price. Hence, previously-bankrupt

consumers with no bankruptcy flag, when separated, have an annual average loan volume

of ΛH

�

rH, f air

�

= $3,678 per individual. From our regression estimates, flag removal causes

annual loan quantity to increase to:

ΛH(rpool) = ΛH(rH, f air) + 12δLoanVolume

where δLoanVolume is the coefficient on loan quantities from our difference-in-differences specifi-

cation; we multiply δLoanVolume by 12 because we run the loan volume regression at a monthly

level. We thus find that ΛH(rpool) is equal to $3, 891.5; that is, loan quantity increases by
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roughly $213.5 per year after flag removal. Note, also, that from Claim 1, the total change in

consumer surplus from flag removal depends on the level of ΛH(rpool), but the social surplus

change depends only on the difference ΛH(rpool)−ΛH(rH, f air).

We then plug these quantities into Claim 1 to calculate counterfactual outcomes if bankruptcy

flags are never removed. We depict these calculations graphically in the left panel of Figure 3.

We report borrower surplus and social welfare in two ways: in dollars per non-default month,

and in total expected dollars transferred to a borrower over the lifetime of a loan (taking into

account borrowers’ default probability). To calculate surplus in terms of expected dollars over

the life of a loan as in Claim 1, we multiply per-period surplus by the default adjustment term

ψH , as defined in (12). This only requires observing the default rate of previously-bankrupt

borrowers. Plugging in 0.15% for the default rate δH , we get ψH equal to 57.29.14

We find that in a counterfactual world without flag removal, H group surplus decreases

by $0.41 per eligible borrower each month. Multiplying by ψH , surplus decreases by roughly

$23.75 in expectation over the lifetime of a five-year loan. When, in the counterfactual world,

we restrict our attention to the 18.1% of borrowers that get a new auto loan each year, each

borrower essentially loses an expected transfer of $131.22 over the lifetime of a five-year loan.

We find that, due to the elimination of credit overprovision to the H group in the absence of

flag removals, there is a social welfare gain of $0.012 per H borrower per month; multiplying

by ψH , this is $0.67 in expectation over a five-year loan. Restricting attention to the 18.1%

of borrowers that get a new auto loan each year, there is a welfare gain of $3.70 per bor-

rower over a five-year loan due to the elimination of inefficiently high credit provision in the

counterfactual.

Next, we aggregate these welfare estimates across borrowers. Approximately 800,000 in-

dividuals have their bankruptcy flags removed each year. Multiplying by average loan size,

aggregate loan volume is approximately $2.94 billion per year in a world without flag removal,

and approximately $3.11 billion per year in a world with flag removal. In the counterfactual

world without flag removal, the borrower surplus decrease for the H group, illustrated as the

14For all auto loans ever opened by individuals who are ever bankrupt, we compute the ratio of loans that are
charged-off within two years of loan opening as 3.6%. This implies a monthly default probability of 0.15% =
δm = 1− (1− Pr(charged off in first two years))

1
24 . The monthly default rate corresponds to approximately 91%

of loans reaching five-year maturity without being charged-off.

26



light gray trapezoid in the left panel of Figure 3, is $0.33 million per month, or $19 million

in expectation over a five-year loan term. In other words, for loans originated in one year,

previously-bankrupt borrowers lose $19 million in expectation over a five-year loan term due

to the higher monthly payments. For loans originated in a given year, the gain in social welfare

due to the elimination of credit overprovision in the absence of flag removal, illustrated as the

dark gray triangle in the left panel of Figure 3, is $9,356 per month, or $535,975 in expectation

over a five-year loan term.

3.3 Never-Bankrupt Borrowers

Price Effects. We follow Subsection 2.5.2, estimating the counterfactual price change for

never-bankrupt individuals in a world without bankruptcy flag removal. We use the rearranged

zero-profit condition for lenders, equation (20). To apply (20), we need the relative loan

quantities for previously-bankrupt and never-bankrupt borrowers, as well as the default rate

adjustment terms, ψ. From the data, we calculate that approximately 10.6% of individuals go

bankrupt at some point; thus, the ratio of loan quantity for never-bankrupt individuals to loan

quantity for previously-bankrupt individuals with no flag is approximately:

ΛH

�

rpool

�

ΛL

�

rpool

� =
0.106

1− 0.106
≈ 0.1186. (24)

We thus can calculate total loan quantity, under the pooled rate rpool for low-cost never-

bankrupt individuals, simply as:

ΛL

�

rpool

�

=
ΛH

�

rpool

�

0.1186
= $26.26 billion

The default rate adjustment terms, ψH and ψL, are simply functions of default rates.

Monthly default rates are 0.15% among the previously-bankrupt, and 0.09% among the never-

bankrupt. Thus, we have:

ψH = 57.29, ψL = 58.34

Note that, while we keep the ψH ,ψL multipliers for internal consistency, ψH and ψL are very

similar in practice, implying that the ratio ψL
ψH

is very close to 1; thus, the ψ values essentially
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have no quantitative role in our analysis besides scaling H and L group welfare by a constant.

We can then plug these estimates into (20), derived from the zero-profit condition of As-

sumption 1, to determine the hypothetical price change for never-bankrupt individuals. We find

that, in a counterfactual world where bankruptcy flags are never removed, a never-bankrupt

individual has to repay 0.001% of the principal less per month, reflecting the fact that in

the counterfactual lenders can separate the safer never-bankrupt individuals from the riskier

previously-bankrupt individuals. This price change is relatively small since the never-bankrupt

group is approximately ten times larger than the previously-bankrupt group.

Quantity Effects. We then calculate the counterfactual quantity increase for never-bankrupt

individuals simply by using Assumption 2, which states that demand elasticities are identical

across groups. This implies that the never-bankrupt demand slope bL is:

bL = bH ∗ 1/(ΛH/ΛL)

where bH , the demand slope for previously-bankrupt borrowers, is just the ratio of aggregate

quantity changes and repayment rate changes implied by our regressions in Subsection 3.2

(bH =
213.52∗800,000

0.011% ). Using the ratio of loan quantities from (24), we calculate a total counter-

factual quantity increase, for never-bankrupt borrowers, of approximately $170 million. The

total loan quantity changes for never-bankrupt and previously-bankrupt borrowers are simi-

lar in magnitude. Essentially, this is because the never-bankrupt quantity change results from

multiplying a smaller price change by a larger total borrower base, and these two effects offset

under the assumption of equal elasticities.

Welfare Estimates. With counterfactual price and quantity changes for the never-bankrupt

in hand, we can compute the changes in total welfare and borrower surplus generated by the

never-bankrupt group under our counterfactual where flags are never removed. In the coun-

terfactual, for each never-bankrupt individual over the five-year loan term, borrower surplus

increases by $2.9, but the welfare increase due to more efficient credit allocation is only $0.01.

Aggregating across never-bankrupt borrowers, we find that aggregate loan volume is approx-

imately $26.42 billion per year in a counterfactual world without flag removal, compared to

approximately $26.26 billion per year in the status quo where flag removal exists. In the
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counterfactual without flag removal, the increase in borrower surplus for the never-bankrupt,

illustrated as the light gray rectangle and dark gray triangle in the right panel of Figure 3,

is $335,984 per month, or $19.6 million in expectation over a five-year loan term. In other

words, for loans originated in a year, never-bankrupt borrowers gain $19.6 million in expec-

tation over a five-year loan term due to the lower monthly payments. This gain is slightly

larger than the borrower surplus decrease for previously-bankrupt borrowers in the counter-

factual, and the difference between the two constitutes the social welfare gain from keeping

bankruptcy flags. For loans originated in a given year, the gain in social welfare due to the

elimination of credit underprovision for never-bankrupt borrowers in the presence of data,

illustrated as the dark gray triangle in the right panel of Figure 3, is $1,070 per month, or

$62,410 in expectation over a five-year loan term. This gain is small relative to the welfare

effect generated by the previously-bankrupt borrowers. As we discuss in Appendix B.1, this

is because the never-bankrupt borrowers far outnumber the previously-bankrupt borrowers,

implying that deadweight loss triangles are smaller for this group.

Note that the assumption that demand elasticities are equal across groups is not quanti-

tatively important for our results, because the never-bankrupt L group contributes so little to

total welfare. For the welfare effect in the L group to be quantitatively important, the group’s

demand elasticity would have to be unrealistically large; we show, at the end of Appendix B.1,

that the L group would need a demand elasticity almost nine times larger than the H group’s

in order for the L group’s welfare effect to equal that of the H group.

3.4 Summary: Counterfactual Welfare and Transfer Effects Across Groups

Combining our estimates, we can summarize the welfare and transfer effects of our counterfac-

tual in which bankruptcy flags are never removed. We visualize these effects in Figure 3. The

horizontal red lines show the break-even payments lending to previously-bankrupt φ(rH, f air)

and never-bankrupt φ(rL, f air) types in the counterfactual world without flag removals. The

dashed horizontal line shows the pooling payment in the presence of flag removal.

In the counterfactual, total welfare increases by $0.75 per previously-bankrupt individual

with a flag removed. Table 3 also summarizes the relevant quantities expressed per individ-

ual with flag removal. Of the $0.75 increase, eliminating credit overprovision to previously-
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bankrupt contributes $0.67 per individual, and eliminating credit underprovision to never-

bankrupt borrowers contributes $0.08 per previously-bankrupt individual.15 Multiplying $0.75

by the total number of borrowers affected by flag removals, we have a total welfare change of

approximately $598,385 for loans originated in the U.S. in a given year. This estimate reflects

the elimination of two inefficiencies: one arising from credit overprovision to the previously-

bankrupt, shown as the dark gray triangle in the left panel of Figure 3, and one arising from

credit underprovision to the never-bankrupt (a much smaller contribution), shown as the dark

gray triangle in the right panel of Figure 3.

The figure also depicts the surplus redistributed relative to the counterfactual. Per previously-

bankrupt individual with no flag, borrower surplus decreases by $23.75 over the loan term in

the counterfactual. In aggregate, in the counterfactual, previously-bankrupt lose $19 million in

borrower surplus per year of loan originations, as we calculated in Subsection 3.2.3. This cor-

responds to the light gray trapezoid in the left panel of Figure 3. Per never-bankrupt individual,

borrower surplus increases by $2.9 over the loan term in the counterfactual. In aggregate, in

the counterfactual, never-bankrupt gain of $19.6 million in borrower surplus per year of loan

originations; as we calculated in Subsection 3.3. This corresponds to the light gray rectangle

and dark gray triangle in the right panel of Figure 3.

In our framework, bankruptcy flag removal, relative to the counterfactual where flags are

never removed, can be thought of as a policy which redistributes surplus from the never- to

the previously-bankrupt, at the cost of some social deadweight loss. We can now quantify the

degree to which flag removal is an imperfect transfer tool: our estimates imply that for loan

originations in a given year, flag removal transfers roughly $19 million from never-bankrupt to

previously-bankrupt borrowers, at the cost of destroying $598,385 in social surplus. Thus, for

each dollar of surplus transferred to previously-bankrupt borrowers, 3.15 cents of social surplus

are destroyed. This substantiates the intuition, from Subsection 2.3, that when bankruptcy

flags are removed from credit reports, the social deadweight losses from credit misallocation

are small.16

15Note that this $0.08 figure is per previously-bankrupt individual, while the $0.01 reported in Section 3.3 is
per never-bankrupt individual, and there are roughly 8.5 times as many never-bankrupt as previously-bankrupt
individuals with no flag.

16A natural question is how our conclusions are affected by the informativeness of the removed data. In Ap-
pendix B.8, we show that the efficiency ratio is worse when the signal is more informative: that is, if data is more
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Figure 3: Empirical Welfare Estimates

(a) Previously-Bankrupt/High Cost

Monthly φ(r)

Λ

Demand

MC

$3.11$2.94

2.066%

2.077%

(b) Never-Bankrupt/Low Cost

Monthly φ(r)

Λ

Demand

MC

$26.26 $26.42

2.066%
2.065%

This figure illustrates the changes in borrower surplus and efficiency if bankruptcy flags are never removed. In

each panel, the y-axis, φ(r), represents the nominal fraction of the loan amount repaid each month, which we

calculate as the monthly payment divided by the principal balance. For example, a φ(r) value of 2.077% means

that the borrower pays 2.077% of the principal amount each month over the course of a five-year loan. The

x-axis shows the total loan amount per year, Λ, in billion dollars for previously-bankrupt/high-cost and never-

bankrupt/low-cost borrowers, respectively. For example, $2.94 billion represents the loan amount that 800,000

previously-bankrupt individuals borrow each year when bankruptcy flags are never removed. In panel (a), the

light gray trapezoid illustrates the borrower surplus lost by previously-bankrupt individuals in the counterfactual

where flags are never removed. The dark gray triangle shows the efficiency gain from eliminating credit overpro-

vision to previously-bankrupt individuals in the counterfactual. In panel (b), the light gray and dark gray area

shows the borrower surplus gain for never-bankrupt individuals in the counterfactual. The dark gray triangle

illustrates the efficiency gain due to eliminating credit underprovision to never-bankrupt individuals.
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Table 3: Welfare Estimates

This table summarizes our main estimates implied by the specifications of Table 2. Panel A shows average interest rates in the six months
before flag removal (rH, f air ), the interest rate effect of flag removal (rpool − rH, f air ), and the effect of flag removal on the fraction of the
principal repaid each month in a standardized five-year loan (φ(rpool )−φ(rH, f air )). Panel B shows average loan quantities in the six months
before flag removal and the quantity effect of flag removal. Panel C summarizes surplus changes relative to a counterfactual world in which
bankruptcy flags are never removed. The first row shows the average change in consumer surplus for individuals with flag removal for
the average five-year loan. It is the sum of monthly non-default period surpluses. The number of non-default periods is derived from the
probability that loans to individuals who at some point have a bankruptcy flag will be charged-off within two years of opening. The second
row shows the social surplus change in expected dollars over the term of a loan, for each individual whose flag is removed. The estimate
combines the welfare loss due to credit overprovision to the previously-bankrupt H group and credit underprovision to the never-bankrupt L
group. The third row provides the efficiency change per dollar redistributed to bankrupt individuals through the removal of bankruptcy flags.
It is computed by dividing the second row by the first row. Source: TransUnion.

(1) (2) (3) (4) (5)

Panel A: Prices

Pre-flag-removal loan interest rate (%) 9.02% 9.02% 9.02% 9.02% 9.02%

Flag removal-induced change in interest rate (%) -0.218% -0.226% -0.218% -0.226% -0.226%

Change in monthly repayment as share of loan principal (%) -0.011% -0.011% -0.011% -0.011% -0.011%

Panel B: Quantities

Pre-flag-removal loan quantity
(Average $ per borrower per year) $3,678.00 $3,678.00 $3,678.00 $3,678.00 $3,678.00

Flag removal-induced change in loan quantity
(Average $ per borrower per year) $220.13 $215.11 $220.13 $215.75 $213.52

Panel C: Average Surplus Changes

Average consumer surplus redistributed to individuals with
flag removal over 5 years ($ per eligible borrower with flag removal) $22.93 $23.76 $22.93 $23.76 $23.75

Change in social surplus per individual over 5 years
($ per eligible borrower with flag removal) -$0.74 -$0.75 -$0.74 -$0.76 -$0.75

Welfare change per dollar redistributed
to bankrupt individuals -0.0324 -0.0317 -0.0324 -0.0318 -0.0315
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4 Conclusion

This paper presents a new framework for studying the role of data acquisition in consumer

credit markets. In a simple price-theoretic model of lending markets, we show that the price

and quantity changes resulting from new data are sufficient statistics for calculating the wel-

fare and transfer effects of data policy. We apply our framework to the setting of bankruptcy

flag removal; we show that keeping bankruptcy flags would increase social welfare relative

to the status quo where bankruptcy flags are removed. However, the associated welfare gains

would be fairly small relative to the induced transfers between previously-bankrupt and never-

bankrupt borrowers.

While we present a specific application associated with the welfare benefits of data ac-

quisition, the method is broadly applicable in financial markets. Future work could study data

acquisition in other lending markets, and explore other contexts in which data acquisition leads

to consumer benefits. For example, certain types of data acquisition may lead to large welfare

gains relative to welfare transfers. Further, the welfare gains associated with data acquisition

may be small in certain settings, suggesting that the privacy or equity gains from making data

unavailable may outweigh the direct benefits of using the data to screen borrowers.

informative about default rates, then removing it has a larger negative impact on social welfare, for each dollar
of surplus transferred between groups. Quantitatively, however, we show that data removal remains a low-cost
way to transfer surplus between groups, costing less than 21 cents of deadweight loss for each dollar transferred,
even for signals that induce price changes up to eight times as large as the price changes induced by bankruptcy
flag removal.
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Appendix

A Proofs

A.1 Proof of Claim 1

Lender profits. Since we have assumed r j, f air is equal to the marginal cost of providing credit,

at rate r j, f air , and payment φ
�

r j, f air

�

, lenders break even on borrowers. At rate rpool , lenders’

profit, per non-default period and per dollar lent, is:

φ
�

rpool

�

−φ
�

r j, f air

�

Thus, lenders’ total profit at rate rpool is:

ψ jΛ
�

rpool

� �

φ
�

rpool

�

−φ
�

r j, f air

��

(25)

The change in profits on group j, when moving from rate rpool to r j, f air , is thus the negative of

(25).

Borrower welfare. From (13) in the main text, we have:

DCS j

�

r j, f air

�

− DCS j

�

rpool

�

= −ψ j

∫ r j, f air

rpool

Λ j (r̂)
dφ (r̂)

d r̂
d r̂

Changing variables to φ, we can alternatively write this as:

DCS j

�

r j, f air

�

− DCS j

�

rpool

�

= −ψ j

∫ φ(r j, f air)

φ(rpool)
Λ j (r̂) dφ (26)

Since Λ (φ) is linear, (26) is equal to (18). Summing (17) and (18) and rearranging, we get

(19).

A.2 Proof of Claim 2

Repeating the definitions in (70) and (71), we have:

sL ≡
ψLΛL

�

rpool

�

ψLΛL

�

rpool

�

+ψHΛH

�

rpool

� (27)

∆≡ φ
�

rH, f air

�

−φ
�

rL, f air

�

(28)
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Using (27) and (28), we can write (68) as:

φ
�

rpool

�

= φ
�

rL, f air

�

+ (1− sL)∆+mpool (29)

Or,

φ
�

rpool

�

= φ
�

rH, f air

�

− sL∆+mpool (30)

To calculate welfare, we will calculate the welfare of each group, when data is available

and is not, relative to the fully efficient case, using the result of Claim 1. For the low-cost L

group, when data is available, the social welfare loss relative to the fully efficient case can be

obtained using (19):

1
2

�

φ (rL)−φ
�

rL, f air

�� �

ΛL

�

rL, f air

�

−ΛL (rL)
�

(31)

=
1
2

�

φ
�

rL, f air

�

+mL −φ
�

rL, f air

�� ��

aL − bLφ
�

rL, f air

��

−
�

aL − bL

�

φ
�

rL, f air

�

+mL

���

(32)

LossL,data =
bL

2
m2

L (33)

Intuitively, there is a welfare loss from markups, which depends on the size of the markup

mL, and the slope of demand bL. Similarly, for the high-cost H group, the welfare loss from

markups is:

LossH,data =
bH

2
m2

H (34)

Using these expressions, we calculate the welfare loss, relative to the fully efficient benchmark,

in the case of pooled pricing. Note that we can write (29) as:

φ
�

rpool

�

= φ
�

rL, f air

�

+ (1− sL)∆+mpool

Plugging this into (31), expanding and simplifying, the welfare loss for the low-cost L group

in the no-data case is:

LossL,nodata =
bL

2

�

mpool + (1− sL)∆
�2

(35)

And for the high-cost H group, we have:

LossH,nodata =
bH

2

�

mpool − sL∆
�2

(36)

Hence, the welfare change when going from the pooled case to the case with data is

bL

2

�

�

mpool + (1− sL)∆
�2
−m2

L

�

(37)
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for the low-cost L group, and

bH

2

�

�

mpool − sL∆
�2
−m2

H

�

(38)

for the high-cost H group, in terms of dollars per non-default period. To convert these quan-

tities into expected dollars over the term of a loan, we will multiply each by the expected

number of non-default periods, ψL and ψH , defined in (12). The total welfare change from

data availability is thus:

∆Wel f are =ψH LossH,nodata +ψL LossL,nodata −ψH LossH,data −ψL LossL,data

∆Wel f are =ψH
bH

2

�

�

mpool − sL∆
�2
−m2

H

�

︸ ︷︷ ︸

High cost g roup

+ψL
bL

2

�

�

mpool + (1− sL)∆
�2
−m2

L

�

︸ ︷︷ ︸

Low cost g roup

(39)

This is (69).
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B Extensions

B.1 Ratio of Welfare Changes between L and H groups

In this Appendix, we calculate the ratio of welfare changes between the high-cost H group and

the low-cost L group when data is never removed from credit reports. We show that the L group

welfare change tends to be a factor ΛH (r)
ΛL(r)

smaller than the H group welfare effect, multiplied by

some constants; thus, in our setting where most individuals are not in the previously-bankrupt

H group, the welfare effects will tend to be dominated by what is happening in the previously-

bankrupt H group.

From (19) of Claim 1, the increase in social welfare for the L group from never removing

data, in expected dollars over the lifetime of a loan, is:

1
2
ψL

�

φ
�

rL, f air

�

−φ
�

rpool

�� �

ΛL

�

rpool

�

−ΛL

�

rL, f air

��

(40)

Writing (40) using the demand slope bL, this becomes:

1
2
ψL

�

φ
�

rL, f air

�

−φ
�

rpool

�� �

bL

�

φ
�

rL, f air

�

−φ
�

rpool

���

(41)

Now, we can express (41) in terms of the price change for the H group using the zero-profit

condition. From (20):

φ
�

rL, f air

�

−φ
�

rpool

�

= −
ψHΛH

�

rpool

�

ψLΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

��

(42)

In words, (42) states that the price reduction for L borrowers is the negative of the price

increase to the H group,
�

φ
�

rH, f air

�

−φ
�

rpool

��

, multiplied by the ratio of total loan volumes,
ΛH (φ(r))
ΛL(φ(r))

, and the ratio of expected non-default periods ψH
ψL

. Applying this to (41), to get:

=
1
2
ψL

�

−
ψHΛH

�

rpool

�

ψLΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

��

�

×

�

bL

�

−
ψHΛH

�

rpool

�

ψLΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

��

��

(43)

If we further apply (21) of Assumption 2, stating that demand elasticities are equal across

groups, then (43) rearranges to:

=
1
2
ψL

�

ψH

ψL

�2 ΛH

�

rpool

�

ΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

�� �

bH

�

φ
�

rH, f air

�

−φ
�

rpool

���

(44)
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Now, from (19) of Claim 1, and substituting for the ΛH terms using demand linearity, the

change in social welfare for the H group in a counterfactual world where is data is not removed

is, in expected dollars over the lifetime of a loan:

1
2
ψH bH

�

φ
�

rH, f air

�

−φ
�

rpool

�� �

φ
�

rH, f air

�

−φ
�

rpool

��

(45)

Comparing (45) and (44), the change in welfare for the L group is a factor
ψHΛH(rpool)
ψLΛL(rpool) times the

change in welfare for the H group. The factor ψH
ψL

will tend not to be very large or small, for

default rates that are not unrealistically high. In our setting, ΛH

�

rpool

�

is much smaller than

ΛL

�

rpool

�

, so the change in welfare will tend to be much smaller for the L group than the H

group, as we show empirically in Section 3. Quantitatively, note that if we assumed that the

L group elasticity was kL times larger than the H group elasticity, then the welfare change for

the L group, (44), would become:

1
2

kL

ψ2
H

ψL

ΛH

�

rpool

�

ΛL

�

rpool

�

�

φ
�

rH, f air

�

−φ
�

rpool

�� �

bH

�

φ
�

rpool

�

−φ
�

rH, f air

���

In order for the L group welfare change to be non-negligible, the factor kLwould have to be

approximately equal to ψL
ψH

ΛL(r)
ΛH (r)

. Plugging in our Λ ratio (
ΛH(rpool)
ΛL(rpool) ≈ 0.1186) and ψ estimates

(ψH = 57.29, ψL = 58.34) from the main text (e.g., compare Subsection 3.3), we get that

the L group demand elasticity would have to be approximately 8.6 times the H group demand

elasticity for the L group welfare change to be equal to that of the H group.

B.2 Interest Rate Menus and Loan Size Limits

In the baseline model, we assume the interest rate r is fixed and independent of loan size, and

that a borrower can borrow arbitrarily much. In this appendix, extending the baseline model,

we relax these assumptions, allowing the interest rate r (L) to depend on loan size L, and

allowing some upper bound L̄ on loan size. This may capture, for example, hard PTI or LTV

caps, or interest rates which are higher for higher LTV loans. We analyze the problem facing

a single borrower. To model a shift in interest rates, we introduce a parameter ω which shifts

the “menu” of interest rates vertically, so that the borrower’s rate is r (L)+ω. We also assume

there may be a hard ceiling L̄ on the size of the loan the borrower gets. We can thus write the
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borrower’s optimization problem as:

V (r) =max
L

u0 (w0 + L)+

T
∑

t=1

β t (1−δ)t
�

u (wt)− u′ (wt) Lφ (r (L) +ω)
�

+
T
∑

t=1

(1−δ)t−1δ

T
∑

t̃=t

β t̃u (cD)

s.t. L ≤ L̄

We can thus analyze how a small change in ω, which shifts upwards or downwards the menu

of interest rates facing the borrower, affects borrower utility.17 Applying the envelope theorem,

we have:
dV
dω
= −

T
∑

t=1

β t (1−δ)t u′ (wt) L∗ (ω)φ′ (r (L∗ (ω)) +ω) (46)

Integrating, for a given change in ω, we have:

V (ω̃)− V (ω) = −

�

T
∑

t=1

β t (1−δ)t u′ (wt)

�

︸ ︷︷ ︸

U til i t y weight

�

∫ ω̃

ω

L∗ (ω)φ′ (r (L∗ (ω)) +ω) dω̂

�

︸ ︷︷ ︸

Pa yment change

(47)

Expressions (46) and (47) are unchanged from (6) and similar to (8). Thus, the analysis of the

main text applies unchanged in the presence of credit constraints: if data policy affects market

outcomes solely through shifting the menu of interest rates available to customers, expression

(47) correctly captures the welfare effects of data policy.

It may seem somewhat surprising that our findings are completely unaffected by the pres-

ence of credit constraints. A simple intuition is that the envelope theorem states that, if a

consumer is optimally borrowing some amount L∗, paying φ (r) L∗ and interest rates shift by

ε, the borrower has to pay Lφ (r + ε) instead of Lφ (r), and this monetary difference fully

captures the borrower’s change in welfare. This logic applies whether L is chosen freely, at

some cost to interest rates, or constrained to be below some upper bound L̄.

An important caveat, however, is that this analysis only applies to policies which act through

changing interest rates. Suppose for example the main channel through which bankruptcy flag

removal affected outcomes was through changing the amount consumers could borrow, L̄; it

would then not be correct to summarize the effect of policy using dV
dω . We would instead want

17There is a more general version in which we allow r (L,ω) to depend flexibly on ω; the envelope theorem
still holds, implying:

dV
dω
= −

T
∑

t=1

β t (1−δ)t u′ (wt) L∗ (ω)φ′ (r (L∗,ω))
∂ r
∂ω
|L=L∗(ω)

We focus on the linear-shift version for simplicity.
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to calculate dV
d L̄ , a quantity which depends on the shadow price of the constraint L ≤ L̄, which

we have not found any simple way to measure empirically.

B.3 Endogenous Default and Post-Default Value

In the baseline model, we assumed that default is exogenous, and that upon default borrowers

receive the fixed amount cD. In this appendix, we explore relaxing both these assumptions.

We analyze the problem facing a single borrower; for notational simplicity, assume there are

only two periods, so money is borrowed in period 0 and paid back in period 1. Assume the

borrower can choose whether to default in period 1; hence, the borrower chooses loan size to

solve:

V (r) =max
L

u0 (w0 + L) +

∫

βmax
�

VD (r, L, s) ,
�

u (wt , s)− u′ (wt , s) Lφ (r)
��

dF (s) (48)

Where, in the second period, the borrower chooses between repaying the loan and attaining

u (wt , s)− u′ (wt , s) Lφ (r)

or defaulting, and receiving some value function VD (r, L, s) from default. The variable s, dis-

tributed as F (s), is a continuous random variable which affects borrowers’ default decisions;

we could think of s as representing default-relevant random factors, such as stochastic income

shocks, or whether a borrower loses her job. s is allowed to affect u (wt , s) , u′ (wt , s), and the

value of default VD (r, L, s). We assume there is a threshold equilibrium, so borrowers default

if s > s∗. We leave precisely what s represents unspecified, as it does not affect the conclu-

sions from our analysis. Importantly, in this setting, the value borrowers receive upon default,

VD (r, L, s), may depend on borrowers’ loan size and interest rate. This represents, for exam-

ple, that if lenders have partial recourse, borrowers may be worse off if they start a loan with

a higher interest rate and then default on a loan with a larger balance. Accounting for such

effects quantitatively is not straightforward, as it requires taking a stance on proceedings after

loan default.

Differentiating (48) with respect to r using the envelope theorem, we have:

dV
dr
= β









∫

s<s∗
−u′ (wt , s) L

dφ
dr

dF (s)
︸ ︷︷ ︸

A

+

∫

s≥s∗

∂ VD (r, L, s)
∂ r

dF (s)
︸ ︷︷ ︸

B









(49)
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Suppose that ∂ VD(r,L,s)
∂ r = 0; this is the case in the main text, model, where we assumed that

consumption upon default, cD, is exogenous. Expression (49) then reduces to term A, which is

just (6) in the main text, with 1− F (s∗) playing the role of the exogenous default rate δ. Thus,

in a model where borrowers optimally decide when to default, but outcomes upon default are

unaffected by interest rates, our results continue to hold. However, in the general case where
∂ VD(r,L,s)

∂ r may be nonzero, the derivative dV
dr has the additional term B, reflecting how much

changes in r on average change the value function upon default.

Expression (49) shows that endogenous default per se does not affect (6); the basic logic of

the envelope theorem—that, when r increases, the total monetary amount paid in non-default

states increases by an amount directly proportional to loan size L—continues to hold. What

does matter is whether interest rates affect the value borrowers attain after default; if ∂ VD(r,L,s)
∂ r

is nonzero, there is an extra term in the derivative dV
dr . For example, higher interest rates could

increase the balance at the time of default, which can affect post-default consumption when

loans have recourse.

B.4 Partially Separating Prices

In our main model, as well as our empirical analysis, we consider shifting from a pooling equi-

librium to a perfectly separating equilibrium, in which each borrower group has homogeneous

default rates and faces a price which exactly matches their default rate. In most realistic set-

tings, data will only be partially informative, and there will be some heterogeneity in default

rates within borrower groups. In a more realistic model where data only leads to partial sep-

aration, so there are residual differences in borrowers’ costs within groups separated through

data, how accurate are the expressions in Claim 1? In this Appendix, we show that the simple

expressions in Claim 1 are approximately equal to expressions for lender, borrower, and total

surplus in a richer model with heterogeneity within groups, as long as default rates do not vary

very much within groups, and borrowers’ demand elasticities do not covary very much with

default rates.

We assume there is a finite (but possibly large) set of possible default rates δ1 . . .δN . There

are two groups, X and Y , with different distributions over default rates pX (δ) , pY (δ). We

write loan demand as ΛX ,i (r) or ΛY,i (r), so loan demand may vary across groups, and across

types within a group. As in Subsection 2.4, we assume loan demand is linear in φ (r).
Suppose some data is introduced so that the market can distinguish between the two groups

X and Y ; the market thus shifts from the fully pooled price rpool for all borrowers, to the

partially pooled prices rX ,pool and rY,pool for groups X and Y . The prices rX ,pool and rY,pool are

not perfectly separating prices, since we assumed there are differences in borrowers’ default

rates within groups X and Y . However, intuitively, if group identities are somewhat informative
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about default rates, then total welfare should tend to increase when shifting to rX ,pool , rY,pool .

Social welfare. To calculate the change in welfare, we can calculate total deadweight loss

under each scenario, using (19), and then take the difference between these sums. Under rpool ,

summing across all borrower types within groups X and Y , deadweight loss is:

1
2

N
∑

i=1

ψ (δi)
�

φ
�

ri, f air

�

−φ
�

rpool

�� �

ΛX ,i

�

rpool

�

−ΛX ,i

�
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��

pi
X

+
1
2

N
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ψ (δi)
�

φ
�
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�

−φ
�

rpool
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ΛY,i

�

rpool

�

−ΛY,i

�

ri, f air

��

pi
Y

(50)

where we multiply each term by ψ (δi), from (12), so welfare is in terms of expected dollars

over the lifetime of a loan. Since we assumed demand is linear in φ (r), we can write (50)

instead as:
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N
∑

i=1

ψ (δi)
�

φ
�

rpool

�

−φ
�
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��2
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1
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i=1
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�

φ
�
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�

−φ
�

ri, f air

��2
bY,i p

i
Y (51)

Correspondingly, total welfare loss under separated pricing rX , rY can be written as:

1
2

N
∑

i=1

ψ (δi)
�

φ
�

rX ,pool

�

−φ
�
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��2
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−φ
�
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��2
bY,i p

i
Y

(52)

We wish to find the difference between (51) and (52). We will focus on the group X terms,

since the group Y case is symmetric. Now, note that we can write the group X term from (51)

as:
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��
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=
1
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3: Covariance

(53)

Expression (53) can be thought of as an “approximate sum of squares” decomposition of DWL

under rpool . Term 1 in (53) is positive, since demand is downwards-sloping so bX ,i is positive,

the weights ψ (δi) and pi
X are positive, and

�

φ
�

rpool

�

−φ
�

rX ,pool

��2
is always positive. Term

2 is exactly the left term of (52), that is, total DWL in group X under the separated price

φ
�

rX ,pool

�

. Thus, if term 3 is 0, (53) implies that DWL under rpool is always greater than DWL

under rX ,pool , rY,pool , analogous to the baseline model.

When will term 3 equal zero? Multiplying and dividing by ΛX ,i

�

rX ,pool

�

, term 3 in (53) can

be written as:
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The ratio
bX ,i

ΛX ,i(rX ,pool) is the demand elasticity of sub-group i; writing this as ϵi, this is:

=
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X (54)

Suppose demand elasticities are constant across borrower types, ϵi = ϵ for all i. Factoring out

ϵ, we have:

=
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rpool
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Now, generalizing Assumption 1 to more than two groups, if competitive lenders set prices so

that they break even in expectation across types over the lifetime of a loan, lenders’ zero-profit

condition is that:
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n
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pi
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Hence, if φ
�

rX ,pool

�

satisfies lenders’ zero-profit condition and ϵi is constant, then (55) is

equal to 0.

In this case, (53) shows that moving from pooled pricing to separated pricing always in-

creases welfare. Moreover, the size of the welfare increase is exactly term 1 in (53). Note that

we can write this term as:
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If default rate δi ’s do not vary too much across borrowers, we can approximate ψ (δi) as a

constant:

ψ (δi)≈ ψ̄ (58)

Then the welfare increase in (57) is approximately:
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This is exactly (19), that is, the welfare increase assuming all borrowers in group X have the

same default rate.

What happens when elasticities are not equal? For ease of interpretation, define the weighted

average elasticity:

ϵ̄ =
N
∑

i=1

pi
Xϵ

Since (55) is 0 for any constant ϵ, for ease of interpretation, we can choose ϵ = ϵ̄, and then

subtract the sum (55), which is equal to 0, from (54), to write (54) as:
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Expression (59) shows that term 3 in (53) can be thought of as a weighted covariance between
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the fair price φ
�

ri, f air

�

and the elasticity ϵi within group X , weighted byψ (δi)ΛX ,i

�

rX ,pool

�

pi
X .

Suppose φ
�

rpool

�

> φ
�

rX ,pool

�

, so pooled pricing tends to increase prices for group-X bor-

rowers. This tends to decrease welfare (increase DWL) for low-risk agents with φ
�

rX ,pool

�

>

φ
�

ri, f air

�

, for whom even the pooled price φ
�

rX ,pool

�

is too high, and increase welfare (de-

crease DWL) for high-risk agents with φ
�

rX ,pool

�

< φ
�

ri, f air

�

. When demand elasticities are

constant across types, these effects exactly cancel, and the covariance term will be ignored.

However, if for example the low-risk individuals tend to have higher elasticities than the high-

risk individuals, then the covariance term will tend to be positive, increasing the DWL effect

of pooled pricing, relative to the baseline. While demand elasticities may not be exactly the

same, note that if the variance of demand elasticities is low, the covariance also cannot be very

high; thus, if elasticities are roughly constant across borrowers, the covariance term will be

low and Claim 1 of the main text will be approximately correct.

Producer surplus. Under separated pricing rX ,pool , rY,pool , by assumption, producers break

even for groups X and Y . Hence, prices satisfy (56). Under any other price rpool , constant

across groups, producers’ profits/losses in group X without data are:

N
∑

i=1

ψ (δi)
�

φ
�

rpool

�

−φ
�

ri, f air

��

ΛX ,i

�

rpool

�

pi
X (60)

and with data:

N
∑

i=1

ψ (δi)
�

φ
�

rX ,pool

�

−φ
�

ri, f air

��

ΛX ,i

�

rX ,pool

�

pi
X

Hence, the change in producer surplus is:

N
∑

i=1

ψ (δi) (φ
�

rpool

�

−φ
�

rX ,pool

�

)ΛX ,i

�

rpool

�

pi
X

+
N
∑

i=1

ψ (δi) (φ
�

rX ,pool

�

−φ
�

ri, f air

�

) ∗ (ΛX ,i

�

rpool

�

−ΛX ,i

�

rX ,pool

�

)pi
X

(61)

Under constant elasticity of substitution and zero lender profit, we get that the change in

producer surplus is:

N
∑

i=1

ψ (δi) (φ
�

rpool

�

−φ
�

rX ,pool

�

)ΛX ,i

�

rpool

�

pi
X

Again, if we approximate ψ (δi) as a constant using (58), producers’ losses are:

49



≈ ψ̄
�

φ
�

rpool

�

−φ
�

rX ,pool

��

N
∑

i=1

ΛX ,i

�

rpool

�

pi
X

︸ ︷︷ ︸

(62)

Now, the term with the underbrace is simply average loan demand across types i, weighted

by the fractions of group X which have type i, which is just total loan demand in X ; hence,

(62) is approximately (17) of Claim 1, for ψ̄≈ψ.

Consumer surplus. We have shown that, ifψ (δi)≈ ψ̄ and ϵi ≈ ϵ, then the simple expres-

sion for producer surplus changes, (17) in the main text, is approximately equal to the sum of

producer surplus changes across all types, (61); and that if ψ (δi) ≈ ψ̄ and ϵi ≈ ϵ, then the

simple expression for total surplus changes, (19) in the main text, is approximately equal to

the sum of total surplus changes across all types, the X term in (51). The consumer surplus

change from data, across all types, is for group X borrowers:

1
2

N
∑

i=1

ψ (δi)
�

φ
�

rpool

�

−φ
�

rX ,pool

�� �

ΛX ,i

�

rpool

�

+ΛX ,i

�

rX ,pool

��

pi
X (63)

The change in total surplus—the X term in (51)—is equal to the sum of producer surplus,

(61), and consumer surplus, (63). Hence, since the sum of consumer surplus (18) and pro-

ducer surplus (17) is equal to total surplus (19) in the main text, it follows that the multi-type

expression for consumer surplus (63) is approximately equal to the simple expression (18) in

the main text, under the assumptions that ψ (δi)≈ ψ̄ and ϵi ≈ ϵ.
Any model is an approximation to reality; the goal of this analysis is to quantify the extent

of errors in the naive model in which each group can be thought of as having a single homo-

geneous default rate. We have shown that the errors in the approximation that all borrowers

within a group have the same default rate depends on two quantities: how much default rates

vary within groups, and how much default rates covary with demand elasticities. In settings

where fine-grained data is available, in principle (59) could also be estimated directly.

B.5 Imperfect Competition

In the baseline model, we assume that markets are perfectly competitive. We can extend our

framework to imperfect competition, under which lenders can charge a markup above marginal

cost. In general, if data availability changes the markups that lenders can charge, outcomes

are known to be complex (He et al., 2020; Huang, 2022). By analogy to the classic liter-

ature on third-degree price discrimination, it is not generally possible to say whether data

will increase or decrease markups and thus social welfare (Schmalensee, 1981; Varian, 1985,

1989). Nonetheless, while markups make our theoretical conclusions less sharp, we show that

50



markups can be accommodated in the empirical application of our methodology, with some

additional data. Then, we show that, under a certain set of parameter restrictions—when the

demand elasticities in the two borrower groups are equal, and when markups pre- and post-

data availability are the same—the existence of markups does not, in fact, affect the welfare

gains from data availability. While this set of assumptions may not always be satisfied exactly

in reality, this finding suggests that the existence of markups per se does not dramatically affect

our results. The two groups would need to have quite different demand elasticities, or markups

would have to change significantly due to data availability, for our results to be substantially

inaccurate.

As in the main model, let H denote high-cost borrowers and L denote low-cost borrowers.

In the empirical application previously-bankrupt will correspond to the high-cost H group and

never-bankrupt will correspond to the low-cost L group. Let rH, f air and rL, f air represent the

interest rates for H and L, respectively, if markets were fully competitive; these variables are

also equal to the social cost of providing credit to H and L. We will have rH, f air > rL, f air , since

previously-bankrupt customers tend to be more costly to lenders (which is why their rates drop

when flags are removed). As in the baseline model, we assume that the demand in both groups

is linear, with possibly different slopes and intercepts:

ΛL (r) = aL − bLφ (r) (64)

ΛH (r) = aH − bHφ (r) (65)

Unlike in the main text, we assume that lenders may charge markups over marginal cost both

before and after data is made available. Rather than take a stance on the particular theoretical

model generating markups, we will simply take markups as exogenous and express welfare in

terms of markups over marginal costs before and after data is made available. Let mH , mL be

the markups charged over the competitive prices φ
�

rH, f air

�

,φ
�

rL, f air

�

when data is available

to distinguish the two groups, and mpool be the markup when data is not available.

When lenders charge markups, interest rates for each group when data are available, rH,data

and rL,data, will be higher than lenders’ break-even interest rates rH, f air and rL, f air . We will

write these as:

φ
�

rH,data

�

= φ
�

rH, f air

�

+mH , φ
�

rL,data

�

= φ
�

rL, f air

�

+mL (66)

When data is not available, the average cost across both groups is:

ψLΛL

�

rpool

�

φ
�

rL, f air

�

+ψHΛH

�

rpool

�

φ
�

rH, f air

�

ψLΛL

�

rpool

�

+ψHΛH

�

rpool

� (67)
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That is, (67) is a weighted average of the cost of serving L and H type borrowers, with weights

equal to the loan volumes ΛL,ΛH multiplied by the expected number of non-default periods,

ψH ,ψL, defined in (12). If lenders set a markup mpool above average costs, the price that

borrowers face without data is then:

φ
�

rpool

�

=
ψLΛL

�

rpool

�

φ
�

rL, f air

�

+ψHΛH

�

rpool

�

φ
�

rH, f air

�

ψLΛL

�

rpool

�

+ψHΛH

�

rpool

� +mpool (68)

The following claim characterizes the welfare effects of data availability in this setting.

Claim 2. The change in total welfare when data is made available, in expected dollars over the

term of a loan, is:

∆Wel f are =ψH
bH

2

�

�

mpool − sL∆
�2
−m2

H

�

︸ ︷︷ ︸

H group

+ψL
bL

2

�

�

mpool + (1− sL)∆
�2
−m2

L

�

︸ ︷︷ ︸

L group

(69)

Where:

sL ≡
ψLΛL

�

rpool

�

ψLΛL

�

rpool

�

+ψHΛH

�

rpool

� (70)

is the share of loans given to low-cost borrowers, at the pooled price rpool ,

∆≡ φ
�

rH, f air

�

−φ
�

rL, f air

�

(71)

is the difference in costs between the two groups, and ψH ,ψL, are the expected number of non-

default periods per group, defined in (12).

Expression (69) is the most general expression for the change in welfare when lenders

set markups above marginal costs. For us to say anything about how data availability impacts

welfare in the fully general case, we must estimate markups mH , mL, mpool in addition to prices,

quantities, and the terms ψL,ψH .

However, if markups are constant and demand elasticities are identical across groups, then

equation (69) collapses to our earlier result, and we can estimate welfare changes using price

and quantity data alone. To see this, first, suppose that markups are constant, across groups,

and before and after data is available:

mpool = mH = mL = m (72)

This assumption is likely to approximately hold in our empirical setting. We calculate state-

level Herfindahl-Hirschman indices (HHI) in our empirical setting for previously-bankrupt and
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never-bankrupt borrowers with similar credit scores. The HHI in a market is defined as the

sum of squared market shares (
∑N

l=1 s2
l ), where l indexes lenders. In most models of imperfect

competition, markups depend on measures of market concentration, so two markets for similar

products which have similar HHI values are likely to have similar markups. We find that the

state-level Herfindahl index is 0.0376 for previously-bankrupt borrowers, and 0.0330 for never-

bankrupt borrowers with similar credit scores. The HHIs in both cases are low and fairly similar,

supporting the assumption that markups are similar across groups in our empirical setting.

Given (72), the welfare change in (69) then simplifies to:

∆Wel f are =ψH
bH

2

�

s2
L∆

2 − 2msL∆
�

+ψL
bL

2

�

(1− sL)
2∆2 + 2m (1− sL)∆

�

(73)

For additional intuition, note that we can write (73) as:

∆Wel f are =ψH
bH

2
s2

L∆
2 +ψL

bL

2
(1− sL)

2∆2

︸ ︷︷ ︸

A

−ψH bH msL∆+ψL bLm (1− sL)∆
︸ ︷︷ ︸

H

(74)

Suppose we set markups to zero in Expression (74). The change in welfare is then term A in

(74). This term thus represents the welfare gain from data availability in competitive markets.

Term A is equivalent to the sum of expression (19) of Claim 1 for the L and H groups.18

Term B in (74) thus captures how markups change welfare gains, relative to the competitive

case. To understand term B, first we consider a special case of the result, where the two groups’

demand elasticities around the pooled-pricing rate are the same. That is, assume that the slopes

of demand are proportional to the size of each group:

bH

ΛH

�

rpool

� =
bL

ΛL

�

rpool

� (75)

If (75) holds, given the definition of sL in (70), we have:

ψH bH

ψL bL
=

1− sL

sL
(76)

Now, under (76), term B in (74) then becomes mψL∆ (−bL (1− sL) + bL (1− sL)) = 0. Thus,

when the two groups’ demand elasticities are equal and markups pre- and post-data availability

are equal, the welfare change with markups is exactly the same as if markets were competitive.

The intuition behind this result is illustrated in Figure B.1, which graphically depicts the

18To see this, note that when markets are competitive and data becomes available, prices for the H group
increase by sL∆, so quantities decrease by bHsL∆. Taking the product of the price change and the quantity change
and dividing by 2, according to (19), we get bH

2 s2
L∆

2. The same calculation for the L group gives bL
2 (1− sL)

2∆2.
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Figure B.1: Price Discrimination with Imperfect Competition
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This figure illustrates how third-degree price discrimination affects welfare in credit markets when there is imper-

fect competition and prices may be higher than costs. Suppose that there are two groups of prospective borrowers,

high-cost previously-bankrupt (panel a) and low-cost never-bankrupt (panel b). The red lines show the cost of

serving each group and the blue lines show borrowers’ demand curve. Lenders are initially unable to distinguish

between these borrowers, so they set the price φ
�

rpool

�

. After lenders become able to distinguish the two groups

of borrowers, suppose they set φ
�

rH,data

�

for the high-cost group (panel a) and φ
�

rL,data

�

for the low-cost group

(panel b). The dark gray (light gray) triangle in panel (a) shows the welfare gains (losses) for the high-cost

previously-bankrupt group. The total welfare effect on the high-cost previously-bankrupt group is the difference

between the size of the dark gray and light gray triangles. The dark gray area in panel (b) shows the welfare gain

for the low-cost never-bankrupt group, whose prices decrease.

welfare effects of data availability in the presence of markups. The left panel of Figure B.1

shows that when there are markups, the welfare gains from raising prices a given amount for

H borrowers are smaller, since prices are already closer to their marginal costs. This is reflected

by the negative−bHψH msL∆ term in (74). However, the left panel shows that the welfare gains

from lowering prices for L borrowers are larger, since prices are further above marginal costs.

This is captured by the positive bLψLm (1− sL)∆ term in (74). When markups and demand

elasticities are the same across groups, these two effects exactly offset each other, so welfare

gains in the case with imperfect competition are exactly the same as in the competitive case:

releasing data will generally increase social welfare.

A simple intuition behind the result that data tends to improve welfare, even when markups

are present, is as follows. Suppose that the prices for the H and L groups are the same, though

prices may be much higher than costs. Then the willingness to pay of the marginal borrower
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in group H and group L are the same. Suppose we remove a small number of marginal H

borrowers from the borrowing pool, and add an equal number of marginal L borrowers, so

that the total loan amount across the two groups is unchanged. Since the marginal WTP is the

same, total borrower utility across the two groups is unchanged. However, reallocating from

H to L borrowers decreases the average social cost of serving these borrowers. Thus, social

welfare must increase. This argument holds regardless of whether markets are competitive or

not.

We can think of the general case in terms of how it deviates from the special case of constant

markups and elasticities across the two groups. First, suppose we hold markups fixed, but relax

the elasticity assumption in (75). The sign of term B in (74) depends on the relative elasticities

in the two groups. When we have:

bH

ΛH

�

rpool

� >
bL

ΛL

�

rpool

�

so that the elasticity in the H group is greater (smaller) than the elasticity in the L group, then

the welfare gain from making data available is smaller (greater) than in the competitive case.

The intuition is that when the high group has a higher demand elasticity, the decreased welfare

gains from raising prices for H group borrowers tend to dominate, and vice versa.

Second, suppose we allow markups to vary before and after data availability. Note that

(69) is strictly decreasing in mH and mL, the size of the post-data-availability markups. The

intuition is simply that higher average markups are worse for social welfare. Thus, if data

availability tends to increase (decrease) the level of overall markups, then social welfare will

tend to decrease (increase).19

In summary, our results imply that if data availability does not substantially affect markups

and if the demand elasticities in the two groups are similar, then data availability tends to in-

crease welfare even when there is market power; this welfare increase arises through a similar

mechanism of reallocating to lower-cost borrowers. If there were sufficient data available, one

could quantify the most general expression for welfare changes, (69), by measuring pre- and

post-change prices, quantities, ψL and ψH , and markups for all borrower groups.

Next, we apply the results from this extension to imperfect competition and empirically

show how the efficiency ratio—the welfare cost per dollar redistributed—depends on market

power in credit markets. The thought experiment considers the redistributional and welfare

consequences if the observed data had been generated in a market with market power. Follow-

ing the derivations in section B.5 and equation (74), we decompose the effects of data removal

19In the theoretical literature, third-degree price discrimination is known to have ambiguous effects on the
effect of overall markups: with different demand functions in the two groups, essentially any pattern of markup
increases or decreases is possible (Bergemann et al., 2015).
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into the effect in the absence of market power and the consequences of data removal due to

market power. Table B.1 shows that the efficiency ratio is in the range of a few cents per dollar

redistributed. We compute the HHI-implied markup as 34 basis points (=9.02%∗0.0376). For

robustness, we also consider markups twice the size of HHI-implied markups. As argued above,

Table B.1 illustrates that under similar markups across markets and with similar demand elas-

ticity across H and L groups, the consequences of data removal are independent of the markup

(compare columns (2) and (4)). When demand elasticities vary across groups, market power

can either improve ( bL
ΛL
/

bH
ΛH
= 0.5) or deteriorate ( bL

ΛL
/

bH
ΛH
= 1.5) the efficiency ratio by a few

cents. In cases with market power, data removal can even slightly increase efficiency in some

cases.

Table B.1: Efficiency Ratio of Data Removal with Market Power

This table summarizes the efficiency ratio (welfare loss per dollar redistributed) of removing data under various elasticity and markup as-
sumptions. The first three columns summarize the consequences of removing data when the observed data was generated in a market with a
34-basis-point markup. The markup is calibrated to the HHI. Columns (4) to (6) double the HHI-implied markup. The markup is assumed to
be similar for H, L, and pooling market. Low Cost to High Cost Elasticity shows varying assumptions about the L group’s demand elasticity in
relation to the H group’s. The efficiency ratio with market power includes losses due to both data removal and credit rationing – it combines
the effects of A and B in equation (74). The efficiency ratio without market power only shows the effect of A in equation (74), which is the
effect of data removal in the absence of market power. The efficiency ratio due to market power only shows the effect of B in equation (74),
which is the additional losses (gains) from data removal due to prevailing market power.

34bp markup 68bp markup

Low Cost to High Cost Elasticity 0.5 1 1.5 0.5 1 1.5

Efficiency Ratio

With Market Power $0.01 -$0.03 -$0.08 $0.06 -$0.03 -$0.12

Without Market Power -$0.03 -$0.03 -$0.03 -$0.03 -$0.03 -$0.03

Due to Market Power $0.04 $0.00 -$0.04 $0.09 $0.00 -$0.09

B.6 Adverse Selection

In the main text, we assume that there is no selection—that is, that costs depend on borrowers’

types but are not correlated with borrowers’ willingness to pay. In this section, we relax this

assumption and allow prices to be correlated with costs. The top panel of Figure B.2 depicts

market outcomes in a case with adverse selection and competitive markets. There is a dead-

weight loss triangle (i.e., the light gray region in the figure) because markets reach the point

where average costs are equal to the marginal borrower’s willingness to pay. However, at this

point, marginal costs are below willingness to pay.
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Figure B.2: Price Discrimination with Adverse Selection
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This figure illustrates how third-degree price discrimination affects welfare in credit markets in the presence of

adverse selection or moral hazard. With these frictions, costs and prices vary. Panel (a) illustrates that under

adverse selection, prices in competitive equilibrium will be equal to average costs. The light gray triangle shows

the welfare loss, relative to the constrained optimum of setting prices equal to average costs. If data becomes

available on low-cost L borrowers and high-cost H borrowers as illustrated in panels (b) and (c), prices will be

set equal to average costs separately for each group in competitive equilibrium. Prices will tend to fall for the

low-cost L group, as shown in panel (b), and rise for the high-cost H group, as shown in panel (c). After lenders

become able to distinguish the two groups, suppose they set φ
�

rL,data

�

for the low-cost L group and φ
�

rH,data

�

for the high-cost H group. The dark gray area in panel (b) shows the welfare gain for the low-cost L group, whose

prices decrease. The dark gray (light gray) triangle in panel (c) shows welfare gains (losses) for the high-cost H
group.
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Suppose that data becomes available but there is also adverse selection in each of the two

submarkets. For the low-cost L group, prices decrease. When data is not available, prices are

too high for these borrowers, relative to the socially efficient point, for two reasons. First, they

are pooled with the high-cost H borrowers. Second, there is adverse selection. When lenders

have data on these borrowers, they lower prices to the point where the average cost is equal to

marginal WTP; this is the point Λ(rL,data). This price reduction increases consumer surplus and

social welfare, though not to the socially optimal point, as distortions from adverse selection

remain. The bottom-left panel of Figure B.2 illustrates the welfare gain as the dark gray region.

For the high-cost H group, prices increase. When data is not available, prices may be too

high or too low for these borrowers relative to the socially efficient price, as there are two

counteracting forces. Adverse selection tends to cause prices to be too high relative to the

social optimum. However, pooling with low-cost borrowers tends to make prices too low.

The bottom-right panel of Figure B.2 illustrates a case where the price without data is

below the social optimum. After data is available, lenders set prices where the average cost

curve crosses the demand curve. This is always above the socially optimal point, where the

marginal cost curve crosses the demand curve. As a result, the effects on consumer welfare are

ambiguous: there is a welfare gain as prices increase to the social optimum, represented by

the dark gray triangle, but there is a welfare loss due to prices increasing further, represented

by the light gray triangle.

We can also use this framework to examine how assuming no adverse selection might skew

our estimates of changes in total surplus. Fixing prices φ
�

rpool

�

and φ
�

rH,data

�

, and loan

amountsΛ
�

rH,data

�

−Λ
�

rpool

�

, the calculated welfare gain from making data available is always

larger if we assume there is no adverse selection, so the marginal cost curve is flat and equal

to φ
�

rH,data

�

. To see this, note that the welfare gain that we calculate in the main text, (19) of

Claim 1, corresponds to the triangular area enclosed by points A, B, and C in the bottom-right

panel of Figure B.2. In contrast, the welfare gain under adverse selection is the dark gray area,

which is weakly smaller than the ABC triangle, minus the light gray area.20

Thus, when there is adverse selection, the actual welfare gains from data availability for

the H group must be even smaller than we find in the main text, whereas the change in con-

sumer surplus is identical to expression (18). Conversely, the total welfare effects of removing

data such as bankruptcy flags are smaller if there is adverse selection. Thus, our conclusion

that flag removals are a quantitatively efficient way to redistribute surplus would not change

significantly if there were adverse selection.21

20If adverse selection is sufficiently severe, so rpool is higher than the efficient price, it is possible that the dark
gray area is empty, and the light gray area is a trapezoid; it is then the case that data availability lowers aggregate
welfare.

21We disregard the low-cost L group in this discussion; based on arguments in Appendix B.1, the welfare effects
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If data were available on lenders’ costs before and after lenders are able to use new data

for pricing, the triangles in Figure B.2 could be quantified to calculate the welfare gains from

making data available. DeFusco, Tang and Yannelis (2022) demonstrate this in the case of a

single set of borrowers; to quantify the effects of data availability, the methodology in DeFusco,

Tang and Yannelis (2022) could be applied to the high-cost H and low-cost L borrower groups

separately. In our empirical application, however, adverse selection does not appear to be

present in our setting. We conduct a test similar in spirit to Chiappori and Salanie (2000).

Asymmetric information would suggest a positive correlation between rates and charge-offs:

adverse selection would mean that riskier borrowers select higher interest loans, and moral

hazard would mean that higher rates induce borrowers into default. This test is shown in

Figure B.3. Figure B.3 is comparable to Figure 2 in the main text. However, it replaces the

outcome variable with a dummy variable equal to one if a loan gets charged-off within two

years of loan opening and zero if the opened loan does not get charged-off within two years

of opening. In the graphical evidence, we cannot reject the null of no effect of flag removal

on charge-offs. As charge-offs do not appear to decrease when prices decrease, we do not find

evidence of adverse selection. We also quantify the visual result in a regression framework

and present the results in Table B.2. The table shows that flag removal is associated with an

insignificant increase in charge-offs.22

for the L group will tend to be much smaller, since the group is larger, and thus the change in prices is smaller.
22We do not mean to argue that adverse selection and moral hazard are not concerns in auto lending settings.

Indeed, some studies, including Adams et al. (2009), have found that adverse selection and moral hazard are
important and were particularly so in the period prior to the Great Financial Crisis. More recent papers, including
Argyle et al. (2020), find no effects, which is consistent with auto loans being highly collateralized. In our setting,
we do not find any effects of flag removal in particular on default rates, which suggests that there is no asymmetric
information.
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Figure B.3: Charge-offs

This figure shows estimates of the coefficients δt from the following specification yi t = γc + γts +
6
∑

t=−6

δt{ei t =

t}+βX i t + ϵi t , along with a 95% confidence interval. The outcome yi t is charge-offs. γc are cohort fixed effects,
and γts are time period by score bucket fixed effects. Standard errors are clustered at the cohort level. Source:
TransUnion.

Table B.2: Charge-offs Around Flag Removal

This table shows estimates of the coefficients δy from the following specification yi t = γc + γt +
δ y
1[F lagRemoved] + βX i t + ϵi t . The outcome yi t is charge-offs. γc are cohort fixed effects, and γt are time

period fixed effects. Standard errors are clustered at the cohort level. Standard errors in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01 Source: TransUnion.

(1) (2) (3) (4) (5)
1[FlagRemoved] 0.001 0.001 0.001 0.001 0.000

(0.001) (0.001) (0.001) (0.001) (0.001)

Constant 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.023∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Observations 176690 176690 176690 176690 176686
Adjusted R2 0.000 0.001 0.001 0.001 0.030
Linear Time Trend Yes Yes Yes No No
Year-month FE No Yes No Yes No
Cohort FE No No Yes Yes Yes
Year-month by Score Bucket FE No No No No Yes
Clustered SE Cohort Cohort Cohort Cohort Cohort
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B.7 Strategic Bankruptcy and Incentive Effects of Flag Removals

Bankruptcy flags on credit reports provide information to the market about borrowers’ default

risks, increasing the efficiency of credit allocation. While only 39.6% of bankrupt individuals

know the duration of bankruptcy flags on their credit file,23 bankruptcy flags may still have

an incentive effect: borrowers who declare bankruptcy face higher interest rates in the future,

creating a disincentive to declare bankruptcy. If policymakers force credit reporting agencies to

remove the bankruptcy flag from the credit report, then this would also affect the bankruptcy

incentives facing borrowers, which in turn increases bankruptcy rates. If bankruptcies decrease

social welfare on the margin, the incentive effect is important to account for in a full welfare

accounting of the effects of flag removals. While the main focus of the paper is on the alloca-

tive effects of flag removal, in this appendix, we construct a simple model to illustrate how

to evaluate the effects of consumer bankruptcy on social welfare, when flag removal affects

the bankruptcy filing decision. Using the model, we then calculate the incentive effects for

borrowers of the flag removal, and show that these incentive effects can be much larger than

the allocative effects.

B.7.1 Model of Bankruptcy Decisions and Welfare

We consider a two-stage game. The second stage, which we call the “downstream” market,

is identical to the model in the main text. Previously-bankrupt borrowers face some cost r of

getting credit, which may be affected by policies such as bankruptcy flag removal. We add a

first stage, in which borrowers have some heterogeneous cost c ∼ F (·) of declaring bankruptcy.

Costs may differ because borrowers have different subjective valuations of bankruptcy. In the

first stage, borrowers can choose whether to declare bankruptcy, or not declare bankruptcy

and receive value VNB. There are three kinds of agents: borrowers, “downstream” lenders who

lend to borrowers in the second stage, and “upstream” lenders who have outstanding loans to

borrowers at the point where they can declare bankruptcy. We will separately characterize the

surplus of each kind of agent, then add these terms to analyze social welfare.

First, we analyze the downstream market. For simplicity, suppose all previously-bankrupt

borrowers have the same default rate, and thus the cost of serving previously-bankrupt borrow-

ers is some constant φ
�

r f air

�

, where r f air is the break-even interest rate for these borrowers.

We focus on high-cost borrowers; by arguments analogous to the main text, the welfare effects

for never-bankrupt borrowers will be small, since the never-bankrupt group is much larger than

the previously-bankrupt group. Similar to the main text, let L∗ (r; c) denote the loan demand

of type c of the prospective borrower, at interest rate r. We normalize the marginal value of a

23See Table 6 of Gross et al. (2020)
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dollar in each future period to 1. Now, the total amount of loans made at price r is:

∫

c≤c̄(r)

L∗ (r; c) dF (c)

where c̄ (r) reflects the fact that the opt-out condition depends on r.

Let VNB represent the value from not declaring bankruptcy; for simplicity, assume this is

a constant for all borrowers, though this can be relaxed without affecting the results. In the

second stage, years after a borrower has declared bankruptcy, she faces some price r for loans.

To calculate surplus in lending markets, note that the surplus of a borrower with type c is:

VB (c) =

∫ r̄(c)

r̂=r

L∗ (r̂; c) dφ (r̂)
︸ ︷︷ ︸

Downst ream

−c (77)

where r̄ (c) is the maximum rate at which a consumer of type c borrows positive amounts.

Expression (77) is just the surplus from the main text adjusted by the fixed cost of bankruptcy

c. Taking into account the fixed cost c of bankruptcy, a borrower with cost c has a value of

declaring bankruptcy:
∫ r̄(c)

r̂=r

L∗ (r̂; c) dφ (r̂)− c (78)

A borrower with bankruptcy cost c optimally declares bankruptcy if (78) is greater than the

value of not declaring bankruptcy, VNB. We can thus define a function c̄ (r) as the marginal

bankrupt borrower, given the downstream rate r:

c̄ (r) =

¨

c : VNB =

∫ r̄(c)

r̂=r

L∗ (r̂; c) dφ (r̂)− c

«

(79)

All borrowers with c ≤ c̄ (r) declare bankruptcy, and all borrowers with c > c̄ (r) do not. From

(79), c̄ (r) is always decreasing in r: the higher the rate post-bankruptcy, the lower consumer

surplus in the post-bankruptcy market, and thus the less types c will declare bankruptcy. The

function c̄ (r) thus captures the elasticity of the bankruptcy decision to the post-bankruptcy

interest rate r.

Consumer surplus. Integrating over all consumers with different bankruptcy costs c, con-

sumers’ surplus is thus:

CS =

∫

c>c̄(r)

VNBdF (c)

︸ ︷︷ ︸

No bankruptc y

+

∫

c≤c̄(r)

�

∫ r̄(c)

r̂=r

L∗ (r̂; c) dφ (r̂)− c

�

dF (c)

︸ ︷︷ ︸

Bankruptc y

(80)
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We wish to characterize how consumer surplus changes as we shift r, the interest rate facing

previously-bankrupt borrowers in lending markets. Differentiating (80) with respect to r, we

have:

∂ CS
∂ r

= −
∫

c≤c̄(r)

L∗ (r; c)φ′ (r) dF (c)

︸ ︷︷ ︸

Term 1

+

c̄′ (r) f (c̄)

�

∫ r̄(c)

r̂=r

L∗ (r̂; c̄ (r)) dφ (r̂)− c̄ (r)− VNB

�

︸ ︷︷ ︸

Term 2

(81)

Now, from the definition of c̄ (r) in (79), the rightmost piece of term 2 is 0; thus, we have:

∂ CS
∂ r

= −
∫

c≤c̄(r)

L∗ (r; c)φ′ (r) dF (c) (82)

In words, (82) states that the derivative of total consumer surplus with respect to r is the stan-

dard envelope formula: it is the change in payments, φ′ (r), multiplied by loan size L∗ (r; c),
integrated over all consumers. Changing r also changes the set of consumers that declare

bankruptcy. However, the marginal consumers are indifferent between declaring bankruptcy

and not doing so, hence there is no first-order welfare effect of moving these consumers into

or out of bankruptcy.

Downstream lender profits. As in (14), profits of downstream lenders, who lend to

previously-bankrupt borrowers, are simply demand minus costs:

ΠD =

∫

c≤c̄(r)

L∗ (r; c)
�

φ (r)−φ
�

r f air

��

dF (c) (83)

Differentiating (83) with respect to r, we have:

∂ΠD

∂ r
=

∫

c≤c̄(r)

L∗ (r; c)φ′ (r) dF (c)

︸ ︷︷ ︸

Term 1

+

∫

c≤c̄(r)

∂ L∗ (r; c)
∂ r

�

φ (r)−φ
�

r f air

��

dF (c)

︸ ︷︷ ︸

Term 2

+ c̄′ (r) f (c̄ (r)) L∗ (r; c)
�

φ (r)−φ
�

r f air

��

︸ ︷︷ ︸

Term 3

(84)

In (84), term 1, which is exactly the negative of ∂ CS
∂ r in (82), reflects the fact that, when rates

increase, welfare is transferred from borrowers to downstream lenders. Term 2 is the marginal
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change in the deadweight loss triangle, as r increases: it is the height of the deadweight loss

triangle,
�

φ (r)−φ
�

r f air

��

, multiplied by the change in loan amount, ∂ L∗(r;c)
∂ r . Both these terms

are also present in the baseline model, where there is no bankruptcy margin. Term 3 is novel

to the setting where bankruptcy decisions are elastic. When r ̸= r f air in downstream markets,

the marginal consumer’s decision to declare bankruptcy imposes an externality on downstream

lenders, of size:

L∗ (r; c)
�

φ (r)−φ
�

r f air

��

(85)

For example, if downstream lenders lose money on previously-bankrupt consumers, so φ (r)<
φ
�

r f air

�

, then the marginal consumer who declares bankruptcy imposes a negative external-

ity on lenders. The size of the effect depends on the size of the negative externality, (85),

multiplied by the measure of marginal consumers, c̄′ (r) f (c̄ (r))
Upstream lender profits. Suppose that type c consumers, at the time that they declare

bankruptcy, have some outstanding debt D (c) with upstream lenders. Suppose that their de-

cision to declare bankruptcy causes lenders to lose a fraction ψ of the debt. Upstream lenders’

welfare, as a function of r, is thus:

ΠU =

∫

c≤c̄(r)

−ψD (c) dF (c) (86)

That is, upstream lenders lose ψD (c) on all consumer types that default, c ≤ c̄ (r). Differenti-

ating with respect to r, we have:

∂ΠU

∂ r
= −c̄′ (r) f (c̄ (r))ψD (c̄ (r)) (87)

In words, decreasing r slightly causes a measure −c̄′ (r) f (c̄ (r)) of marginal consumers with

type c̄ (r) to declare bankruptcy (note that c̄′ (r) is negative). This decreases upstream lenders’

profits by the losses on their loans for these consumers, which is ψD (c̄ (r)).
Now, total social welfare is just the sum of the welfare of consumers, upstream producer

profits, and downstream producer profits. To find the effect of a small change in r on total wel-

fare, we sum (82), (84), and (87). Consumer surplus (82) cancels with term 1 in downstream

lenders’ profits (84), so we get:

∂ CS
∂ r

+
∂ΠD

∂ r
+
∂ΠU

∂ r
=

∫

c≤c̄(r)

∂ L∗ (r; c)
∂ r

�

φ (r)−φ
�

r f air

��

dF (c)

︸ ︷︷ ︸

Deadweight Loss

+ c̄′ (r) f (c̄ (r)) L∗ (r; c)
�

φ (r)−φ
�

r f air

��

︸ ︷︷ ︸

Downst ream ex ternali t y

− c̄′ (r) f (c̄ (r))ψD (c̄ (r))
︸ ︷︷ ︸

U pst ream ex ternali t y

(88)
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In (88), the first term is the marginal change in the size of the deadweight loss triangle,

which is analogous to the depiction in Figure 1. When there is no incentive effect of bankruptcy,

so c̄′ (r) = 0 and bankruptcy decisions are perfectly inelastic, then the change in welfare is

simply the change in the deadweight loss triangle. When bankruptcy is elastic, there are two

additional terms: the externality on downstream lenders, which is term 3 in (84), and the

externality on upstream lenders, which is (87). The upstream externality term will always

be positive (that is, decreasing rates will tend to lower welfare), since bankruptcies create

negative externalities on upstream lenders. When φ (r) < φ
�

r f air

�

, so prices are lower than

marginal costs for previously-bankrupt borrowers, and the downstream externality term is also

positive, so decreasing rates will tend to lower social welfare. Thus, if bankruptcy decisions

are sensitive to rates in downstream markets, there are two additional forces causing lower

rates to tend to decrease social welfare.

B.7.2 Estimate of Welfare Costs with Elastic Bankruptcy

Next, we do a back-of-the-envelope calculation of how large the incentive effects of bankruptcy

on welfare could be in the data. There are a variety of estimates in the literature on how strate-

gic borrowers are in their decisions to default on loans and declare bankruptcy. Yannelis (2016)

provides evidence for strategic default on student loans, showing that introducing bankruptcy

protection for student loans would increase loan default by 18%, and increasing garnishable

income by $10,000 would lead to a 15% decrease in defaults. Mayer et al. (2014) argue that

a legal settlement offering modifications to delinquent borrowers increased delinquency rates

by 10%. Argyle et al. (2021) find that borrowers with increased cash flows tend to delay filing

for bankruptcy.

It is difficult to extrapolate the effect of a particular policy, i.e., bankruptcy flag removal,

on strategic bankruptcies. The lower bound of the incentive effect in the literature—that bor-

rowers are completely non-strategic in their default and bankruptcy decisions—would imply

that there is no incentive effect of flag removal on bankruptcy. Indeed, only 9.2% of Chapter 7

filers correctly guess the number of years remaining for their flag (Gross et al., 2020, Table 6),

suggesting limited strategic implications of flag removal. Nevertheless, to gauge the size of the

incentive effect, we do a quick back-of-the-envelope calculation: suppose that flag removal,

relative to keeping bankruptcy flags on borrowers’ credit records indefinitely, would increase

bankruptcy filing rates by 1%. With approximately 800,000 bankruptcy filings annually, this

implies 8,000 additional bankruptcies.

According to our model, we must estimate two numbers. For upstream lenders, we must

estimate the effect of bankruptcy filing on lenders’ losses. Since our main analysis focuses on

auto loans, we also consider losses to auto lenders. At the time of bankruptcy, the average bor-
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rower has $19,865 in auto loan debt.24 In most states, borrowers lose their cars in bankruptcy;

thus, we will assume a loss rate of 40%.25 Hence, the loss per loan is $7,946 (=0.4*19,865)

or $3,575.7 per consumer.26 With approximately 800,000 filers per year, the aggregate loss to

lenders would be $28.6 million (=0.01*800,000*3,575).

For downstream lenders, we must estimate their losses on each customer, multiplied by

the set of marginal consumers. From our baseline estimates in Table 2, the average loss per

customer of lenders in downstream markets is $24.42 over a five year loan term or $19.5

million for 800,000 bankruptcy filers every year. Multiplying by the 1% increase in bankruptcy

filings, this would create an additional loss of $0.195 million to social surplus.

Adding the effects on upstream and downstream lenders, we get a total effect of $28.8

million. This quantity is large relative to the allocative welfare quantities we calculated in the

main text. Accounting for a 1% increase in bankruptcies due to incentive effects, flag removal

transfers $19 million to previously-bankrupt consumers, at the cost of $29.4 million (=$28.8

million+$0.6 million) in social welfare.

Why are the welfare effects through the incentive channel so large, relative to the allocative

effects? Intuitively, we showed in the main text that, because competitive lending markets

lead to efficient credit allocations, the removal of small amounts of data has only a second-

order effect on the allocative efficiency of lending. This does not apply to the effects of data

removal on bankruptcy incentives. Borrowers do not internalize the costs to lenders of their

bankruptcy decisions, so they default more than the socially optimal level. Data removal can

affect borrowers’ incentives to declare bankruptcy, and this generally has a first-order effect

on social welfare. From a policy perspective, however, note that increased incentives from

flag removal could be offset by increasing the cost of bankruptcy, e.g., through more stringent

repayment plans or lower thresholds for asset protection in liquidation.

B.8 Varying Signal Informativeness

Different kinds of data may be differentially informative about customers’ default rates, and

thus the costs of lending to these customers. In this appendix, we show that, when data is

more informative about default rates, the social welfare losses from data removal tend to be

larger relative to the surplus transfers, so data removal is less efficient as a tool for transferring

surplus. However, plugging in our demand elasticity estimate from the main text, we show

that flag removal would remain a quantitatively efficient way to transfer surplus to previously-

24See Experian’s auto loan debt study.
25See American Banker.
26Table 1 of Dobbie et al. (2017) indicates that approximately 45% of consumers have an auto loan when filing

for bankruptcy.
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bankrupt individuals, even if bankruptcy flags were much more informative about default rates

than we find in our analysis. As in the main text, we assume demand to be linear in the payment

φ (r) for each group:

Λ (r) = a− bφ (r) (89)

Let the data removal-induced change in interest rates be:

t = φ (r)−φ
�

rH, f air

�

(90)

Adjusting Claim 1 to a data removal, H group consumer surplus increases by

ψH

�

φ
�

rH, f air

�

−φ (r)
�

�

ΛH (r) +ΛH

�

rH, f air

�

2

�

(91)

when removing the data. The high-cost H group gains as they are charged the lower pool-

ing price. However, removing the data also induces an efficiency loss due to the over credit

provision to the H group. Adjusting Claim 1, removing data social welfare decreases by:

−
1
2
ψH

�

φ
�

rH, f air

�

−φ (r)
� �

ΛH (r)−ΛH

�

rH, f air

��

(92)

In addition, removing data increases prices for low-cost L consumers leading to under credit

provision for L consumers. The efficiency loss of removing data due to under credit provision

to L consumers is:

−
1
2
ψL

�

φ
�

rL, f air

�

−φ (r)
� �

ΛL (r)−ΛL

�

rL, f air

��

(93)

Dividing efficiency changes by redistributive consequences, we obtain the efficiency ratio, that

is, the welfare cost per dollar redistributed to high-cost individuals:

Efficiency Ratio=
− 1

2ψH(φ(rH, f air)−φ(r))(ΛH (r)−ΛH(rH, f air))− 1
2ψL(φ(rL, f air)−φ(r))(ΛL(r)−ΛL(rL, f air))

ψH(φ(rH, f air)−φ(r))
�

ΛH (r)+ΛH(rH, f air)
2

�

(94)

Plugging linear demand (89) into the efficiency ratio (94), exploiting the zero-profit condition

of the competitive equilibrium, and writing the pooling price as sum of the fair price and price

distortion, we obtain:

Efficiency Ratio=
1
2

�

εH +
ΛH (r)
ΛL (r)

ψH

ψL
εL

�

t
ΛH (rH, f air )
ΛH (r)

− 1
2εH t

(95)
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where, εH and εL are respectively the demand elasticities in the H and L groups at r, that is:

εH ≡
bH

ΛH (r)
,εL ≡

bL

ΛL (r)

Taking the derivative with respect to the data induced price distortion:

∂ Efficiency Ratio
∂ t

=
1
2

�

εH +
ΛH (r)
ΛL (r)

ψH

ψL
εL

�

ΛH (rH, f air )
ΛH (r)

(
ΛH (rH, f air )
ΛH (r)

− 1
2εH t)2

(96)

When t is small, expression (96) is approximately constant. Thus, the efficiency ratio will

change roughly linearly in the price change t induced by flag removal, for relatively small

values of t. Intuitively, this is because the social welfare loss is a triangle, which is quadratic in

the size of the deviation of prices from their efficient level, whereas the transfer is a trapezoid.

The ratio of the two is therefore larger when data is more informative, leading to larger price

changes upon its removal.

We can bring this theory to our data, to evaluate how efficient flag removals would be

as a tool for transferring surplus, in a counterfactual scenario where bankruptcy flags were

more informative about default rates, so their removal decreased interest rates more. Under

our baseline estimates, flag removal decreases interest rates by 0.226%. We consider coun-

terfactual scenarios in which flag removal induces a rate change two, four, eight, and sixteen

times larger. We can then plug these changes into our expressions for welfare changes, sur-

plus transferred, and the efficiency ratio, holding fixed the demand elasticity at our estimate in

the main text, and evaluate how efficiency ratios would change if bankruptcy flags were more

informative about default rates.

The results of this exercise are shown in Table B.3. As expected, consumer surplus changes

approximately linearly with the induced change in interest rates. Welfare changes vary approx-

imately quadratically with price distortions. Thus, the efficiency ratio changes approximately

linearly with the price distortion. As we double and quadruple the price effect of bankruptcy

flag removals from 22.6bps reductions to 45.2bps and 90.4bps reductions, we can see that

the efficiency cost per dollar redistributed to previously-bankrupt H individuals doubles and

approximately quadruples from 3 cents to 6 cents and 12 cents, respectively. Thus, even when

flag removals are fairly strong signals of default rates—4 or 8 times more informative than we

find in the main text—flag removal remains a relatively low-cost way to redistribute surplus,

costing less than $0.21 in social surplus per dollar transferred between groups. However, the

efficiency ratio deteriorates for larger rate changes.
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Table B.3: Welfare cost by price effect size

This table summarizes consumer surplus changes, welfare consequences, and efficiency ratios for the average
five-year loan, under counterfactual scenarios in which bankruptcy flag removal is increasingly informative about
costs. We consider scenarios in which flag removal induces a rate change equal to our baseline estimate of 0.226%,
and then two, four, eight, and sixteen times higher. “Multiple of Effect” shows the x fold of the true price change.
“Induced Rate Change” is the counterfactual interest rate variation induced by the flag removal (in percentage
points). The true effect size is shown in the first row. Counterfactual price changes are depicted in rows two
to five. “Consumer Surplus Redistribution” is the $ change in consumer surplus per individual, and “Welfare
Change” depicts the change in social welfare per individual. Both variables are in units of expected dollars per
individual, over the course of a five-year loan. “Efficiency Ratio” is the ratio of the welfare change to consumer
surplus redistributed; that is, the dollars of social surplus lost, per dollar redistributed to bankrupt individuals.
Multiple of Effect Induced Rate Change Consumer Surplus Redistribution Welfare Change Efficiency Ratio

1x -0.226% 23.75 -0.75 -0.0315
2x -0.452% 48.76 -2.98 -0.0612
4x -0.904% 102.51 -11.86 -0.1156
8x -1.808% 224.56 -46.82 -0.2085

16x -3.616% 524.04 -182.52 -0.3483

B.9 Efficiency Ratios with Quantity Data Only

The baseline model only requires price variation and quantity data to estimate the efficiency

and redistributional consequences of data availability. However, researchers cannot always

observe price data. In this section, we show that under our baseline assumptions a key quantity

of our model—the efficiency loss per USD redistributed—can be computed with quantity data

and variation in data availability only.

First, from Assumption 1 and equation (20), we can express the price increase due to data

deletion for the low-cost types as:

φ (r)−φ
�

rL, f air

�

=
ψH

ψL

ΛH (r)
ΛL (r)

�

φ
�

rH, f air

�

−φ (r)
�

(97)

Second, note that we can write the price change underlying the quantity changes for the high-

cost types as a function of those quantity changes and the demand elasticity:

ΛH

�

rH, f air

�

−ΛH (r) = aH − bHφ
�

rH, f air

�

− aH + bHφ (r) = bH(φ (r)−φ
�

rH, f air

�

)

Divide by the pooling quantity for high-cost types:

ΛH

�

rH, f air

�

−ΛH (r)

ΛH (r)
=

bH

ΛH (r)
(φ (r)−φ
�

rH, f air

�

) = εH ∗ (φ (r)−φ
�

rH, f air

�

)

Rearrange for the quantity implied price change:

ΛH

�

rH, f air

�

−ΛH (r)

ΛH (r)
∗

1
εH
= φ (r)−φ
�

rH, f air

�
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Third, we can write the quantity change for the low-cost types as a function of high-cost type

quantities and price elasticities:

ΛL

�

rL, f air

�

−ΛL (r) = aL − bLφ
�

rL, f air

�

− aL + bLφ (r) = bL(φ (r)−φ
�

rL, f air

�

)

Plug in for the loss implied price change and use the price change calculated for the high type

as a function of elasticity:

ΛL

�

rL, f air

�

−ΛL (r) = bL(
ψH

ψL

ΛH (r)
ΛL (r)

�

φ
�
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�

−φ (r)
�

)

= εL
ψH

ψL
ΛH (r)
�

φ
�

rH, f air

�

−φ (r)
�

)

= εL
ψH

ψL
ΛH (r)

ΛH (r)−ΛH

�

rH, f air

�

ΛH (r)
∗

1
εH

With those three expressions:

φ (r)−φ
�

rL, f air

�

=
ψH

ψL

ΛH (r)
ΛL (r)

�

φ
�

rH, f air

�

−φ (r)
�

ΛH

�

rH, f air

�

−ΛH (r)

ΛH

�

rH, f air

� ∗
1
εH
= φ (r)−φ
�

rH, f air

�

ΛL

�

rL, f air

�

−ΛL (r) =
εL

εH

ψH

ψL

ΛH (r)
ΛH (r)

(ΛH (r)−ΛH

�

rH, f air

�

)

We can rewrite the efficiency ratio as a function of quantities only.

Efficiency Ratio=
− 1

2ψH(φ(rH, f air)−φ(r))(ΛH (r)−ΛH(rH, f air))− 1
2ψL(φ(rL, f air)−φ(r))(ΛL(r)−ΛL(rL, f air))

ψH(φ(rH, f air)−φ(r))
�

ΛH (r)+ΛH(rH, f air)
2

�

(98)

Replace the low-cost price change:

=
− 1

2ψH(φ(rH, f air)−φ(r))(ΛH (r)−ΛH(rH, f air))+ 1
2ψL

�

ψH
ψL

ΛH (r)
ΛL (r) (φ(rH, f air)−φ(r))

�

(ΛL(r)−ΛL(rL, f air))

ψH(φ(rH, f air)−φ(r))
�

ΛH (r)+ΛH(rH, f air)
2

�

Cancel the price change:

=
−ψH

�

ΛH(r)−ΛH

�

rH, f air

��

+ψL

�

ψH
ψL

ΛH (r)
ΛL(r)

�

�

ΛL(r)−ΛL

�

rL, f air

��

ψH

�

ΛH(r) +ΛH

�

rH, f air

��
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Plugging in the low-cost type quantity change:

=
−ψH

�

ΛH(r)−ΛH

�

rH, f air

��

−ψL

�

ψH
ψL

ΛH (r)
ΛL(r)

�

εL
εH

ψH
ψL

ΛH (r)
ΛH (r)
(ΛH (r)−ΛH

�
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�

)

ψH

�

ΛH(r) +ΛH

�
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��

= −

�
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�
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��

+
�

ΛH (r)
ΛL(r)

�

εL
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ψH
ψL
(ΛH (r)−ΛH

�
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�

)
�

ΛH(r) +ΛH

�

rH, f air

��

and rearranging:

Efficiency ratioHigh and Low Cost = −
�

1+
εL

εH

ψH

ψL

ΛH (r)
ΛL (r)

� ΛH (r)−ΛH

�

rH, f air

�

ΛH(r) +ΛH(rH, f air)
︸ ︷︷ ︸

Efficiency ratioHigh Cost

(99)

The last expression shows that if high- and low-cost demand elasticities are the same, we can

write the efficiency ratio as a function of quantities only (assuming εL = εH).

Efficiency ratioHigh and Low Cost = −
�

1+
ψH

ψL

ΛH (r)
ΛL (r)

� ΛH (r)−ΛH

�

rH, f air

�

ΛH(r) +ΛH(rH, f air)
︸ ︷︷ ︸

Efficiency ratioHigh Cost

(100)

Furthermore, we can bound the efficiency ratio with quantity data only if we have some theory-

guided intuition for the maximum low-cost type demand elasticity and the minimum demand

elasticity for the high-cost type.

C Flag Removals and Observed Interest Rates

In the main text, we show the effect of flag removals on interest rates. This section shows that

the effect of bankruptcy flag removals is qualitatively and quantitatively similar using observed

interest rates only. Table C.1 shows variations of the main specification with observed interest

rates as the outcome variable. Note that the effect size is of comparable magnitude to the

effect on predicted interest rates in Table 2 in the main text. One potential concern with our

estimates of the effect of flag removal on interest rates is that we only observe interest rates for

loan offers that were actually taken up by customers, whereas our model is about offered rates.

This could introduce downwards bias in our estimates of effects on interest rates, if customers

with different characteristics are offered different rates, but customers who receive higher rate

offers are less likely to accept. However, if unobserved heterogeneity between customers affects

loan rates in this manner, then controlling for observable heterogeneity between customers
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should also affect our coefficient estimates (Oster, 2019). Our estimates of effects on interest

rates in columns 1 to 5 of Table C.1 are very stable, suggesting that this bias is not likely to be

quantitatively important.

The graphical evidence in Figure C.1 confirms the findings of Table C.1. The removal of

bankruptcy flags reduces interest rates by approximately 20bps.

Table C.1: Interest Rates Around Flag Removal

This table shows estimates of the coefficients δy from the following specification yi t = γc + γt +
δ y
1[F lagRemoved] + βX i t + ϵi t . The outcome yi t is observed interest rates. γc are cohort fixed effects, and

γt are time period fixed effects. Standard errors are clustered at the cohort level. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Source: TransUnion.

(1) (2) (3) (4) (5)
1[FlagRemoved] -0.192∗∗∗ -0.202∗∗∗ -0.183∗∗∗ -0.198∗∗∗ -0.169∗∗∗

(0.066) (0.060) (0.064) (0.059) (0.050)

Constant 8.160∗∗∗ 8.131∗∗∗ 8.176∗∗∗ 7.799∗∗∗ 7.782∗∗∗

(0.053) (0.033) (0.029) (0.033) (0.028)
Observations 176690 176690 176690 176690 176686
Adjusted R2 0.003 0.009 0.009 0.010 0.328
Linear Time Trend Yes Yes Yes No No
Year-month FE No Yes No Yes No
Cohort FE No No Yes Yes Yes
Year-month by Score Bucket FE No No No No Yes
Clustered SE Cohort Cohort Cohort Cohort Cohort

Figure C.1: Interest rates

This figure shows estimates of the coefficients δt from the following specification yi t = γc + γts +
6
∑

t=−6

δt{ei t =

t}+ βX i t + ϵi t , along with a 95% confidence interval. The outcome yi t is observed interest rates. γc are cohort
fixed effects, and γts are time period by score bucket fixed effects. Standard errors are clustered at the cohort
level. Source: TransUnion.
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D Stacked Dynamic Difference in Difference Estimation

Our main estimator is a two-way fixed effect estimator with heterogeneous treatment timing.

If fully saturated and under homogeneous treatment effects, our estimator provides an unbi-

ased estimate of a treatment effect. In the presence of heterogeneous treatment effects, the

estimator may suffer from negatively weighting contrasts, and leads may reflect lags (Sun and

Abraham (2021)). To ensure that the choice of the estimator does not drive our results, we

follow best practices in Barrios (2021) and Cengiz et al. (2019) (Appendix D) in implementing

a Stacked Difference in Differences Estimation. The results remain qualitatively unchanged.

In particular, we implement the stacked difference in differences as follows: For each

treated cohort, which is defined by the month in which the individuals have their bankruptcy

flags removed, we construct a separate control group. The control group consists of individ-

uals with their bankruptcy flags removed 12 to 17 months after the treated cohort. We then

restrict the dataset of treated and control individuals to the six months surrounding the flag

removal of the treated cohort. That is, for individuals who have their bankruptcy flag removed

in July of 2009, we compare credit scores, interest rates, and auto loan quantities during 2009

to outcomes for individuals who will have their bankruptcy flags removed from July to Decem-

ber 2010. The identifying assumption is that the change in outcomes for individuals with flag

removal in July 2009 would have been the same as the change in outcomes for the control

cohorts, in the absence of the flag removal for the treated cohort (parallel trends assumption).

We repeat this dataset construction for all treated cohorts from July 2009 to June 2017 and

stack the separate datasets together. We call each dataset a group and run variants of the

following regression:

yi t g = γcg + γtsg +
6
∑

t=−6

δt{ei t g = t}+ ϵi t g (101)

ei t g indicates time relative to the treatment of the treated cohort. We plot the coefficients

δt , along with a 95% confidence interval. The coefficients capture the difference in an outcome

in each month before and after flag removal relative to the months prior to flag removal.27 We

include cohort-month fixed effects, as well as year-month by score bucket fixed effects. We

allow those to differ by the respective dataset. Standard errors are clustered at the cohort-

month by group level. Figure D.1 plots estimation results and validates our findings from the

main specifications.

We further validate the graphical evidence by implementing a regression framework and

showing the results in Table D.1. To be computationally able to account for group-specific linear

27We exclude the relative time dummy for period -1.
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time trends, we run the stacked regression at the month-cohort month-score bucket-group level

and weight by the number of observations. Following standard practice, standard errors are

clustered at the cohort-month by group level. When not prohibited by multi-collinearity, the

specifications are chosen to match the main specifications in Table 2. Overall, the results in

Table D.1 confirm the visual results in Figure D.1. To ensure that the estimates from the stacked

specification do not substantially change our welfare computations, we repeat the exercise

illustrated in Table 3 and replace the regression estimates with the estimates from the stacked

specifications. The resulting welfare estimates are shown in Table D.2. We find an efficiency

ratio of approximately 0.059 (=1.83/31.04): for each dollar transferred, 5.9 cents of social

welfare is lost, not changing our conclusions from the main text.

To address concerns that one particularly influential group drives the results, we also aggre-

gate treatment and control outcomes for each generated dataset and, subsequently, average

relative time means across datasets. Hence, each generated dataset has the same weight in

the plotted mean scores, quantities, and interest rates. Figure D.2 illustrates that mean score,

interest, and quantity outcomes move in parallel in the pre-period. Besides, the estimated

treatment effects appear to be driven by trend breaks in the treated group at the time of flag

removal. While it is strictly speaking not a necessary condition for identification, we find this

observation comforting. To further address treatment effect heterogeneity, we sort and plot the

treat× post coefficients for each of the stacked datasets in Figure D.3. The majority of point

estimates are in line with our overall conclusions.

74



Table D.1: Credit Scores, Interest Rates, and Loan Volumes

This table shows estimates of the coefficients δy from the following specification yi t g = γcg + γtsg +
δ y
1[F lagRemoved] + βX i t g + ϵi t g . In the top panel, the outcome yi t g is the Vantage Score, in the middle panel

the outcome is observed interest rates, while in the bottom panel it is loan volumes. γcg are cohort fixed effects,
and γt g are time period fixed effects that can vary by group. Standard errors are clustered at the cohort by group
level. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Source: TransUnion.

(1) (2) (3) (4) (5)

Panel A: Credit Scores

Post=1 × Treat=1 16.916∗∗∗ 17.186∗∗∗ 17.198∗∗∗ 17.186∗∗∗ 17.407∗∗∗

(0.381) (0.208) (0.219) (0.208) (0.220)
Observations 174,720 174,720 174,720 174,720 174,720

Panel B: Interest Rates

Post=1 × Treat=1 -0.269∗∗ -0.303∗∗∗ -0.302∗∗∗ -0.303∗∗∗ -0.288∗∗∗

(0.085) (0.006) (0.009) (0.006) (0.007)
Observations 174,720 174,720 174,720 174,720 174,720

Panel C: Loan Volumes

Post=1 × Treat=1 28.547∗∗∗ 34.309∗∗∗ 33.715∗∗∗ 34.309∗∗∗ 34.193∗∗∗

(7.744) (2.489) (3.130) (2.489) (2.656)
Observations 174,720 174,720 174,720 174,720 174,720
Group Specific Linear Trend Yes No Yes No No
Year-month by Group FE No Yes No Yes No
Cohort by Group FE No No Yes Yes Yes
Year-month by Score Bucket by Group FE No No No No Yes
Clustered SE Cohort by Group Yes Yes Yes Yes Yes
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Table D.2: Summarizing Estimates Implied by Stacked Specifications

This table is comparable to Table 3 in the main text. We replace the regression coefficients obtained from the main specifications in Table 2 with
coefficients of the stacked specifications in Table D.1. This table then summarizes our estimates implied by the stacked specifications of Table
D.1. Panel A shows average interest rates in the six months before flag removal (rH, f air ), the interest rate effect of flag removal (rpool−rB, f air ),
and the effect of flag removal on the fraction of the principal repaid each month in a standardized five-year loan (φ(rpool )−φ(rH, f air )). Panel B
shows average loan quantities in the six months before flag removal and the quantity effect of flag removal. Panel C shows the market demand
elasticity implied by our estimates, the inverse demand slope in terms of the interest rate (

rpool−rH, f air
Λpool−ΛH, f air

), and the inverse demand slope in terms

of the repayment fraction (
φ(rpool )−φ(rH, f air )
Λpool−ΛH, f air

). Panel D summarizes surplus changes implied by the estimates in Table 2. The first row shows

the average change in consumer surplus for individuals with flag removal for the average five-year loan. It is the sum of monthly non-default
period surpluses. The number of non-default periods is derived from the probability of loans to individuals who ever have a bankruptcy flag
to be charged off within two years of loan opening. The second row shows the aggregate change in consumer surplus for individuals with
bankruptcy flags when flags are removed for 800,000 individuals. The third row of Panel D shows the implied consumer surplus loss for
never-bankrupt individuals for the average 5 year loan scaled by the number of flag removals. It is the sum of non-default period surpluses.
The number of non-default periods is derived from the probability of loans to individuals who never have a bankruptcy flag to be charged off
within two years of loan opening. The fourth row scales the implied consumer surplus loss for never-bankrupt individuals over 5 years by
the occurrence of never-bankrupt individuals and is, consequently, showing the average burden carried by individuals in the never-bankrupt
group. The fifth row calculates the consumer surplus loss for never-bankrupt people when 800,000 bankruptcy flags are removed. The sixth
row shows the social surplus change over five years scaled by the number of people with flag removal. It is the sum of first and third row. The
sixth row shows the total change in social surplus when flags are removed for 800,000 individuals. It is the sum of the second and fifth row.
The seventh row provides the efficiency change per dollar redistributed to bankrupt individuals by removing the bankruptcy flag. Source:
TransUnion.

(1) (2) (3) (4) (5)

Panel A: Prices

Pre-flag-removal loan interest rate (%) 9.02% 9.02% 9.02% 9.02% 9.02%

Flag removal-induced change in interest rate (%) -0.269% -0.303% -0.302% -0.303% -0.288%

Change in monthly payments (%) -0.013% -0.015% -0.015% -0.015% -0.014%

Panel B: Quantities

Pre-flag-removal loan quantity
(Average $ per borrower per year) $3,678.00 $3,678.00 $3,678.00 $3,678.00 $3,678.00

Flag removal-induced change in loan quantity
(Average $ per borrower per year) $342.56 $411.71 $404.58 $411.71 $410.32

Panel C: Elasticity and Slope

Market Demand Elasticity -3.12 -3.33 -3.29 -3.33 -3.49

Inverse demand slope
(Interest rate % per $100) -0.0785 -0.0736 -0.0746 -0.0736 -0.0702

Inverse demand slope
(Repayment fraction % per $100) -0.0038 -0.0036 -0.0036 -0.0036 -0.0034

Panel D: Surplus Changes

Average consumer surplus redistributed to individuals with
flag removal over 5 years ($ per eligible borrower with flag removal) $28.74 $32.66 $32.52 $32.66 $31.04

Total consumer surplus redistributed to individuals with
flag removal over 5 years ($) $22,995,245 $26,128,165 $26,018,217 $26,128,165 $24,832,830

Average consumer surplus taken from never-bankrupt
individuals over 5 years ($ per eligible borrower with flag removal) -$30.17 -$34.59 -$34.42 -$34.59 -$32.87

Average consumer surplus taken from never-bankrupt
individuals over 5 years ($ per eligible never bankrupt borrower) -$3.58 -$4.10 -$4.08 -$4.10 -$3.90

Total consumer surplus taken from never-bankrupt
individuals over 5 years ($) -$24,137,612 -$27,674,278 -$27,532,558 -$27,674,278 -$26,297,587

Change in social surplus per individual over 5 years
($ per eligible borrower with flag removal) -$1.50 -$1.43 -$1.93 -$1.93 -$1.83

Total change in social surplus
over 5 years ($) -$1,142,368 -$1,546,113 -$1,514,341 -$1,546,113 -$1,464,757

Welfare change per dollar redistributed
to bankrupt individuals -0.0497 -0.0592 -0.0582 -0.0592 -0.0590
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Figure D.1: Credit Scores, Interest Rates, and Loan Balances

This figure shows estimates of the coefficients δt from the following specification yi t g = γcg+γtsg+
6
∑

t=−6

δt{ei t g =

t}+ ϵi t g , along with a 95% confidence interval. In the first panel, the outcome yi t g is credit scores, while in the
second panel it is interest rates. In the third panel, the outcome is loan balances. γcg are cohort by group fixed
effects, and γtsg are time period by score bucket by group fixed effects. Standard errors are clustered at the cohort
by group level. Source: TransUnion.

Panel A: Credit Scores

Panel B: Interest Rates

Panel C: Loan Balances
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Figure D.2: Mean Outcomes: Credit Scores, Interest Rates, and Loan Volumes

This figure shows average treatment and control outcomes in relative time. We aggregate treatment and control
outcomes for each generated dataset and, subsequently, average relative time means across datasets. Each gen-
erated dataset has the same weight in the plotted mean scores, predicted interest rates, and quantities. Source:
TransUnion.

Panel A: Credit Scores

Panel B: Interest Rates

Panel C: Loan Volumes
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Figure D.3: Individual Events: Credit Scores, Interest Rates, and Loan Volumes

This figure shows event-specific point estimates. It plots the coefficients δg from the following specification
yi t g = γcg + γtsg + δgTreat × Post + ϵi t g . Point estimates across Panels do not correspond to each other as the
coefficient sorting is Panel specific. Source: TransUnion.

Panel A: Credit scores

Panel B: Interest rates

Panel C: Loan volumes
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E Illustration of Classic Third Degree Price Discrimination

This section shows an illustration of classic third degree price discrimination contrasting with

Figure 1 showing price discrimination on individuals’ costs. As Section 2.3 explains, there

are two core differences between our setting and the classic literature on third-degree price

discrimination: market power and data being informative about demand. Figure E.1 shows an

illustration of classic third degree price discrimination.

Figure E.1: Price Discrimination in Classic Markets

(a) Classic: low demand

r

Q

Demand
MC

Q1 Q2,low

rpool

rL

(b) Classic: high demand

r

Q

Demand
MC

Q1Q2,high

rpool

rH

This figure illustrates how third-degree price discrimination affects welfare in classic markets. Suppose there are
two groups of prospective borrowers—low demand (panel a) and high demand (panel b). The red lines show the
cost of serving these borrowers, and the blue lines show borrowers’ demand curve. Lenders are initially unable to
distinguish between these prospective borrowers, so set price rpool . After lenders are able to distinguish the two
groups of borrowers, they set rL for the low-demand group (as shown in panel a) and rH for the high-demand
group (panel b). The dark gray shaded area in panel (a) shows the welfare gain for the low-demand group, where
prices decrease, and the light gray shaded area in panel (b) shows the welfare loss for the high-demand group,
where prices increase.
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F Variable Definitions

Table F.1: Variable Description

This table denotes the construction of the main analysis variables. The source for all variables is TransUnion.

Variable Description

Credit Score VantageScore 3.0

Quantity Opened
Sum of balances on new auto accounts opened by an individual in a
given month; zero when no account opened by the individual in the given month

Quantity Opened
Cond. on Opening

Sum of balances on new auto accounts opened by an individual in a
given month conditional on an opening being reported

Auto Interest Rate
Credit amount weighted interest of auto accounts at opening.
Missing when no auto account opened by individual in a given month

Charged-off
1 if one of the auto loans opened by an individual in a given month is
charged-off within the 2 years after opening and zero otherwise

Score Bucket
One of 20 score buckets assigned in the month
before flag removal and held constant throughout
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