Competition and Selection in Credit Markets

Constantine Yannelis † Anthony Lee Zhang‡

June 11, 2021

Abstract

We present both theory and evidence that increased competition may decrease rather than increase consumer welfare in subprime credit markets. We present a model of lending markets with imperfect competition, adverse selection and costly lender screening. In more competitive markets, lenders have lower market shares, and thus lower incentives to monitor borrowers. Thus, when markets are competitive, all lenders face a riskier pool of borrowers, which can lead interest rates to be higher, and consumer welfare to be lower. We provide evidence for the model’s predictions in the auto loan market using administrative credit panel data.

†University of Chicago, Booth School of Business, constantine.yannelis@chicagobooth.edu
‡University of Chicago, Booth School of Business, anthony.zhang@chicagobooth.edu
1 Introduction

How do the effects of market concentration interact with lender screening in credit markets? The efficiency of lending markets can be hampered by information imperfections (Akerlof, 1970; Stiglitz and Weiss, 1981), but these harmful effects can be in part mitigated by imperfect competition (Petersen and Rajan, 1995; Mahoney and Weyl, 2017). We propose and test a new channel through which competition can have adverse effects on consumer credit markets.

There is a theoretical reason to believe that credit market competition can harm consumers in high-risk market segments. Lenders can invest in a fixed-cost screening technology, which screens out consumers who are likely to default, allowing lenders to charge lower interest rates to consumers who pass the screening.1 Lenders in concentrated markets have higher incentives to invest in screening, since the fixed screening costs are divided among a larger customer base. As a result, when market competition increases, lenders have lower incentives to invest in screening. The population of borrowers becomes riskier, and interest rates can actually increase, leaving consumers worse off.

Our framework makes a simple and surprising empirical prediction. In low-risk market segments, loan rates should be positively associated with market concentration, as predicted by classical theory. In high-risk segments, where screening is more important, loan rates should actually be negatively associated with concentration measures. We test this prediction using administrative credit panel data from TransUnion. We focus on auto lending, a rapidly growing consumer lending sector with $1.4 trillion in outstanding loan volume. Auto lending is characterized by direct lending to consumers from banks and dealers, segmentation according to consumers’ credit risk, and the absence of government subsidies and guarantees. All of these features make the auto lending market ideal to explore the predictions of the theoretical model. We build a nationally representative dataset, at the county by year level, split by VantageScore credit score bins. The model’s predictions hold in the data: concentration is positively associated with interest rates for prime borrowers, and negatively associated with rates for subprime borrowers.

1Anecdotal evidence suggests that costly mechanisms which lenders use to screen borrowers are increasingly common. For example, lenders can invest in better predictive analytics, for example using machine learning or artificial intelligence. Lenders may also purchase data which can predict default. Some auto lenders also invest in physical technology, such as GPS technology to track cars in the event of a repossession.
This screening cost channel operates in loan markets with screening and imperfect competition. A number of identical lenders first invest in a costly screening technology, to screen out consumers who are more likely to default, and then set interest rates at which they are willing to lend to consumers. We assume that the screening technology has fixed costs: that is, costs depend only on the desired screening accuracy, not the number of consumers tested. Thus, lenders’ screening incentives depend on their market shares. Lenders who makes more loans have larger incentives to invest in screening, since the cost of screening is split over a larger consumer base. We assume lenders are differentiated, so lenders can set interest rates at some markup above their break-even rate. In equilibrium, consumers’ interest rates are equal to the break-even interest rate, given consumers’ default rates, plus a markup which depends on lenders’ market power.

Competition has two opposing effects on interest rates. Competition tends to decrease interest rates by lowering lenders’ market power: in more competitive markets, lenders set smaller markups over their break-even rates. However, more competition implies that each lender’s market share is lower, so lenders have lower incentives to screen out borrowers who are likely to default. Lenders thus face a riskier set of borrowers, and charge higher rates as a result. When the market contains a large fraction of high-risk consumers, the screening force can dominate, and equilibrium interest rates can actually increase, and consumer welfare can decrease, as markets become more competitive.

The main prediction of our model is that the relationship between concentration and interest rates depends on the level of default risk in the population. Interest rates should increase with market concentration in low-risk market segments, and interest rates should decrease with concentration in high-risk market segments. The model also makes two auxiliary predictions. The first is that concentrated markets should always have lower default rates, since lenders have higher incentives to screen. The second is that, in high-risk market segments, higher concentration can simultaneously lead to lower quantities and lower prices, as lenders with market power screen more intensively, but offer lower rates to borrowers that pass the screening. This cannot occur in an environment without some form of screening or rationing: demand curves slope downwards, so if lenders offered lower rates without screening, more customers will want to borrow.
Consistent with our predictions, we find an opposite relationship between interest rates and market concentration for low and high credit borrowers. For borrowers with high credit scores, above 600, we find the classical relationship that interest rates are higher in more concentrated markets. For borrowers with low credit scores, below 600, we find that interest rates are actually lower in areas with more concentrated markets. The relationship is true in the cross section, survives the inclusion of county and year fixed effects, and survives many alternative strategies for measuring market concentration and interest rates. Moreover, in line with the other predictions of our model, we find that in all markets, delinquency rates are decreasing in market concentration, and in high-risk markets, loan quantities are decreasing in market concentration, even though interest rates are also decreasing.

We further test our model’s predictions using bank failures and mergers as quasi-random shocks to market competition. We link data from on deposit shares from Federal Reserve call reports to data on bank mergers and acquisitions from the National Information Center. Following mergers, market concentration increases in counties with an acquired bank, and following large bank failures, market concentration tends to decrease. In both cases, consistent with our model’s predictions, we find that increases in competition lead to higher interest rates for high-credit-score consumers, but lower interest rates for low-credit-score consumers.

We discuss and rule out several potential alternative channels. The interactive effects of adverse selection and competition alone, as studied by Mahoney and Weyl (2017), cannot explain the results. With both competition and adverse selection, regardless of whether selection is adverse or advantageous, market power increases prices. Moral hazard, or higher interest rates having a causal effect on delinquency, also cannot explain the results. In particular, moral hazard does not lead to higher competition correlating with high interest rates for low credit score borrowers. Markups charged by auto dealers cannot explain the asymmetry between low and high credit score individuals. Our results hold when we restrict the sample to pure auto lenders, or lenders (banks, credit unions, and other entities) who make multiple kinds of loans, suggesting that our results are not driven by heterogeneous funding costs for different kinds of lenders. Finally, since loan quantities are decreasing in market concentration, the primary effect of competition appears to be through screening, rather than improved collections technology, though this channel may also partially contribute to the effects that we find.
Our results imply that consumers may not always benefit from increased competition in credit markets. In business lending, competition is known to have potentially adverse effects, because it impairs the ability of banks to engage in relationship lending (Petersen and Rajan, 1995). This channel appears less relevant for consumer credit markets, since lender-borrower relationships are likely less important for households relative to firms. Our results show that competition can distort outcomes in consumer credit markets through a different channel: higher competition decreases lenders’ incentives to screen out consumers who are likely to default.

The channel in our paper is also distinct from that of, for example, Mian and Sufi (2009) and Mahoney and Weyl (2017), who argue that credit market competition can lead to credit over-provision. In these papers, increased competition lowers interest rates, and attracts borrowers who are more likely to default. This may decrease social welfare, but always benefits borrowers. In contrast, in our model, increased competition causes lenders to invest less in screening, and instead to set higher interest rates for all consumers. This leads to inefficient credit allocation, because lenders are less able to tell which consumers are creditworthy. In our setting, increased competition can actually make consumers worse off.

This paper joins a literature on the effects of competition in credit markets. This paper presents a new model of competition in consumer credit markets, with the counterintuitive result that in selection markets greater competition can actually harm consumers. Petersen and Rajan (1995) study competition and relationship banking. Parlour and Rajan (2001) provide a theoretical model of competition in loan contracts with multiple borrowers. Drechsler, Savov and Schnabl (2017), Drechsler, Savov and Schnabl (2018) and Egan, Hortaçsu and Matvos (2017) study deposit market concentration. Calomiris (1999) studies the efficiency of bank mergers. Argyle, Nadauld and Palmer (2020b) study the real effects of search frictions in auto lending and Buchak and Jørring (2021) study the effects of competition on lending and discrimination in the mortgage market. There is also a large literature on the effects of bank branching deregulation, for example Jayaratne and Strahan (1996), Economides, Hubbard and Palia (1996), Krozner and Strahan (1999). Einav, Jenkins and Levin (2012) present a model of subprime auto lending under imperfect competition with different risk types. Bank competition is also known to affect local industry structure (Cetorelli and Strahan, 2006). The paper also
joins work on the relationship between monitoring and competition in finance. Giroud and Mueller (2010) and Giroud and Mueller (2011) study the relationship between competition and corporate governance. Consistent with interactive effects of monitoring and competition, they point to monitoring playing a more important role in less competitive industries.\footnote{Most narrowly, this paper also joins a body of work on auto lending. For example, Adams, Einav and Levin (2009) study liquidity constraints in subprime auto lending, Argyle, Nadauld and Palmer (2020a) study the demand for maturity, Benmelech, Meisenzahl and Ramcharan (2017) study liquidity, Grunewald et al. (2020) study dealers’ joint decisions of loan and car prices, and Einav, Jenkins and Levin (2013) study the introduction of credit scoring.}

This paper also joins a body of work on the interaction of adverse selection and competition. We show that, perhaps surprisingly, in some cases greater market concentration can benefit consumers. Previous papers have rather focused on the fact that selection can mitigate the harmful effects of market power. Mahoney and Weyl (2017) provide a model of imperfect competition, and show that in the presence of adverse selection many of the harmful effects of imperfect competition are mitigated. Crawford, Pavanini and Schivardi (2018) study the interaction of competition and adverse selection in corporate credit markets. Lester, Shourideh, Venkateswaran and Zetlin-Jones (2019) analyze competition and adverse selection in a search-theoretic model, finding that increasing competition can decrease welfare. Vayanos and Wang (2012) study the interaction of selection and competition in asset markets.

This paper is also related to a theory literature on competition between banks, when banks have imperfect information about borrowers’ default risk. An early paper in this literature is Broecker (1990). He et al. (2020) studies competition in lending markets when borrowers can decide whether to share data with lenders. Our signal structure is similar to He et al. (2020): banks are able to screen out some bad types, and the remaining population has a mix of bad and good types. Hauswald and Marquez (2006) analyzes a related model, in which banks acquire information on borrowers distributed on a circle, and banks are better at acquiring information on borrowers they are closer to. Our modelling assumptions differ somewhat from this literature: we assume lenders are differentiated, so competition tends to reduce markets, and we also assume information acquisition is a fixed cost, rather than a variable cost, which seems more appropriate in consumer lending settings.

The remainder of this paper is organized as follows. Section 2 presents our theoretical model, and shows that, with monitoring and adverse selection, greater market concentration
can lead to a rise in prices. Section 3 presents data and institutional background. Section 4 presents empirical evidence consistent with our model. Section 5 discusses potential alternative channels. Section 6 concludes.

2 Model

We build a model in which differentiated lenders invest in a costly technology to screen potential borrowers, and then set loan rates for lending to the borrowers. There are N lenders, indexed by j. Lenders compete in a two-stage game. In the first stage, lenders simultaneously choose how much to invest in screening out bad-type consumers. In the second stage, lenders compete a la Bertrand, simultaneously posting prices at which they are willing to lend to consumers.

Consumers. Consumers wish to borrow a unit of funds from lenders. There are two types of consumers: there is a unit mass of type G consumers, and a measure q of type B consumers. G consumers always pay back loans, and B consumers always default. We assume for simplicity that type B consumers default without paying any interest, and that recovery rates are always 0, so type B consumers cost lenders the principal of 1 and pay nothing. We relax the assumption of zero recovery rates in Appendix A.4. In Appendix A.6, we assume there is moral hazard for type G consumers: type G consumers default with some probability that is increasing in the interest rate they are charged. In both cases, all our results are qualitatively unchanged.

The willingness-to-pay of consumers for loans is independent of whether they are type B or G. Consumers’ preferences over lenders are described by a Salop (1979) circle. The N lenders are uniformly spaced around a unit circle, and consumers are arranged uniformly on the circle. Consumers’ preferences for lenders are a function of distance: the utility of a consumer who borrows from lender j, at loan rate r_j, is:

$$\mu - r_j - \theta x_j$$

where x_j is the distance between the consumer and lender j on the circle. The constant μ

3In Appendix A.5, we show that N can be micro-founded as the equilibrium outcome from an entry game, in which lenders sequentially decide whether to pay a fixed entry cost to enter the market.
affects the total utility of the consumer for borrowing. We assume that \(\mu \) is high enough that consumers do not choose the outside option in equilibrium. We also assume that \(\mu < 1 \), so that type \(B \) consumers’ willingness-to-pay is never higher than the social cost, 1, of providing credit to them, so it is socially inefficient to provide credit to type-\(B \) consumers.

In Appendix A.8, we show that our main results also hold if borrowers’ preferences over lenders are described by a logit model, instead of a Salop circle model.

Costly screening. Lenders can invest in a fixed-cost screening technology to imperfectly detect type-\(B \) consumers. Formally, lender \(j \) can invest to learn an imperfect signal of borrowers’ types. The signal has a “bad-news” structure: for type-\(G \) borrowers, the lender always observes a good signal. For type-\(B \) borrowers, the signal is good with probability \(\alpha_j \) and bad with probability \(1 - \alpha_j \), independently across borrowers. The cost of a signal with strength \(\alpha_j \) is \(\tilde{c}(\alpha_j) \), which is strictly decreasing in \(\alpha_j \): stronger signals (smaller \(\alpha_j \)) are more expensive.

A measure \(q(1 - \alpha_j) \) of type-\(B \) customers will receive bad signals: lender \(j \) knows with certainty that these customers are type-\(B \), and will not lend to them.\(^4\) A measure \(q\alpha_j \) of type-\(B \) consumers receive good signals, and are pooled with the unit measure of type-\(G \) consumers.

In the main text, we assume that type \(B \) consumers are ordered in terms of how easy they are to screen. Thus, if all firms attain a signal with strength \(\alpha \), they screen out exactly the same measure \(q\alpha \) of consumers. This implies that, in any symmetric equilibrium where firms choose the same value of \(\alpha \), firms’ signals about consumers are perfectly correlated: a consumer who is detected as a type-\(B \) by one firm is detected by all other firms, and any type-\(B \) consumers who are not detected are treated identically by all firms.\(^5\)

If the population fraction of type-\(B \) consumers is \(q \), and lender \(j \) chooses signal strength \(\alpha_j \), the default rate among borrowers with good signals is:

\[
\delta_j = \frac{\alpha_jq}{1 + \alpha_jq}
\]

\(^4\)Since type-\(B \) consumers always default, and never pay interest or principal, there is no rate at which it is profitable to lend to them.

\(^5\)This assumption simplifies the model dramatically. If firms’ signals not perfectly independent across customers, firms would be able to infer additional information about customers’ types from whether other firms are willing to lend to customers, so the inferred default rates among marginal consumers are different from default rates among average consumers. This complicates the model without adding significant insight, so we assume this away in the main text. However, we partially relax this assumption in appendix A.7.
Inverting, in order to attain default rate δ_j, lenders must choose:

$$\alpha_j = \frac{\delta_j}{q(1-\delta_j)}$$

To simplify exposition, we can think of lenders as choosing a desired default rate δ_j. The cost of attaining default rate δ_j, when the population measure of bad types is q, is:

$$c_q(\delta_j) = \tilde{c}\left(\frac{\delta_j}{q(1-\delta_j)}\right)$$ (2)

Note that, since \tilde{c} is decreasing, the function $c_q(\delta_j)$ is increasing in q, fixing δ_j: when there are more bad types in the population, it is more costly to attain any given default rate, because the lender must acquire a stronger signal (a lower value of α_j) to do so.

Our screening model is designed to capture a number of salient features of consumer lending markets. First, information acquisition in the auto lending markets, and similar consumer lending markets, is likely primarily a fixed cost, rather than a variable cost. The main forms of information acquisition in these settings are data analytics, automated decision software, are fixed and amortized across the consumer population. This contrasts with much of the literature on bank lending, Broecker (1990), Hauswald and Marquez (2003), Hauswald and Marquez (2006) in which information acquisition is assumed to be a variable cost, separate for each borrower. Information acquisition is likely be variable-cost-driven in, for example, firm lending, where firms’ business models are fairly heterogeneous, and lending decisions require labor time and discretionary decision-making.

Second, we assume lenders’ signals in these markets are perfectly correlated. Lenders largely have access to the same kinds of information on consumers in practice – credit reports, employment records, and likewise – so, while lenders can invest in improving the quality of their signal, it is unlikely that two lenders who make similar investments get substantially independent signals. However, as we show in appendix A.7, our main results still hold in an extension in which lenders’ signals are independent, so lenders face a winner’s curse.
2.1 Equilibrium

In equilibrium, lenders’ screening and price-setting decisions have to be optimal. We solve the model backwards, solving for lenders’ optimal price-setting decisions given default rates, and then solving lenders’ information acquisition decisions. First, note that in any symmetric equilibrium, lenders set identical interest rates, and each lender has market share:

\[s_j = \frac{1}{N} \]

Price setting. After lenders decide how much to invest in screening, lenders simultaneously set interest rates for customers who are not screened out as bad types. In the main text, we assume lenders can borrow at interest rate zero; we relax this in Appendix A.4. Lender \(j \) thus chooses \(r_j \) to maximize:

\[\Pi = \left(\frac{1}{1 - \delta_j} \right) s_j (r_j (1 - \delta_j) - \delta_j) \]

(3)

where \(s_j \) is \(j \)'s market share, and the total measure of customers that pass \(j \)'s screening is \(\frac{1}{1 - \delta_j} \). Intuitively, (3) says that, with probability \((1 - \delta_j) \), the customer borrows a unit of funds, and pays back \(1 + r_j \), so the lender’s profit is \(r_j \). With probability \(\delta_j \), the customer defaults, and the lender loses the principal of 1. Lenders’ profits can be rearranged to:

\[\Pi = s_j \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) \]

(4)

In Appendix A.1, we show that lender \(j \)'s optimal interest rate \(r_j \), in symmetric equilibrium, satisfies:

\[r_j - \frac{\delta_j}{1 - \delta_j} = \frac{\theta}{N} \]

(5)

The intuition for (5) is that \(r_j - \frac{\delta_j}{1 - \delta_j} \), the markup of \(r_j \) over the break-even interest rate, \(\frac{\delta_j}{1 - \delta_j} \), is higher when \(\theta \) is higher, so consumers are more distance-sensitive and thus less price-sensitive, and when \(N \) is higher, so markets are more competitive.

Optimal screening. Lender \(j \) chooses a desired default rate \(\delta_j \) to maximize total lending
profits, minus screening costs $c_q(\delta_j)$. That is, lender j solves:

$$\max_{\delta_j} \max_{r_j} \left(s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) \right)$$ \hspace{1cm} (6)

In Appendix A.2, we characterize first- and second-order conditions for lenders’ optimal information acquisition decisions. The first-order condition is:

$$\frac{s_j}{(1 - \delta_j)^2} = -c_q'(\delta_j)$$ \hspace{1cm} (7)

Intuitively, the left-hand side of (7) is the marginal benefit of decreasing the default rate δ_j by a small amount, which is higher when j’s market share, s_j, is higher. The right-hand side is the marginal cost of decreasing δ_j, which depends on the fraction of type-B consumers in the population.

Combining (5) and (7), the following proposition states conditions on r, s, δ which characterize a symmetric equilibrium.

Proposition 1. Necessary conditions for a symmetric equilibrium are that all lenders’ market shares s, default rates δ, and interest rates r as are follows. Market shares of each lender are:

$$s = \frac{1}{N}$$ \hspace{1cm} (8)

Lenders must set prices optimally:

$$r - \frac{\delta}{1 - \delta} = \frac{\theta}{N}$$ \hspace{1cm} (9)

All lenders must make optimal screening decisions:

$$\frac{1}{N (1 - \delta)^2} = -c_q'(\delta)$$ \hspace{1cm} (10)

$$c_q''(\delta) (1 - \delta)^4 + \frac{2}{N} (1 - \delta) > \theta$$ \hspace{1cm} (11)

Total loan quantity is:

$$\frac{1}{1 - \delta}$$
In any equilibrium, total consumer welfare of type G consumers is:

\[C - r - \frac{\theta}{4N} \quad (12) \]

where C is a constant.

Note that expression (12) for consumer surplus only accounts for type G consumers. This allows us to illustrate how non-defaulting consumers, who always have a willingness-to-pay which is higher than the cost of providing credit to them, are affected by the two forces of market power, and imperfect screening by lenders, which causes them to pool with type B consumers.

We proceed to solve the model numerically. For our simulations, we assume costs take the form:

\[\tilde{c}(\alpha) = \frac{k}{\alpha} \]

Plugging into (2), this implies that:

\[c_q(\delta_j) = \frac{kq(1-\delta_j)}{\delta_j} = \frac{kq}{\delta_j} - kq \quad (13) \]

Expression (13) shows that screening costs are increasing in the parameter k, and the measure of type-B consumers, q. When q is large, screening costs are high, and it is more costly on the margin to decrease the default rate δ by any given amount. When q is 0, there are no bad types in the population, so it is costless for the firm to achieve a default rate of 0.

Figure 1 shows equilibrium outcomes, as we vary the number of lenders, for different levels of q. Throughout, we fix $k = 0.001$, as this generates realistic numbers for interest rates. The x-axis of each plot is the Herfindahl-Hirschman index:

\[HHI \equiv \sum_j s_j^2 \]

In our model, this is simply $\frac{1}{N}$. The top-left panel shows the interest rate, r. When q is low, so the consumer population is low-risk, the relationship between r and competition is consistent with classical theory: interest rates are higher when HHI is higher and markets are more
concentrated. However, when q is high, so the population is risky, we obtain the opposite result: interest rates are actually lower when when HHI is higher and markets are more concentrated.

To illustrate the forces driving this results, the top-middle plot shows the default rate δ, and the top-right plot shows the equilibrium markup charged by lenders over the break-even price, $r - \frac{\delta}{1-\delta}$. The top left plot shows that the default rate δ is always decreasing in HHI, regardless of q. Intuitively, when HHI is higher, firms have higher market share, and thus higher incentives to invest in screening, lowering equilibrium default rates. The slope of the $HHI-\delta$ curve depends on q, the level of risk in the population.

The top right plot shows the markup that firms charge over the break-even price in equilibrium, $r - \frac{\delta}{1-\delta}$. Markups are always higher in more concentrated markets, since firms have more market power. However, unlike default rates, the effect of concentration on markups is insensitive to the average riskiness of the borrower population.

The net effect of concentration on interest rates combines the effects on concentration on default rates, and on markups. Concentration always increases markups, but decreases default rates by increasing lenders’ screening incentives. When the population is low-risk, the markup effect dominates, so interest rates are increasing in concentration. When the population is high-risk, the screening effect dominates, and interest rates are decreasing in concentration. The effect of concentration on default rates can be strong enough that the welfare of good-type consumers is actually higher in more concentrated markets. The bottom left panel shows that, when q is large, consumer surplus can actually increase as HHI increases.

The bottom right panel of Figure 1 shows total loan quantities as a function of concentration. Loan quantity tends to decrease when concentration is higher. This is true even when q is high, and concentration is positively correlated with interest rates. This is because lenders screen more in more concentrated markets, removing bad types from the population, and thus decreasing equilibrium loan quantities, even though interest rates are lower.

2.2 Predictions

Based on Figure 1, we can derive three testable predictions to bring to the data.

Prediction 1. When the level of default risk in the consumer population is low, higher concentra-
tion tends to increase interest rates. *When the population default risk is high, concentration tends to decrease interest rates.*

This follows from the top left panel of Figure 1. The next prediction concerns default rates, from the top-middle panel.

Prediction 2. *Higher concentration always leads to lower default rates.*

Finally, the bottom-right panel of Figure 1 makes a prediction about loan quantities.

Prediction 3. *When the population default risk is high, higher concentration can simultaneously lead to lower interest rates and lower loan quantities.*

The intuition behind Prediction 3 is that, in high-risk markets, lenders screen more, limiting the set of consumers that receive loans, and offer lower interest rates to these consumers. This cannot occur in an environment without screening: market demand curves slope downwards, so lower prices will always lead to higher quantities, if all customers are allowed to borrow at the market price.\(^6\)

3 Data and Institutional Background

3.1 Institutional Background

While the model presented in section 2 can broadly apply in consumer credit markets, we focus our empirical analysis on auto loans for three reasons. First, the institutional details pertaining to auto lending are relatively simple and direct relative to other large consumer loan markets, like the mortgage and student loan markets. Second, the auto loan market is largely segmented along borrower riskiness. Borrowers with different credit scores and risk tend to purchase different vehicles and utilize different lenders. Finally, unlike mortgage and student loans, auto lending is typically not guaranteed, and so losses are directly incurred to the lender-- an

\(^6\)We note that, in the baseline model, quantities are always decreasing in concentration, because there is no extensive margin: customers never choose not to borrow. Thus, total loan quantity depends only on lenders' screening decisions: when markets are more concentrated, lenders screen more intensively, so total loan quantity decreases. In a richer model, such as that of Appendix A.8, prices would also affect customers' choices on the extensive margin, so higher concentration can conceivably lead to higher quantities, if lenders can lower prices sufficiently to attract many more type-\(G \) customers into the market.
important feature of our model. Relatedly, securitization can also change lenders’ incentives to screen borrowers (Keys, Mukherjee, Seru and Vig, 2008), and one attractive feature of the market is that auto loans are also less likely to be securitized relative to mortgage loans.

Auto loans are the third largest source of household debt in the United States, following mortgage and student loans. The Federal Reserve Bank of New York reports approximately $1.4 trillion in outstanding auto loan debt in 2020.7 The vast majority of auto purchases in the US are financed. Over 95% of American households own cars and the National Association of Auto Dealers estimates that in 2019, 85% of new vehicles and 55% of used vehicles were purchased using auto loans. According to Experian, in 2020 31.2% of auto loans were made by captive subsidiaries, 30.2% were made by banks, 18.7% were made by credit unions, 12.4% by finance companies and the remaining 7.6% by dealers themselves.8

There are two types of auto lending, direct and indirect. Direct lending implies that consumers take a loan directly from a financial institution, and use that to purchase a vehicle. The consumer will submit information to a lender, and the lender will decide whether to approve the loan. Under indirect lending, the consumer applies for a loan through the dealer and dealers obtain financing through third party lenders. Dealers typically have relationships with several lenders, and after providing lenders with borrower information the dealers solicit offers for the minimum interest rate that a lender will provide.

Importantly for linking to our model, auto loans typically remain on lenders’ books. Hence lenders incurs costs if borrowers default. In 2020, only 14% of auto loans were securitized according to SPG Global.9 A slightly higher fraction of subprime loans are securitized, but the vast majority – three quarters – of subprime auto loans are not securitized.

3.1.1 Monitoring

Beyond the most basic form of screening, accepting or rejecting clients based on credit scores, there are a number of ways in which auto lenders monitor borrowers. These methods typically incur costs to lenders. For example, some auto lenders install GPS tracking to be better able

7Levitin (2020) provides a detailed description of the auto loan market.
8In the appendix, we show that our results hold if we restrict to banks and other lenders that do not exclusively offer auto loans.
9Similarly, Klee and Shin (2020), using data from SIFMA, state that the quantity of outstanding auto ABS was around $225 billion in 2018, which is around 18% of the total outstanding volume of auto loans.
to repossess vehicles in the case of default. Lenders can also invest in **predictive analytics**, sometimes using **machine learning and artificial intelligence**, to identify which borrowers are less likely to default, even within subprime categories. **Modeling prepayment risk** can also allow lenders to go beyond traditional credit scoring. Some lenders also **verify a car’s condition** before lending to risky borrowers, since lemons are useless as collateral. All of these actions would lead to better screening and monitoring of borrowers, but would incur costs for the lender either through building better predictive analytics, paying to inspect vehicles or installing additional features to track vehicles.

In our analysis, we will use county-year HHI as a measure of market competition. This implicitly assumes it is a lender’s local market share which matters for screening decisions, which would be reasonable if lenders’ screening decisions are local in nature. There are a number of reasons why this might be the case. First, most auto loans are made through lenders’ relationships with dealers. If lenders need to invest in dealer-specific information acquisition, for example to determine dealerships with higher default rates, these investments would be location-specific in nature. Second, some information used to estimate default risks is very local in nature. For example, borrowers living in certain neighborhoods may have different default risks than others; detecting these relationships and using them to price loans may require location-specific data acquisition and analysis.\(^{10}\)

3.2 Data

3.2.1 Booth TransUnion Consumer Credit Panel

Our main data source is the Booth TransUnion Consumer Credit Panel. The data is an anonymized 10% sample of all TransUnion credit records from 2009 to 2020. Individuals who were in the initial sample in 2000 have their data continually updated, and each year 10% of new first time individuals in the credit panel are added. A small fraction of individuals also leave the panel each year, for example due to death or emigration.\(^ {11}\) We define markets at the county

\(^{10}\)Address history and property values appear to be important components of some alternative credit data products. See, for example, *LexisNexis RiskView*.

\(^{11}\)Keys, Mahoney and Yang (2020) provide more details about the Booth TransUnion Consumer Credit Panel. All tables and figures that list TransUnion as a source have statistics calculated (or derived) based on credit data provided by TransUnion, a global information solutions company, through a relationship with the Kilts Center for
level, and our main analysis dataset consists of new loans at the county by credit score by year level. We drop observations with fewer than ten loan contracts annually.

We can observe basic information about a loan, including the original balance, the current balance, scheduled payments, and maturity of the loan. We can also observe other borrower-level information, including VantageScore and geographical variables. Interest rates are not directly observed, and thus we back these out using scheduled payments. We take the first observation for each loan and use the amortization formula to calculate interest rates $A = \frac{P \times i}{1 - (1+i)^{-n}}$, where A is the monthly payment due, P is the principal amount on the loan, n is the maturity in months, and i is the interest rate, we solve for i using a unit root solver, after removing missing observations for each requisite variable.12 The lender which originated as well as the customer the loan are anonymized by the data provider.

Total loan volumes in our data are also comparable to measures from other datasets: we plot the time series of the total number and dollar volume of car loans from different datasets in Appendix Figure A.4. Appendix Figure A.5 shows the distribution of consumers by credit score in our data. The average interest rate in our sample is 9.3%, which compares to averages rates of 5.9% for new vehicles, and 9.5% for used vehicles, from the \textit{National Association of Auto Dealers}. Interest rates are much higher for groups with lower credit scores. In the lowest credit score groups in our sample (below 600), the average interest rate is 15.07%. This is approximately four times the average interest rate in the highest credit score group (above 800), which is 3.67%.13 These patterns likely reflect greater charge-off probabilities for low credit-score borrowers. In the lowest credit score group, the average 90-day delinquency rate is 34.26%, while it is 1.06% for the highest credit score group.

Our primary measure of market competitiveness is the Herfindahl–Hirschman Index, or

12 We drop a small number of observations where predicted interest rates are either negative or implausibly large. We further winsorize rates at the .2% level.

13 These are quite similar to rates published by \textit{Experian} in 2020. The average rate for Deep Subprime borrowers with credit scores below 580 is 14.39% for new cars, and 20.45% for used cars. For Subprime borrowers with credit scores between 580 and 620 the corresponding rates are 11.92% and 17.74% respectively. For Super Prime borrowers with scores above 720, the average rate for a new car loan is 3.65% and the average rate for a used car loan is 4.29%.
HHI. We construct HHI using the volume of auto loans, that is

\[HHI_{ct} = \sum_{l=1}^{N} s_{clt}^2 \]

(14)

where \(s_{clt} \) is a lender \(l \)'s dollar share of auto lending in a county \(c \) in year \(t \) within a credit score range. An HHI of zero means the market is perfectly competitive, while an HHI of one indicates monopoly. The average HHI in our sample is .05, suggesting that the auto lending market is on average quite competitive. Appendix Figure A.6 shows the geographic distribution of HHI.\(^{14}\)

3.2.2 Bank Merger Data

We complement our main analysis with data on bank mergers. We obtain deposit shares from Federal Reserve Call reports. The bank mergers data is collected from the transformations file from the National Information Center (NIC). We assume that a county is affected by a merger if an acquired bank has positive deposit market share in the county. In cases with more than one merger, we use the first merger event. Between 2009 and 2019 there are a total of 1,442 mergers, covering 1,812 distinct counties.

Appendix Figure A.12 shows the geographical distribution of mergers. More than half of the counties in our sample are affected by a merger at some point in our sample period, and the affected counties seem to be fairly uniformly distributed across the US. Appendix Figure A.13 shows a binscatter of bank deposit market HHI, measured using the summary of deposits data, on the x-axis, with auto lending HHI, measured in the TransUnion data, on the y-axis. Auto lending HHI and bank deposit HHI are very strongly correlated, suggesting a tight link between the two.

4 Empirical Evidence

\(^{14}\)When we restrict to bank lenders, the HHI is .12. This is comparable to estimates in the literature. For example, Kahn, Pennacchi and Sopranzetti (2005) estimate an average MSA-level HHI of of .14 for commercial banks’ personal and auto loan market shares from 1989-1997, and Drechsler, Savov and Schnabl (2017) estimate an average county-level HHI of .22 for banks’ deposit market shares from 1994-2014.
4.1 Interest Rates, Competition and Credit Scores

Prediction 1 of the model states that, when the population is low-risk, and screening costs are low, we see the classical relationship that competition tends to be associated with lower interest rates. When the population is high-risk, and screening costs are high, we see the opposite relationship that competition should be associated with higher interest rates. This prediction is borne out by the data.

Figure 2 presents our main result. The figure panels show mean interest rates in a county for given credit score ranges, broken down in twenty equal-sized bins of HHI, our measure of the competitiveness of a market. The left panel shows the relationship for borrowers with VantageScore scores below 600, while the right panel shows the relationship for borrowers with VantageScore scores above 600. The two panels display strikingly different patterns, consistent with our model presented in Section 2. The left panel, which shows the relationship for high-risk borrowers, shows a strong, linear and negative relationship between interest rates and competition. In contrast with standard economic theory, we see that interest rates are actually decreasing in market concentration. The right panel, which shows the relationship for low-risk borrowers, shows precisely the opposite relationship. Consistent with a standard framework, we see that interest rates are increasing in market concentration. The magnitudes of both relationships are fairly large: an increase in HHI from 0.05 to 0.15 is associated with approximately a 1% decrease in interest rates for high-risk borrowers, and a 1% increase in interest rates for low-risk borrowers.

Figure 3 shows the same relationship, broken down into finer credit score categories. We split the sample into six credit score bins. We see the strongest negative relationship between interest rates and concentration for deep subprime borrowers, with credit scores lower than 550. We see a flatter relationship for credit scores between 550 and 600, and for credit scores above 600 we generally see the classical relationship that interest rates are rising in concentration.

Table 3 presents similar information to the figures by presenting regression coefficients. More specifically, the table shows point estimates β and standard errors from specifications similar to

\[
\ln(r_{ct}) = \alpha_c + \alpha_t + \beta \ln(HHI_{ct}) + \varepsilon_{ct}
\]

(15)
where \(r_{ct} \) is the average interest rate for auto loans in a county, and \(HHI_{ct} \) is the Herfindahl–Hirschman Index measuring market concentration. We cluster standard errors at the county level. The main coefficient of interest \(\beta \) captures the effect of market concentration on interest rates. We run estimates of specification (15) separately by different credit score buckets.

We additionally include county fixed effects \(\alpha_c \), which absorb time invariant county specific factors, such as geographic areas having riskier drivers, and \(\alpha_t \), time fixed effects absorbing economy wide temporal shocks. The inclusion of time trends are particularly important, as they allow us to rule our that the observed patterns in Figure 2 are driven by temporal trends in both interest rates, credit scores and HHI. For example, in the absence of time fixed effects, it is possible that the differing relationships between the slopes of interest rates and market concentration are simply driven by a decline in the fraction of low-credit score borrowers coinciding with movements in interest rates and market concentration.

The top panel of Table 3 splits the sample between credit scores above and below 600, and gradually adds in fixed effects. The first column of each triplet has no fixed effects, the second column adds in year fixed effects, while the final columns adds in both year and county fixed effects. In all three cases, we see a similar pattern and magnitudes. For borrowers with lower credit scores, we see that a 1 percent increase in market concentration, as measured by HHI, leads to a .07 to .08 percent decrease in interest rates. The relationship is statistically significant at the 1% level in all specifications. For high-credit score borrowers, we observe the opposite relationship. A 1 percent increase in market concentration, as measured by HHI, leads to a .19 to .30 percent increase in interest rates. The relationship is slightly weaker for high-credit score borrowers, significant at the 5% or 10% level in each specification.

The bottom panel of Table 3 splits the sample into finer credit score bins, including county and year fixed effects. We find a strong and highly significant negative relationship between interest rates and concentration for borrowers with credit-scores below 600, and a positive and significant or marginally significant relationship for borrowers with credit-scores above 600. The relationship is generally increasing as credit scores improve, consistent with the predictions of the model.

Table 4 presents an alternative specification, interacting HHI with credit score groups (above or below 600.) Specifically, the table shows variants of the coefficient \(\gamma \) and \(\phi \) from the equa-
\[
\ln(r_{ct}) = \alpha_{cs} + \alpha_c + \gamma \ln(HHI_{ct}) \times \mathbb{1}[\text{CreditScore}_{Low}] + \phi \ln(HHI_{ct}) + \zeta_{cst}
\]
(16)

\(\mathbb{1}[\text{CreditScore}_{Low}]\) is an indicator of borrowers being in the low credit score group and \(\alpha_{cs}\) are county by score group fixed effects. Standard errors are clustered at the county level. The coefficient \(\phi\) captures the effect of market concentration on interest rates for high credit score borrowers, while \(\gamma + \phi\) captures the effect for low credit score borrowers.

Column (1) of Table 4 presents the baseline result. Consistent with the estimates in Table 3, we see a positive effect of market concentration on interest rates for high credit score borrowers, and a negative effect for low credit score borrowers. Effects are highly statistically significant, at the 1 percent level. This result holds without weighting counties (column 2), using only large counties (column 3), using all counties (column 4), and winsorizing interest rates at the 1% level instead of the .2% level (column 5). Column 6 shows the results from computing HHIs using loan number as a measure of market share, instead of loan values. The effect of HHI in the high-credit-score group becomes insignificant, but the effect for low-credit-score consumers remains negative and significant. Column 7 uses the number of lenders active in a county as a measure of competition, instead of HHIs: the effect is insignificant for high-credit-score consumers, but for low-credit-score consumers, counties with more lenders tend to have higher interest rates. Appendix Figures A.7 and A.8 repeat the binscatters of Figure 3 with these different specifications; the stylized facts from the baseline specification hold in all cases.

4.2 Loan Delinquency and Quantities

4.2.1 Loan Delinquency

We next turn to the relationship between market concentration and additional outcomes: delinquency rates and quantities. Prediction 2 of the model states that lower competition always leads to lower default rates. This prediction is again consistent with the data.

We estimate variations of equation (15), in which the outcome is the fraction of loans that ever become delinquent for more than ninety days. Table 5 presents estimates of the relationship between delinquency and market concentration. Consistent with the predictions of the
model and concentration leading to more monitoring, we see a negative relationship between
delinquency and concentration. The effect sizes change significantly when county fixed effects
are included, suggesting that it is important to control for regional heterogeneity. We find a
significant negative relationship between delinquency rates and HHI for borrowers with low
credit scores, and a statistically insignificant relationship for high credit score borrowers.

The bottom panel of Table 5 splits the sample in finer credit score bins, again including
county and year fixed effects. Consistent with the theory, in all estimates the observed relation-
ship is negative. The results suggest that a 1 percent increase in market concentration leads
to a .3 to .12 percent reduction in delinquency rates. The estimates are statistically significant
at the 5% of higher level, except for the most creditworthy borrowers. This lack of statistical
significance in the top bin may simple be due to a lack of variation in the dependent variable,
as very few borrowers with high credit scores become delinquent on their loans.

4.2.2 Quantities

Finally, we test Prediction 3, regarding the relationship between concentration, interest rates,
and loan quantities in low credit-score buckets. In Table 6, we estimate panel regressions, in
which we regress the log of loan quantity on the log of HHI. We use only panel regressions, since
cross-sectional variation in loan quantities likely is driven largely by the size and demographic
composition of counties.

For all credit score buckets, the panel coefficients are negative and statistically significant,
implying that increases in county HHIs are associated with decreases in the number of loans
made. Quantitatively, a 1% increase in HHI is associated with a 2.7% to 5.2% decrease in loans
made. The coefficients tend to be larger for lower credit score groups.

Note that, for consumers with credit scores above 600, higher concentration is associated
with higher interest rates. The fact that concentration is associated with higher interest rates
and lower quantities is consistent with classical intuitions about the effects of market power: in
concentrated markets, firms set higher prices, which reduces equilibrium quantities.

For consumers with credit scores below 600, however, we showed in Table 3 that higher
concentration is associated with lower interest rates. Market power alone cannot explain why
higher concentration would be associated with lower interest rates, and also lower loan quan-
tities: in the absence of some kind of screening or credit rationing, lower interest rates should
induce more customers to borrow. Prediction 3 of our model does explain this: with higher
concentration, firms invest more in screening, limiting loans to a subset of customers who are
less likely to default, thus decreasing loan quantities.

4.3 Bank Failures, Mergers and Acquisitions

One significant concern is that the regressions presented earlier in this section could be biased,
as HHI and interest rates are simultaneously determined. While it is unclear why simultaneity
would generate an asymmetric pattern between interest rates and market concentration along
credit scores, we use bank mergers and failures as a quasi-exogeneous shock to concentration,
as a natural experiment to provide additional evidence of an asymmetric relationship between
rates and concentration. Bank mergers are commonly used to induce variation in market con-
centration, for example Sapienza (2002); Scharfstein and Sunderam (2016); Garmaise and
Moskowitz (2006); Buchak and Jørring (2021); Liebersohn (2017) and Favara and Giannetti
(2017).

4.3.1 Bank Failures

We first use bank failures during the 2008 financial crisis to generate variation in market con-
centration. Wachovia, Washington Mutual and Countrywide were the three largest household
lenders that failed during the crisis. The failure of these lenders led to significantly lower mar-
ket concentration in areas where these lenders had a greater market share prior to the crisis,
due to other firms purchasing assets and capturing market share.15 Buchak and Jørring (2021)
note that frictions relating to market entry may have led to persistent effects of these banks’
failure on concentration.

We use a standard 2SLS approach, and first use the share of failed banks to predict market
concentration, using the following equation.

\[
\ln(HHI_{ct}) = \psi Share_{c} + X_{ct} + e_{ct}
\]

15The effects were substantial, particularly in certain regions. Wachovia was the \textbf{nineth-largest auto lander} in
the United States in 2006, prior to failure. Mayer et al. (2014) provide a discussion of the failure of Countrywide.
where $Share_e$ is the market share of the three failed lenders in 2008, and X_{ct} are controls including the number of lenders and the sum of deposits in the county in 2008. We then run the second stage, estimating the effect of predicted market concentration $\ln(HHI_{ct})$ on interest rates.

$$\ln(r_{ct}) = \zeta \ln(HHI_{ct}) + X_{ct} + \nu_{ct}$$ (18)

Standard errors are clustered at the county level. The variation we use for the instrument is cross sectional, so we do not include country or time fixed effects in this analysis. The identifying assumption is that the market share of the three failed banks is uncorrelated with auto loan interest rates in subsequent periods, other than through effects on market concentration. In particular, any correlation between the three banks's market share and interest rates that differs for high and low-credit score borrowers would be of particular concern, since we are interested in the asymmetry of the price-concentration relationship for high and low credit score borrowers.

We test the inclusion restriction, and show that bank failure predicts concentration in the appendix. The first stage is shown in Appendix Tables A.5 and A.6. The tables show that, consistent with prior work and institutional details, market share of failed banks is associated with lower market concentration. F-statistics for the first stage are between 40 and 65, and thus well above standard levels for rule of thumb tests regarding weak instruments. Additionally, the first stage is quite similar for borrowers in high and low credit score groups.

Figure 5 shows estimates of ζ from equation (18), along with a 95% confidence interval, split by the credit score group. The results are consistent with the theoretical predictions in Section 2, as well as the earlier empirical results. We see a negative effect of concentration on interest rates in low credit score groups, and a standard positive effect for borrowers with high credit scores. The relationship is monotonic, with estimates of ζ rising with credit quality for each group.
4.3.2 Bank Acquisitions

We next use bank mergers as a source of variation, which increase market concentration. This strategy allows us to use panel variation. Figure 6 shows that there is little trend in concentration prior to the merge.\(^{16}\) Specifically, the figure plots coefficients ζ_i from the following regression:

$$\ln(HHI_{cst}) = \alpha_{cs} + \alpha_t + \alpha_y + \sum_{i=-5}^{t} \zeta_i [i = t] + \xi_{cst}$$

(19)

where α_{cs} are county by credit score group (above or below 600) fixed effects, α_t are year fixed effects and α_y merger year fixed effects. $[i = t]$ are indicators for time periods before and after acquisitions in a county. We define an acquisition as occurring if an acquired lender has any deposits in a county. Standard errors are clustered at the county level. The results suggest that concentration rises following bank mergers, which is consistent with prior work.\(^{17}\)

Figure 7 shows a similar analysis, replacing the outcome in equation (19) with logged interest rates, $\ln(r_{ct})$ and splitting the sample by high and low credit score groups, which we define as above and below a 600 VantageScore. Again consistent with the predictions in Section 2, we see that while interest rates rise for high-credit score borrowers following a merger event, they actually fall for low-credit score borrowers.

Figure 8 shows the relationship between interest rates and concentration for finer credit score groups. The figure shows estimates of the coefficient from a regression of interest rates on the number of years following an acquisition. While the estimates are less precise than those from Figure 8, we again see a weakly monotonic relationship with estimates of the interest rate concentration relationship rising with credit quality for each group.

5 Alternative Channels and Robustness

\(^{16}\)We present further results in the appendix. Figure A.14 shows that there is a drift upwards in HHI post-merger, as measured both by auto lending and bank deposit HHI.

\(^{17}\)While we do find a relationship between acquisitions and HHI, the relationship is not strong during our sample period. F-statistics are between 6 and 10, and thus below or near thresholds for standard weak instrument tests. For this reason we do not use acquisitions as an instrument, but rather explore reduced form relationships. In Appendix Tables A.7 and A.8 we show that the first stage is similar for both high and low credit score borrowers.
5.1 Additional Robustness Checks

We conduct a number of robustness checks of our results. Appendix Table A.1 regresses interest rates on concentration at the lender level. That is, we run specifications similar to:

\[
\ln(r_{clt}) = \alpha_c + \alpha_t + \alpha_l + \beta \ln(HHI_{ct}) + \epsilon_{clt}
\]

(20)

where \(r_{clt} \) is the average interest rate charged by lender \(l \) in county \(c \) at time \(t \), and \(HHI_{ct} \) is the HHI for county \(c \), time \(t \). In addition to county and time fixed effects, specification (20) allows us to add lender fixed effects, so that \(\beta \) is identified using within-lender variation in interest rates: how much a given lender tends to charge higher interest rates in counties with higher HHIs.

Columns 1 and 3 of Appendix Table A.1 do not include lender fixed effects: coefficient estimates are qualitatively and quantitatively similar to our baseline regressions in Table 3. Columns 2 and 4 add lender fixed effects: the coefficients essentially do not change. Our findings imply that, if a lender makes auto loans in multiple counties, she tends to charge lower rates in more concentrated markets for low-credit-score consumers, and higher rates in more concentrated markets for high-credit-score consumers. The fact that lenders’ rates differ across regions, in the ways predicted by our theory, lends support for our hypothesis that lenders’ monitoring and price-setting decisions are made at the local level, rather than at the lender level.

In columns 5-8, we divide lenders into two subsamples: lenders who only make auto loans (columns 5-6) and lenders who make multiple kinds of loans (columns 7-8). In both cases, we include county, year, and lender fixed effects. For both subsamples, the results are quantitatively similar, though column 8 shows that the effect of concentration on interest rates for high-credit-score customers in the non-auto-lender group is not significant.

Another concern is that our results may be driven by lenders’ overall size, rather than concentration within a given market: larger lenders may systematically charge different interest rates than smaller lenders. To test this hypothesis, Appendix Table A.2 estimates versions of specification (20), in which we divide the sample into four quartiles by total lender size, measured by the lender’s total volume of auto loans. Our model’s predictions hold within all size...
quartiles: lenders’ interest rates are positively correlated with concentration for high-credit-score consumers, and negatively correlated with concentration for low credit score consumers. Thus, our findings do not seem to be driven by differences in lenders’ size.

In Appendix Table A.2, the coefficient on HHI is somewhat larger (more positive) for larger lenders, in both the low- and high-credit score groups. This could be because screening is more sensitive to local HHIs for smaller lenders. Larger lenders may make screening investments at more aggregated levels: for example, they may use the same analytics and decision software across branches in multiple regions. Thus, larger lenders’ screening decisions would depend less on HHIs in local markets, so the HHI-interest rate relationship is driven more by markup incentives, which predict a positive relationship.

Appendix Figure A.9 further shows that the results hold if restricted to lenders that were in the sample from 2009 onwards and remained until the end. In other words, the main result is not driven by the entry or exit of lenders.

Approximate magnitudes of fixed costs. Finally, we do a back-of-the-envelope calculation of the costs of the screening technology which are implied by our data. The average subprime loan in our data is $17,394. Recovery rates for subprime loans are roughly 40%, implying that a lender would be willing to pay approximately $104 to decrease the default rate on a single subprime loan by 1%. The size-weighted median lender in our data makes 55,830 subprime loans per year, whereas the 25th percentile lender makes 3,700 subprime loans annually. This implies that the median lender would be willing to pay roughly $5.8 million per year for a technology that would decrease default rates by 1%, whereas the 25th percentile lender would only be willing to pay $384,000. Thus, a technology costing between $384,000 and $5.8 million per year would be worth it to larger lenders, but not smaller ones. This seems like a reasonable range for the cost of an auto lending group building a data analytics team, for example.\(^\text{19}\)

\(^{18}\)See S&P Global.

\(^{19}\)If screening involves fixed costs, aggregate efficiency would be higher if lenders pooled their screening efforts: for example, if all lenders contributed to a centralized database, and then used these data for default prediction and pricing. However, this does not appear to have happened in car loans markets, or consumer credit markets more generally. This kind of pooling may be difficult because of coordination costs, as well as free-rider problems – individual lenders would want to use data from other lenders, but keep their own data so as to maintain a competitive advantage.
5.2 Alternative explanations

In this subsection, we discuss other possible explanations of our results, and show they cannot simultaneously rationalize all the stylized facts that we observe.

Adverse selection. In our model, the primary channel driving our results is costly information acquisition, which improves the quality of the borrower pool. A classic force, which we assume away for tractability, is adverse selection: the idea that, as prices vary, the riskiness of the borrower pool varies endogeneously. It is difficult to rationalize our results using existing theories of selection. **Mahoney and Weyl (2017)** develop a general model of competition and selection. Proposition 1 of **Mahoney and Weyl (2017)** states that, regardless of whether selection is adverse or advantageous, market power always tends to increase prices. Thus, adverse selection alone, at least in the model of **Mahoney and Weyl (2017)**, cannot match the result we find, that higher concentration is actually associated with lower interest rates in low credit score submarkets.\(^{20}\)

Moral hazard/direct effects. Another reason why interest rates may be correlated with default rates is that higher interest rates may have a direct effect on default rates, by increasing borrowers’ payments. This channel could explain our finding that default rates are high in competitive and low credit score submarkets, based on the fact that interest rates are high. However, this does not explain why high competition correlates with high interest rates only for low credit score borrowers, and why high competition correlates with low interest rates and high default for high credit score borrowers.

Competition and loan standards. A number of papers argue that increased competition in credit markets can lead to more credit and lower lending standards in equilibrium (**Mian and Sufi (2009)**, **Favara and Imbs (2015)**, **Mahoney and Weyl (2017)**). Our channel is related to these, but somewhat distinct. In particular, the models of **Mian and Sufi (2009)** and **Mahoney and Weyl (2017)** predict that increased competition should always be associated with *lower* interest rates. In our model, fixed screening costs imply that higher competition can in fact lead to *higher* interest rates, since all firms have lower incentives to screen consumers in equilibrium.

On the one hand, the high-level policy conclusions from our work and earlier work are

\(^{20}\)See **DeFusco, Tang and Yannelis (2021)** for a further discussion of adverse selection in consumer credit markets.
similar: in financial markets with information frictions, competition may not improve market outcomes. However, in our model, increased competition in credit markets can actually also make creditworthy consumers worse off, an outcome which is not possible in the model of Mahoney and Weyl (2017).

Dealer markups. Another hypothesis is that vertical competition is driving these effects. It is possible that, in more competitive areas, lenders pay dealers higher markups. Thus, competition could decrease the rates lenders receive, but customer-facing rates, which is what we observe in our data, may be higher, because dealers are able to extract greater markups for intermediation in more competitive markets.

There are a few reasons why it is difficult to explain our results using this channel. First, it is unclear why dealer markups should be more important for lower credit score individuals, whereas our information acquisition theory predicts in particular that competition tends to lead to higher rates in low credit score areas. Second, this theory does not explain why default rates should increase with competition, except through a causal effect of higher rates on default. Third, Appendix Table A.1 shows that our main result holds for lenders who only make auto loans, as well as lenders who make multiple kinds of loans, such as banks. The auto-loan-only group includes dealers and integrated lenders, who would have no incentives to charge markups. The fact that our stylized facts hold within each of these groups suggests that dealer markups do not explain the entirety of our effect.

Screening and down payments. A number of papers have shown that down payments play an important screening role in auto lending markets (Einav et al. (2012), Einav et al. (2013)). One hypothesis might be that lenders’ joint decisions over down payments and interest rates are somehow driving our results. We cannot directly test this theory, as our data does not allow us to observe down payments. However, the literature suggests that, when choosing between higher down payments or higher interest rates, dealers tend to charge larger down payments to riskier consumers, reflecting their higher default probabilities (Einav et al. (2013)). Suppose that, in competitive markets, dealers attempt to screen more intensively, in order to cream-skim good consumers from other dealers. Dealers should then attempt to set higher down payments and lower interest rates in more competitive markets, which is the opposite of what we find. Moreover, it is unclear how screening through down payments could explain why quantities
are lower, and default rates higher, in more competitive markets. Down payments thus seem to be unable to explain all of our stylized facts.

Heterogeneous funding costs. A related hypothesis is that larger lenders may have lower costs of funding loans. Similar to the dealer markups hypothesis, this could explain why more competitive areas have higher prices, but cannot explain why the sign of the effect differs for high and low credit score groups, and why default rates are higher in more competitive areas. Moreover, Appendix Table A.1 shows that our main result holds for lenders who only make auto loans, as well as lenders who make multiple kinds of loans, such as banks. These two groups are likely to have different funding costs on average: the fact that our stylized facts hold within each of these groups suggests that funding costs do not explain our result.

Improved collections technology. Another possible, and closely related channel is that lenders invest in collections technology, rather than screening technology, which improves lenders' recovery rates conditional on default. We do not observe recovery rates in our data, so we cannot test this hypothesis directly. This channel would produce very similar implications to our theory about interest rates: for low credit-score groups, rates could be lower in more concentrated markets, since firms with market power can achieve better recovery rates. However, this channel would not explain why default rates are lower in more concentrated areas, or why loan quantities are lower.

6 Concluding Remarks

This paper presents a model of competition in consumer credit markets, with selection and lender monitoring. The model shows that, in the presence of lender monitoring, the effect of market concentration on prices depends on the riskiness of borrowers. In markets with lower risk borrowers, we see the standard classical relationship: more competition leads to lower prices. However, in markets with a greater portion of high-risk borrowers, increased competition can actually increase prices. We provide empirical support for the model’s counterintuitive predictions in the auto loan market: in markets with high-risk borrowers, increased competition is associated with higher prices.

Our results have implications for competition policy in lending markets. Competition ap-
pears not to improve market outcomes in subprime credit markets, so antitrust regulators may want to allow some amount of concentration in these markets. Our results also suggest, however, that there is some degree of inefficiency in the industrial organization of these markets: firms appear to be making screening decisions independently, even though there are returns to scale in screening. The industry as a whole could potentially achieve better outcomes at lower costs if firms could pool efforts in developing screening technologies. It is conceivable that developments in fintech, such as the rise of alternative data companies, could eventually improve the efficiency of screening in these markets.

There remain significant avenues for future work. In terms of empirical work, while we show that greater competition in low credit-score markets can lead to higher prices in the auto loan market, other consumer loan markets such as the credit cards and mortgages may see different patterns. There also exists space to extend the theoretical model. Many consumer loan markets, like the mortgage market and student loan market see a high proportion of loan securitization or guaranteed loans and interest rate subsidies through government programs. This may lead to very different competitive effects, as lenders do not incur direct losses which can impact incentives to monitor (Keys, Mukherjee, Seru and Vig, 2008). Future work should explore how securitization guaranteed lending and subsidies interact with monitoring and competition.
References

Figure 1: Model Simulations

The above figure shows model outcomes, for different values of HHI and q. The top left panel shows equilibrium interest rates, r. The top middle panel shows default rates, δ. The top right panel shows markups over the break-even interest rate, $r - \frac{\delta}{1 - \theta}$. The bottom left panel shows consumer surplus, (12). The bottom right panel shows total loan quantity. All simulations use $k = 0.001, \theta = 0.04$.

35
Figure 2: Interest Rates and Competition

Credit Score Below 600

Credit Score Above 600

The above figure shows mean interest rates in a county for given credit score ranges, broken down by ventile of HHI. HHI is defined using the volume of auto loans, that is $HHI = \sum_{i}^{N} s_{i}^{2}$, where s_{i} is a lender's share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
The above figure shows mean interest rates in a county for given credit score ranges, broken down by ventile of HHI. HHI is defined using the volume of auto loans, that is $HHI = \sum_{i} s_{i}^2$, where s_{i} is a lender’s share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
Figure 4: Delinquency Rates and Competition

The above figure shows mean ninety day delinquency rates in a county for given credit score ranges, broken down by ventile of HHI. HHI is defined using the volume of auto loans, that is $HHI = \sum_{i}^N s_i^2$, where s_i is a lender’s share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
The above figure shows point estimates and a 95% confidence interval from a regression of log interest rates on log HHI. Log HHI is instrumented using the share of deposits from the largest three banks that failed in the financial crisis, Wachovia, Washington Mutual and Countrywide. HHI is defined using the volume of auto loans, that is $HHI = \sum_{i} s_{i}^{2}$, where s_{i} is a lender’s share of auto lending in a county within a credit score range. Standard errors are clustered at the county level. Source: TransUnion and Federal Reserve Call Reports.
The above figure shows point estimates and a 95% confidence interval from a regression of log HHI on indicators of periods before and after a bank merger, including county, year and merger year fixed effects. HHI is defined using the volume of deposit shares, that is $HHI = \sum_{i} s_i^2$, where s_i is a lender’s share of deposits. Standard errors are clustered at the county level. Source: TransUnion and Federal Reserve Call Reports.
The above figure shows point estimates and a 95% confidence interval from a regression of log interest rates on indicators of periods follow a bank merger, including county, year and merger year fixed effects. The left panel shows estimates for borrowers with credit scores below 600, while the right panel shows estimates for borrowers with credit scores above 600. Standard errors are clustered at the county level. Source: TransUnion and Federal Reserve Call Reports.
The above figure shows point estimates and a 95% confidence interval from a regression of log interest rates on the number of years since a merger occurred, including county, year and merger year fixed effects. Standard errors are clustered at the county level. Source: TransUnion and Federal Reserve Call Reports.
Table 1: Variable Definitions

This table describes the main analysis variables used. All variables are constructed using a dataset provided to the University of Chicago Booth School of Business by TransUnion. Observations are at the county-year level.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan information</td>
<td></td>
</tr>
<tr>
<td>Principal</td>
<td>The original balance on the loan.</td>
</tr>
<tr>
<td>Monthly Payment</td>
<td>The payment due on a loan each month.</td>
</tr>
<tr>
<td>Maturity</td>
<td>The total number of months that the borrower is scheduled to be making payments on the loan.</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>The annual percentage rate on the loan. Calculated by authors using data on principal, payments, and maturity available in the TransUnion data.</td>
</tr>
<tr>
<td>90-day Delinquency</td>
<td>Indicates whether the payment on a loan has ever been delinquent by 90 days.</td>
</tr>
<tr>
<td>Credit Score</td>
<td>VantageScore 3.0 taken from January of each year for each borrower.</td>
</tr>
<tr>
<td>Market information</td>
<td></td>
</tr>
<tr>
<td>HHI (Deals)</td>
<td>The HHI calculated for a given county-year, based on the number of auto loan originations.</td>
</tr>
<tr>
<td>HHI (Volume)</td>
<td>The HHI calculated for a given county-year, based on the volume of the auto loan originations.</td>
</tr>
<tr>
<td>Number of lenders</td>
<td>The number of lenders that are active in a given county-year.</td>
</tr>
<tr>
<td>Share of lenders only in auto market</td>
<td>The percentage of lenders in each county-year that are only active in the auto loan market, and no others.</td>
</tr>
</tbody>
</table>
Table 2: Summary Statistics

This table shows summary statistics for the main analysis variables. Observations are at the county-year level. Source: TransUnion.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Mean</th>
<th>SD</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal</td>
<td>13</td>
<td>21,500</td>
<td>12,500</td>
<td>1,863,800</td>
</tr>
<tr>
<td>Monthly Payment</td>
<td>1</td>
<td>409</td>
<td>386</td>
<td>1,863,800</td>
</tr>
<tr>
<td>Maturity</td>
<td>1</td>
<td>62</td>
<td>15</td>
<td>999</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>2.2%</td>
<td>9.3%</td>
<td>1.1%</td>
<td>22.0%</td>
</tr>
<tr>
<td>Credit Score</td>
<td>436</td>
<td>653</td>
<td>19</td>
<td>822</td>
</tr>
<tr>
<td>30-day Delinquency</td>
<td>0%</td>
<td>13.5%</td>
<td>6.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td>60-day Delinquency</td>
<td>0%</td>
<td>6.9%</td>
<td>3.9%</td>
<td>75.0%</td>
</tr>
<tr>
<td>90-day Delinquency</td>
<td>0%</td>
<td>3.4%</td>
<td>2.2%</td>
<td>66.7%</td>
</tr>
<tr>
<td>Market information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI (Deals)</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>HHI (Volume)</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Number of lenders</td>
<td>1</td>
<td>252</td>
<td>195</td>
<td>903</td>
</tr>
<tr>
<td>Share of lenders only in auto market</td>
<td>0</td>
<td>46%</td>
<td>7%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 3: Interest Rates and Market Competition

The table shows the relationship between interest rates and HHI, split by credit score. The top panel splits by above and below a 600 score, while the bottom panel shows a more detailed sample split. The inclusion of fixed effects is denoted beneath each column. Regressions are weighted by the number of loans. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. \(^* \ p < .1, \ ^{**} \ p < .05, \ ^{***} \ p < .01. \)

Panel A: Interest Rate and HHI

<table>
<thead>
<tr>
<th>Credit Score 300-600</th>
<th>Credit Score 600-850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(HHI)</td>
<td></td>
</tr>
<tr>
<td>-0.0632***</td>
<td>-0.0641***</td>
</tr>
<tr>
<td>(0.0189)</td>
<td>(0.0127)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Interest Rate)</td>
<td></td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>County Fixed Effects</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>27,887</td>
</tr>
<tr>
<td>R^2</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Panel B: Interest Rate and HHI by Credit Score

<table>
<thead>
<tr>
<th>Credit Score 300-550</th>
<th>Credit Score 550-600</th>
<th>Credit Score 600-650</th>
<th>Credit Score 650-700</th>
<th>Credit Score 700-750</th>
<th>Credit Score 750+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(HHI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.0715***</td>
<td>-0.0267***</td>
<td>0.0467**</td>
<td>0.106*</td>
<td>0.0471</td>
<td>0.103</td>
</tr>
<tr>
<td>(0.0129)</td>
<td>(0.00956)</td>
<td>(0.0242)</td>
<td>(0.0541)</td>
<td>(0.0315)</td>
<td>(0.0731)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>County Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>25,985</td>
<td>27,019</td>
<td>29,162</td>
<td>30,093</td>
<td>29,794</td>
</tr>
<tr>
<td>R^2</td>
<td>0.392</td>
<td>0.565</td>
<td>0.619</td>
<td>0.665</td>
<td>0.760</td>
</tr>
</tbody>
</table>
Table 4: Interest Rates and Market Competition

The table shows the relationship between interest rates and HHI, interacting HHI with credit scores being below 600. Each column presents a slightly different specification. The first column presents our baseline. The second column does not weight the sample using the number of loans. The third column restricts to counties with more than 25 loan contracts, instead of 10. The fourth column includes all counties. The fifth column winsorizes at the 1% level. The sixth column computes HHI using the number of loans. The seventh column interacts with the number of lenders rather than HHI. The inclusion of fixed effects is denoted beneath each column. Regressions are weighted by the number of loans, except for column (2). Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. * p < .1, ** p < .05, *** p < .01.

<table>
<thead>
<tr>
<th></th>
<th>(1) Baseline</th>
<th>(2) Unweighted</th>
<th>(3) Large Counties</th>
<th>(4) All Counties</th>
<th>(5) Winsorized</th>
<th>(6) Loan HHI</th>
<th>(7) Num. Lenders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(HHI)</td>
<td>0.164***</td>
<td>0.118***</td>
<td>0.168***</td>
<td>0.213***</td>
<td>0.0421***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0437)</td>
<td>(0.00938)</td>
<td>(0.0459)</td>
<td>(0.0591)</td>
<td>(0.00925)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(HHI) X CS < 600</td>
<td>-0.428***</td>
<td>-0.406***</td>
<td>-0.429***</td>
<td>-0.442***</td>
<td>-0.396***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0106)</td>
<td>(0.00237)</td>
<td>(0.0107)</td>
<td>(0.0146)</td>
<td>(0.00271)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(HHI_{Loan})</td>
<td></td>
<td></td>
<td></td>
<td>-0.0435</td>
<td></td>
<td></td>
<td>-0.420***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0916)</td>
<td></td>
<td></td>
<td>(0.0105)</td>
</tr>
<tr>
<td>Ln(HHI_{Loan}) X CS < 600</td>
<td></td>
<td></td>
<td></td>
<td>-0.420***</td>
<td></td>
<td></td>
<td>0.00954</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.137)</td>
<td></td>
<td></td>
<td>(0.137)</td>
</tr>
<tr>
<td>Ln(N_{Lender})</td>
<td></td>
<td></td>
<td></td>
<td>0.00954</td>
<td></td>
<td></td>
<td>0.286***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.00898)</td>
<td></td>
<td></td>
<td>(0.00898)</td>
</tr>
<tr>
<td>County X Credit Score Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>59,620</td>
<td>59,620</td>
<td>49,317</td>
<td>68,482</td>
<td>59,620</td>
<td>59,620</td>
<td>59,620</td>
</tr>
<tr>
<td>R^2</td>
<td>0.800</td>
<td>0.768</td>
<td>0.800</td>
<td>0.799</td>
<td>0.968</td>
<td>0.797</td>
<td>0.801</td>
</tr>
</tbody>
</table>
Table 5: Delinquency Rates and Market Competition

The table shows the relationship between ninety day delinquency rates and HHI, split by credit score. The top panel splits by above and below a 600 score, while the bottom panel shows a more detailed sample split. The inclusion of fixed effects is denoted beneath each column. Regressions are weighted by the number of loans. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

Panel A: Delinquency and HHI

<table>
<thead>
<tr>
<th>Credit Score 300-600</th>
<th>Credit Score 600-850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
</tr>
<tr>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>-0.0974***</td>
<td>-0.0534*</td>
</tr>
<tr>
<td>(0.0381)</td>
<td>(0.0421)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>-0.0290***</td>
<td>-0.00550</td>
</tr>
<tr>
<td>(0.0143)</td>
<td>(0.0202)</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>-0.00550</td>
<td>-0.0225</td>
</tr>
<tr>
<td>(0.0183)</td>
<td>(0.0125)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Fixed Effects</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Fixed Effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>27,887</td>
<td>27,887</td>
<td>27,826</td>
<td>31,773</td>
<td>31,773</td>
<td>31,733</td>
</tr>
<tr>
<td>R^2</td>
<td>0.027</td>
<td>0.710</td>
<td>0.827</td>
<td>0.089</td>
<td>0.617</td>
<td>0.825</td>
</tr>
</tbody>
</table>

Panel B: Delinquency and HHI by Credit Score

<table>
<thead>
<tr>
<th>Credit Score 300-550</th>
<th>Credit Score 550-600</th>
<th>Credit Score 600-650</th>
<th>Credit Score 650-700</th>
<th>Credit Score 700-750</th>
<th>Credit Score 750+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
<td>Ln(Delinquency)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>0.00641</td>
<td>-0.0651***</td>
<td>-0.0528***</td>
<td>-0.0543***</td>
<td>-0.0301***</td>
<td>-0.0147**</td>
</tr>
<tr>
<td>(0.0131)</td>
<td>(0.0145)</td>
<td>(0.0151)</td>
<td>(0.0139)</td>
<td>(0.0114)</td>
<td>(0.00746)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Fixed Effects</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>25,985</td>
<td>27,019</td>
<td>29,162</td>
<td>30,093</td>
<td>29,794</td>
<td>29,989</td>
</tr>
<tr>
<td>R^2</td>
<td>0.762</td>
<td>0.724</td>
<td>0.694</td>
<td>0.621</td>
<td>0.514</td>
<td>0.503</td>
</tr>
</tbody>
</table>
Table 6: Loans and Market Competition

The table shows the relationship between the number of loans rates and HHI, split by credit score. The first two rows split the sample by above and below a 600 score, while columns (3) through (8) a more detailed sample split. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Loans)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td>Ln(HHI)</td>
<td></td>
</tr>
<tr>
<td>Credit Score 300-600</td>
<td>-0.105***</td>
<td>-0.0480***</td>
<td>-0.0663***</td>
<td>-0.0669***</td>
<td>-0.0412***</td>
<td>-0.0350***</td>
<td>-0.0336***</td>
<td>-0.0286***</td>
</tr>
<tr>
<td></td>
<td>(0.0112)</td>
<td>(0.0129)</td>
<td>(0.00873)</td>
<td>(0.00794)</td>
<td>(0.00731)</td>
<td>(0.00740)</td>
<td>(0.00689)</td>
<td>(0.00942)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>County Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>27,826</td>
<td>31,733</td>
<td>25,985</td>
<td>27,019</td>
<td>29,162</td>
<td>30,093</td>
<td>29,794</td>
<td>29,989</td>
</tr>
<tr>
<td>R^2</td>
<td>0.974</td>
<td>0.983</td>
<td>0.977</td>
<td>0.979</td>
<td>0.982</td>
<td>0.985</td>
<td>0.986</td>
<td>0.983</td>
</tr>
</tbody>
</table>
Appendix

A Proofs and supplementary material for Section 2

A.1 Optimal price setting

From (4) in the main text, lenders' profits are:

$$\Pi = \left(\frac{1}{1 - \delta_j} \right) s_j \left(r_j (1 - \delta_j) - \delta_j \right) = s_j \left(r_j - \frac{\delta_j}{1 - \delta_j} \right)$$

As in the main text, lenders' first-order condition for optimal price-setting is:

$$s_j - \frac{\partial s_j}{\partial r_j} \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) = 0 \quad (21)$$

Now, in any symmetric equilibrium of the Salop circle model, we have $s_j = \frac{1}{N}$. To calculate the demand slope, $\frac{\partial s_j}{\partial r_j}$, consider a pair of banks j, j' next to each other. Let x represent the distance of a consumer to bank j, so the distance to the neighboring bank is $\frac{1}{N} - x$. Given $r_j, r_{j'}$, the set of consumers who choose j satisfies:

$$-r_j - \theta x \leq -r_{j'} - \theta \left(\frac{1}{N} - x \right)$$

The marginal consumer has:

$$x = \frac{1}{2N} + \frac{r_{j'} - r_j}{2\theta}$$

The market share of j takes into account two neighbors j', j'', hence:

$$s_j = 2x = \frac{1}{N} + \frac{r_{j'} + r_{j''} - 2r_j}{2\theta}$$

Hence,

$$\frac{\partial s_j}{\partial r_j} = \frac{1}{\theta} \quad (22)$$

Thus, expression (21) becomes:

$$r_j - \frac{\delta_j}{1 - \delta_j} = \frac{\theta}{N} \quad (23)$$
A.2 Optimal information acquisition

From (6), lenders choose δ_j to solve:

$$\max_{\delta_j} \max_{r_j} \max_{s_j} \Big(r_j - \frac{\delta_j}{1 - \delta_j} \Big) - c_q(\delta_j)$$

(24)

We can differentiate (24) using the envelope theorem. By the chain rule,

$$\frac{d}{d\delta_j} \max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) =$$

$$\frac{\partial}{\partial \delta_j} \left[\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) \right] + \frac{dr_j}{d\delta_j} \frac{\partial}{\partial r_j} \left[\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) \right]$$

Now, the first-order condition from appendix A.1 implies that

$$\frac{\partial}{\partial r_j} \left[\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) \right] = 0$$

Hence,

$$\frac{d}{d\delta_j} \max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) =$$

$$\frac{\partial}{\partial \delta_j} \left[\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) \right] = -\frac{s_j (r_j^*)}{(1 - \delta_j)^2} - c_q'(\delta_j)$$

Hence, the first-order condition is:

$$-\frac{s_j}{(1 - \delta_j)^2} - c_q'(\delta_j) = 0$$

(25)

Rearranging, we get (7).

A.2.1 Second-order condition

In order for (25) to be a maximum, a second-order condition must also hold. Differentiating again, we have:

$$\frac{\partial^2}{\partial \delta_j^2} \max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) = \frac{\partial}{\partial \delta_j} \left[-\frac{s_j}{(1 - \delta_j)^2} - c_q'(\delta_j) \right]$$
This is:

$$\frac{\partial}{\partial \delta_j} \left[-\frac{s_j}{(1-\delta_j)^2} - c'_q(\delta_j) \right] = -\frac{1}{(1-\delta_j)^2} \frac{\partial s_j}{\partial \delta_j} - \frac{2s_j}{(1-\delta_j)^3} - c''_q(\delta_j)$$ \hspace{1cm} (26)$$

This must be negative, at the optimal choice of δ_j for j. Expression (29) of appendix A.2.2 below shows that the derivative of j's optimal market share s_j as δ_j varies, holding fixed all other agents' interest rates and market shares, is:

$$\frac{ds_j}{d\delta_j} = \frac{\theta}{(1-\delta_j)^2}$$

Substituting this into (26), we get:

$$\frac{1}{(1-\delta_j)^2} \frac{\theta}{(1-\delta_j)^2} - \frac{2s_j}{(1-\delta_j)^3} - c''_q(\delta_j) < 0$$

This rearranges to:

$$c''_q(\delta_j)(1-\delta_j)^4 + 2s_j(1-\delta_j) > \theta$$

This is (11).

A.2.2 Characterizing $\frac{ds_j}{d\delta_j}$

For analytical convenience, define $\zeta_j \equiv \frac{\delta_j}{1-\delta_j}$, so that (5) becomes:

$$r_j - \zeta_j = \frac{\theta}{N} \hspace{1cm} (27)$$

This gives:

$$\frac{dr_j}{d\zeta_j} = 1$$

Now,

$$\frac{dr_j}{ds_j} = \frac{1}{\theta} \hspace{1cm} (28)$$

Hence,

$$\frac{ds_j}{d\zeta_j} = \frac{dr_j}{d\zeta_j} = \frac{dr_j}{ds_j} = \frac{\theta}{\theta}$$
Now, from the definition of \(\zeta_j \), we have:

\[
\frac{d\zeta_j}{d\delta_j} = \frac{1}{(1-\delta_j)^2}
\]

Hence,

\[
\frac{ds_j}{d\delta_j} = \frac{ds_j}{d\zeta_j} \frac{d\zeta_j}{d\delta_j} = \frac{\theta}{(1-\delta_j)^2}
\]

(29)

A.3 Consumer surplus

In equilibrium, the average consumer’s distance from a lender is:

\[
\frac{1}{4N}
\]

Hence, expected welfare of type \(G \) consumers is:

\[
C - r - \frac{\theta}{4N}
\]

where \(C \) is a constant.

A.4 Nonzero Funding Costs, Nonzero Recovery Rates

In the main text, for expository simplicity we assume that the cost of funds and the recovery rate is zero. In this section, we relax each of those assumptions and show that the main model predictions hold. Suppose lenders have some positive cost for borrowing funds: lenders must pay back \(1 + \rho \) for every unit of funds that they borrow. Suppose also that recovery rates are nonzero: lenders can recover \(1 - \phi \) on average when borrowers default. Lenders’ profits are thus:

\[
\Pi = \left(\frac{1}{1-\delta_j} \right) s_j (r_j (1-\delta_j) - \delta_j \phi - \rho)
\]

(30)

In words, (30) says that lenders have to pay \(\rho \) to borrow a unit of funds to lend to customers. With probability \(\delta_j \), the borrower defaults and the lender loses a fraction \(\phi \) of the principal, and with probability \((1 - \delta_j) \) the borrower pays \(r_j \) to the lender. Profits rearrange to:

\[
\Pi = s_j \left(r_j - \frac{\delta_j \phi + \rho}{1-\delta_j} \right)
\]
Lender j’s optimal markup thus satisfies:

$$r_j - \frac{\delta_j \phi + \rho}{1 - \delta_j} = \frac{\theta}{N} \quad (31)$$

Comparing (31) to the markup equation (5) in the main text, lenders simply set markups above a different marginal cost, $\frac{\delta_j \phi + \rho}{1 - \delta_j}$, which reflects lenders’ cost of funds and expected recovery rates. All other equilibrium conditions are unchanged.

A.5 Entry costs

In the baseline model, we have taken the number of firms N as exogeneous. N can be micro-founded using a simple extension to the model with fixed entry costs. Fixed entry costs may differ across markets due to heterogeneous regulatory intensity, labor and rent costs, and other such factors.

Suppose there are a countably infinite number of potential entrants, who are exogeneously ordered. In the first stage, firms sequentially decide whether to pay entry cost C_e to enter the market. If N firms enter, they are uniformly spaced around a Salop circle, as in the main text. Firms then play the screening and price-setting game in the baseline model: firms decide how much to invest in costly screening, and then set prices.

If there are N entrants, firms’ profits, net of screening costs, are:

$$\frac{1}{1 - \delta(N)} \left(\frac{\theta}{N} \right) - c_q(\delta(N))$$

where $\delta(N)$ is the solution to (10), the equilibrium amount of screening done if there are N firms. Firms will enter until the marginal entrant’s expected profit is negative. Hence, for any entry cost C_e, the equilibrium number of firms $N(C_e)$ satisfies:

$$\frac{1}{1 - \delta(N(C_e))} \left(\frac{\theta}{N(C_e)} \right) - c_q(\delta(N(C_e))) > C_e \quad (32)$$

$$\frac{1}{1 - \delta(N(C_e) + 1)} \left(\frac{\theta}{N(C_e) + 1} \right) - c_q(\delta(N(C_e) + 1)) < C_e \quad (33)$$

That is, firms make profits greater than C_e with $N(C_e)$ entrants, but not with $N(C_e) + 1$ entrants. Using expressions (32) and (33), we can simulate the equilibrium number of entrants as a function of C_e. The results are shown in Appendix Figure A.1. When entry costs are higher, the equilibrium number of entrants decreases.
A.6 Moral hazard

Here, we consider how our model’s conclusions change if there is moral hazard. As in the baseline model, suppose that type-B borrowers always default. However, suppose that type-G borrowers also default with some probability $\phi(r)$, which is an increasing function of the interest rate r that they face. Banks can invest to screen out type-B borrowers, as in the main text. If there are a fraction δ of type-B borrowers and the interest rate is r, the population default rate is thus:

$$\psi(r, \delta) \equiv \delta + (1-\delta)\phi(r)$$

(34)

If a lender charges interest rate r and has market share s_j, her expected profits are:

$$\left(\frac{1}{1-\delta_j}\right)s_j \left(r_j (1-\psi(r, \delta_j)) - \psi(r, \delta_j) \right)$$

In words, the lender faces a quantity $\frac{s_j}{1-\delta_j}$ of consumers. The default rate among consumers is $\psi(r, \delta_j)$. Thus, with probability $1 - \psi(r, \delta_j)$, the lender is paid r_j, and with probability $\psi(r, \delta_j)$, the lender loses the principal and the interest payment.

Price setting. Conditional on δ_j, the lender chooses r_j to maximize:

$$s_j \left(r_j (1 - \psi(r_j, \delta_j)) - \psi(r_j, \delta_j) \right)$$

We can write this as:

$$\left(1 - \psi(r_j, \delta_j)\right)s_j \left(r_j - \psi(r_j, \delta_j) \right)$$

Differentiating with respect to r, we have:

$$- \frac{d\psi}{dr_j} s_j \left(r_j - \frac{\psi(r_j, \delta_j)}{1-\psi(r_j, \delta_j)} \right) + (1 - \psi(r_j, \delta_j)) s_j' \left(r_j - \frac{\psi(r_j, \delta_j)}{1-\psi(r_j, \delta_j)} \right) +$$

$$\left(1 - \psi(r_j, \delta_j)\right)s_j - \left(1 - \psi(r_j, \delta_j)\right)s_j \left(\frac{\partial}{\partial r_j} \left(\frac{\psi(r_j, \delta_j)}{1-\psi(r_j, \delta_j)} \right) \right) = 0$$
Using (22) from Appendix A.1, we have \(s'_j = -\frac{1}{\theta} \). Rearranging,

\[
\left(r_j - \frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} \right) \left(-1 - \psi(r_j, \delta_j) \right) \frac{1}{\theta} \frac{d\psi}{dr_j} s_j =
\]

\[
- \left[(1 - \psi(r_j, \delta_j)) s_j - (1 - \psi(r_j, \delta_j)) s_j \left(\frac{\partial}{\partial r_j} \left(\frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} \right) \right) \right] (35)
\]

Now, we have:

\[
\frac{d\psi}{dr_j} = (1 - \delta_j) \frac{d\phi}{dr_j}
\]

\[
\frac{\partial}{\partial r_j} \left(\frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} \right) = \frac{1 - \delta_j}{(1 - \psi)^2} \frac{d\phi}{dr_j}
\]

Hence, (35) becomes:

\[
\left(r_j - \frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} \right) \left(-1 - \psi(r_j, \delta_j) \right) \frac{1}{\theta} (1 - \delta_j) \frac{d\phi}{dr_j} s_j =
\]

\[
- \left[(1 - \psi(r_j, \delta_j)) s_j - (1 - \psi(r_j, \delta_j)) s_j \left(\frac{1 - \delta_j}{(1 - \psi(r_j, \delta_j))^2} \frac{d\phi}{dr_j} \right) \right] (36)
\]

Rearranging, we have:

\[
r_j - \frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} =
\]

\[
\left(\frac{1 - \psi(r_j, \delta_j)}{\theta} + (1 - \delta_j) \frac{d\phi}{dr_j} s_j \right)^{-1} \left[1 - \frac{1 - \delta_j}{(1 - \psi)^2} \frac{d\phi}{dr_j} \right] (1 - \psi(r_j, \delta_j)) s_j (36)
\]

When there is no moral hazard, \(\phi(r) = 0 \), so \(\frac{d\phi}{dr_j} = 0 \), so (36) reduces to (5) in the main text.

When there is moral hazard, the RHS of (36) tends to be lower, so lenders' markups above the break-even interest rate are lower. Intuitively, increasing interest rates increases costs, so lenders set lower markups in response.

Screening incentives. Recall we defined:

\[
\psi(r, \delta) = \delta + (1 - \delta) \phi(r)
\]
This gives:

\[\frac{\partial \psi}{\partial \delta} = 1 - \phi (r) \]

Lenders’ optimal profits are the solution to:

\[
\max_{\delta_j} \max_{r_j} \left(\frac{1}{1 - \delta_j} s_j \left(r_j \left(1 - \psi(r, \delta_j) \right) - \psi(r, \delta_j) \right) - c_q(\delta_j) \right)
\] (37)

Using (34), the objective in (37) becomes:

\[
\left(\frac{1}{1 - \delta_j} \right) s_j \left(r_j \left(1 - \left(\delta_j + (1 - \delta_j) \phi(r) \right) \right) - \left(\delta_j + (1 - \delta_j) \phi(r) \right) \right) - c_q(\delta_j)
\]

This rearranges to:

\[
= s_j \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) + s_j \left(-\phi(1 + r_j) \right) - c_q(\delta_j)
\] (38)

As in Appendix A.2, the envelope theorem applies, so lenders’ investment incentives are determined by differentiating (38) with respect to \(\delta_j \), holding \(s_j \) and \(r_j \) fixed. This means that optimal investments are determined by the first-order-condition:

\[
\frac{-s_j}{(1 - \delta_j)^2} - c_q'(\delta_j) = 0
\]

which is identical to (7) in the main text. Hence, if there is moral hazard for the type-G consumers, this actually does not change incentives for screening out type-B consumers, in this model.

Simulations. To demonstrate the effects of moral hazard on outcomes, we simulate lenders’ price-setting decisions. Since screening incentives are unchanged from the main text, we will simply hold default rates \(\delta_j \) constant. We will assume that moral hazard has a linear effect on type-G customers’ default rates:

\[\phi(r) = \chi r \]

This gives:

\[\psi(r_j, \delta_j) = \delta_j + (1 - \delta_j) \chi r \]
Plugging in to (36), we have:

\[r_j = \frac{\psi(r_j, \delta_j)}{1 - \psi(r_j, \delta_j)} = \frac{1}{\theta} \left[1 - \frac{1 - \delta_j}{(1 - \psi)^2} \right] (1 - \psi(r_j, \delta_j)) s_j \] (39)

In any symmetric equilibrium, we have \(s_j = \frac{1}{N} \). Using (39), we can simulate markups, for different values of \(\chi \). Figure A.2 shows how markups vary with \(\chi \). When \(\chi \) is larger, so moral hazard is a greater concern, markups are lower for any given value of \(N \), because banks internalize the fact that raising interest rates tends to increase default rates.

A.7 Winner’s curse

In this appendix, we relax the assumption that the results of lenders’ screening decisions are perfectly correlated. For simplicity, we assume that each customer can only take loans from the two banks on the Salop circle she is nearest to: the transportation costs to other lenders are high enough that there is no interest rate she is willing to borrow at. This simplifies the derivations, since each customer only has two choice of lenders.

Rather than the default rate \(\delta_j \), it is convenient to work with measures of type-B consumers. There is a total measure \(q \) of type-B consumers. As in the main text, suppose that each lender can invest \(\tilde{c} \left(\alpha_j \right) \) to create a test that perfectly identifies a fraction \(1 - \alpha_j \) of type-B consumers, out of a total measure \(q \), and screens them out. In contrast to the main text, we assume that test results are independent across banks. From the perspective of a given bank, consider a customer located between lender \(j \) and her neighbor \(j' \). There are four types of type-B consumers, who appear with the following probabilities.

1. \(\alpha_j \alpha_j' \): Pass both tests
2. \(\alpha_j (1 - \alpha_j') \): Pass \(j \)'s test, but not my neighbor’s
3. \((1 - \alpha_j) \alpha_j' \): Pass my neighbor’s test, but not mine
4. \((1 - \alpha_j)(1 - \alpha_j') \): Fail both tests

Categories 3 and 4 of consumers have failed \(j \)'s test, so \(j \) knows that they are type-B consumers and never lends to them. Category 2 of consumers has failed \(j' \)'s test, so \(j' \) does not lend to them: hence, these customers will borrow from \(j \) at any price. Category 1 of consumers passes both tests, so they are price sensitive: they will choose the bank that offers higher utility, net of transportation costs.
Let $s_i(r_i)$ represent lender j’s market share, among price-elastic consumers. Suppose all lenders are choosing some screening probability α_{-j}. The profit of lender j can be written as:

$$
\Pi_i = s_i(r_i) r_i - s_i(r_i) q \alpha_j \alpha_{-j} - \frac{2}{N} q \alpha_j (1 - \alpha_{-j}) - \tilde{c}(\alpha_j)
$$

(40)

In words, for the measure $s_i(r_i)$ of price-elastic type-G consumers, the lender makes r_i. For the measure $q \alpha_j \alpha_{-j}$ of type-1 consumers, who have passed j’s test as well as the neighbors, j loses the principal. There is a measure $\frac{2}{N} q \alpha_j (1 - \alpha_{-j})$ of type-B consumers who have passed j’s test, but not the neighbor’s (note the 2 is because j has two neighbors), and j loses the principal on these. Finally, j pays the screening cost $\tilde{c}(\alpha_j)$.

Price-setting. Differentiating (40) with respect to r_i, we have:

$$
s'_i(r_i - q \alpha_j \alpha_{-j}) + s_i = 0
$$

(41)

Using (22) from Appendix A.1, we have $s'_i = -\frac{1}{\theta}$. Hence, (41) rearranges to:

$$
 r_i - q \alpha_i \alpha_j = \theta s_i
$$

(42)

(42) is effectively a markup formula. The marginal cost of increasing lending is equal to the fraction of type-B consumers, among consumers who are marginal with respect to price. Among price-elastic consumers, for every type-G, there are $q \alpha_i \alpha_j$ type-B’s. Hence, this is the relevant marginal cost for lenders’ markups. In symmetric equilibrium, $s_i = \frac{1}{N}$, so markups over marginal costs still decrease as N increases.

Screening. To solve for optimal screening decisions, we differentiate (40) with respect to α_j. Using the envelope theorem, we can ignore effects of changes in r_j. This gives:

$$
\frac{d\Pi_i}{d\alpha_i} = -s_i(r_i) q \alpha_{-j} - \frac{2q(1 - \alpha_j)}{N} - \tilde{c}'(\alpha_j)
$$

$$
-\tilde{c}'(\alpha_j) = s_i(r_i) q \alpha_{-j} + \frac{2q(1 - \alpha_j)}{N}
$$

In symmetric equilibrium, $s_i(r_i) = \frac{1}{N}$, hence we have:

$$
-\tilde{c}'(\alpha_j) = \frac{(2 - \alpha_{-j})q}{N}
$$

(43)

(43) says that, when α_{-j} is lower – when j’s neighbors screen more intensely – j also increases
screening intensity. This is because customers who fail \(j \)'s neighbors' tests will tend to borrow from \(j \), which increases \(j \)'s incentives to invest in screening. However, as in the baseline model, (43) shows that screening incentives are lower when \(N \) is larger. Hence, both forces in the baseline model are still present when we assume lenders face a winner's curse.

A.8 Logit demand model

In this appendix, we consider an alternative model of preferences, the logit model, and show that our results still hold in this setting. As in the main text, there is a unit mass of type-\(G \) consumers, and some measure of type-\(B \) consumers. The screening technology is identical to the main text: lenders pay a fixed cost \(c_q(\delta) \) to lower the population default rate to \(\delta \). As in the main text, the willingness-to-pay of consumers for loans is independent of whether they are type \(B \) or \(G \). Unlike the main text, we assume consumers' preferences over banks are described by a logit model. The utility of consumers' outside option, of not borrowing, is normalized to 0. The utility that consumer \(i \) attains if she borrows from lender \(j \), at loan rate \(r_j \), is:

\[
\mu - \alpha r_j + \epsilon_{ij}
\]
(44)

where \(\epsilon_{ij} \) is i.i.d. type-1 extreme value. Hence, consumers have logit demand, with mean utility \(\mu \) for borrowing. \(\mu \) can be thought of as consumers' mean utility for car loans, relative to the outside option. \(\alpha \) determines how sensitive consumers are to interest rates. \(\epsilon_{ij} \) is an idiosyncratic preference that consumer \(i \) has for lender \(j \).21 Given lenders' interest rates \(r_j \), the market share of lender \(j \) is:

\[
s_j = \frac{\exp(\mu - \alpha r_j)}{1 + \sum_j \exp(\mu - \alpha r_j)}
\]
(45)

Lenders’ profits are still, as in the main text:

\[
\Pi = \left(\frac{1}{1 - \delta_j} \right) s_j \left(r_j \left(1 - \delta_j \right) - \delta_j \right) = s_j \left(r_j - \frac{\delta_j}{1 - \delta_j} \right)
\]

Appendix A.9.1 shows that lenders' optimal prices satisfy:

\[
r_j - \frac{\delta_j}{1 - \delta_j} = \frac{1}{\alpha (1 - s_j)}
\]
(46)

21Technically, idiosyncratic terms are needed in Bertrand models so that demand is not perfectly elastic, so firms set prices above marginal cost in equilibrium. In our setting, these preference shocks could represent either consumers' actual preferences over lenders, or could represent in reduced-form dealers' relationships with lenders, or consumer search costs.
The intuition for (46) is that $r_j - \delta_j$, the markup of r_j over the break-even interest rate, δ_j, is higher when consumers’ price sensitivity, α, is lower, and when firm j’s market share s_j is higher.

Appendix A.9.2 shows that lenders’ FOC for optimal information acquisition is unchanged from the main text:

$$\frac{s_j}{(1 - \delta_j)^2} = -c_q'(\delta_j)$$

(47)

However, the second-order condition changes to:

$$c_q''(\delta)(1 - \delta)^4 + 2s(1 - \delta) > \frac{\alpha}{s(1 - s) + \frac{1}{(1 - s)^2}}$$

(48)

A symmetric equilibrium is described by a triple s, r, δ which solves (45), (46), and (47).

Equilibrium consumer surplus, for type G consumers, follows from the standard logit surplus formula, from, for example, Train (2009):

$$\log \left(1 + \sum_{j=1}^{J} \exp(\mu - \alpha r_j)\right) + C$$

(49)

where C is a constant.

We proceed to solve the model numerically. As in the main text, we parametrize costs as:

$$c(\alpha) = \frac{k}{\alpha}$$

implying that:

$$c_q(\delta_j) = \frac{kq(1 - \delta_j)}{\delta_j}$$

Figure A.3, analogous to Figure 1, shows equilibrium outcomes, as we vary the number of lenders. The findings are identical to the main text: Concentration increases markups, but decreases default rates. The net effect of concentration on interest rates is positive when k is lower and the population is low-risk, and negative when k is high and the population is high-risk. Quantities always tend to decrease as concentration increases. The main difference of the logit model to the Salop circle model is that consumer surplus tends to increase as markets

22We note that these conditions are necessary, but not sufficient, for equilibrium, and that the model does not always have unique equilibria, even when $c_q(\cdot)$ is convex. Intuitively, this is because, in the logit model, costly information acquisition creates increasing returns: if firms acquire more information, default rates δ are lower, allowing firms to charge lower interest rates, which then increases market shares and increases firms’ incentives for information acquisition. Moreover, nontrivial equilibria are not guaranteed to exist: for some choices of $c_q(\cdot)$, there is no $\delta < 1$ which satisfies all three conditions simultaneously.
become more competitive. Intuitively, this is because gains-from-variety are much larger in the logit model than in the Salop circle model, so there is a stronger mechanical effect of increasing N on consumer surplus. However, when k is very large – the blue line – increasing N can still decrease consumer surplus in the logit model.

A.9 Proofs for Appendix A.8

A.9.1 Optimal price setting

From (45), market shares are:

$$s_j = \frac{\exp(\mu - \alpha r_j)}{1 + \sum_j \exp(\mu - \alpha r_j)}$$

The derivative with respect to the interest rate r_j is:

$$\frac{\partial s_j}{\partial r_j} = -\alpha s_j(1 - s_j)$$

From (4), lenders choose interest rates to solve:

$$\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right)$$

Differentiating with respect to r_j, we have:

$$s_j - \frac{\partial s_j}{\partial r_j} \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) = 0$$

$$s_j - \alpha s_j(1 - s_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) = 0$$

This simplifies to:

$$r_j - \frac{\delta_j}{1 - \delta_j} = \frac{1}{\alpha(1 - s_j)}$$

This is (46).

A.9.2 Optimal information acquisition

From (6), lenders choose δ_j to solve:

$$\max_{\delta_j} \max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j)$$

(50)
As in the baseline model, the envelope theorem gives:

\[
\frac{d}{d\delta_j} \left[\max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) \right] = \frac{\partial}{\partial \delta_j} \left[s_j(r_j) \left(r_j^* - \frac{\delta_j}{1 - \delta_j} \right) \right]
\]

That is, we can hold the interest rate \(r_j^* \) constant at the optimal choice when taking the derivative. Thus, we have:

\[
\frac{\partial}{\partial \delta_j} \left[s_j(r_j) \left(r_j^* - \frac{\delta_j}{1 - \delta_j} \right) \right] = -\frac{s_j(r_j^*)}{(1 - \delta_j)^2}
\]

Note that this is always negative, since \(s_j > 0 \). That is, higher default rates always decrease the objective. Combining this with the derivative of \(c_q(\delta_j) \), we get the first-order condition:

\[
-\frac{s_j}{(1 - \delta_j)^2} - c'_q(\delta_j) = 0 \quad (51)
\]

Rearranging, we get (7).

Second-order condition. In order for (51) to be a maximum, a second-order condition must also hold. Differentiating again, we have:

\[
\frac{\partial^2}{\partial \delta_j^2} \max_{r_j} s_j(r_j) \left(r_j - \frac{\delta_j}{1 - \delta_j} \right) - c_q(\delta_j) = \frac{\partial}{\partial \delta_j} \left[-\frac{s_j}{(1 - \delta_j)^2} - c'_q(\delta_j) \right]
\]

This is:

\[
\frac{\partial}{\partial \delta_j} \left[-\frac{s_j}{(1 - \delta_j)^2} - c'_q(\delta_j) \right] = -\frac{1}{(1 - \delta_j)^2} \frac{\partial s_j}{\partial \delta_j} - \frac{2s_j}{(1 - \delta_j)^3} - c''_q(\delta_j) \quad (52)
\]

This must be negative, at the optimal choice of \(\delta_j \) for \(j \). Expression (29) of appendix A.2.2 below shows that the derivative of \(j \)'s optimal market share \(s_j \) as \(\delta_j \) varies, holding fixed all other agents' interest rates and market shares, is:

\[
\frac{ds_j}{d\delta_j} = \left(\frac{-\alpha}{(1 + \delta_j)^2} \right) \left(\frac{1}{s_j(1-s_j)} + \frac{1}{(1-s_j)^2} \right)
\]

Substituting this into (52), we get:

\[
\frac{1}{(1 - \delta_j)^2} \left(\frac{\alpha}{(1 + \delta_j)^2} \right) \left(\frac{1}{s_j(1-s_j)} + \frac{1}{(1-s_j)^2} \right) - \frac{2s_j}{(1 - \delta_j)^3} - c''_q(\delta_j) < 0
\]
This rearranges to:

\[c'' q' (1 - \delta_j) (1 - \delta_j)^4 + 2s_j (1 - \delta_j) > \frac{\alpha}{s_j (1-s_j)} + \frac{1}{(1-s_j)^2} \]

This is (48).

Characterizing \(\frac{d s_j}{d \delta_j} \). First, consider the market share equilibrium conditions, (45) and (46).

For analytical convenience, define \(\zeta_j \equiv \frac{\delta_j}{1 - \delta_j} \), so that (46) becomes:

\[r_j - \zeta_j = \frac{1}{\alpha (1-s_j)} \quad (53) \]

As \(\delta_j \) varies, \(c_j \) also varies, tracing out (45). From (45), we have:

\[\frac{d r_j}{d s_j} = \frac{-1}{\alpha s_j (1-s_j)} \quad (54) \]

Now, differentiating (27) totally, we have:

\[d r_j - d \zeta_j = d \left(\frac{1}{\alpha (1-s_j)} \right) = \frac{1}{\alpha (1-s_j)^2} ds_j \quad (55) \]

We can solve (55) and (28) for \(\frac{d \zeta_j}{d s_j} \), to get:

\[\frac{d \zeta_j}{d s_j} = \frac{-1}{\alpha s_j (1-s_j)} - \frac{1}{\alpha (1-s_j)^2} \]

Inverting,

\[\frac{d s_j}{d \zeta_j} = \frac{-\alpha}{s_j (1-s_j) + \frac{1}{(1-s_j)^2}} \]

Now, from the definition of \(c_j \), we have:

\[\frac{d \zeta_j}{d \delta_j} = \frac{1}{(1-\delta_j)^2} \]

Hence,

\[\frac{d s_j}{d \delta_j} = \frac{ds_j}{d \zeta_j} \frac{d \zeta_j}{d \delta_j} = \left(\frac{-\alpha}{(1-\delta_j)^2} \right) \left(\frac{1}{s_j (1-s_j) + \frac{1}{(1-s_j)^2}} \right) \quad (56) \]
B Bank Merger Data

We combine the Bank Mergers data with the quarterly Summary of Deposits data. The bank mergers data is collected from the Transformations file from the National Information Center (NIC) (previously provided by the Federal Reserve Bank of Chicago until 2015), which lists all mergers and acquisitions events of banks and bank holding companies that have occurred since 1976, along with the names of the surviving and non-surviving entities. We exclude government-assisted mergers which resulted in failed banks ceasing to exist.

From the Summary of Deposits data, we initially match commercial banks to their ultimate parent bank holding company using the relationships files from the National Information Center. The latter reports the entire history of a bank’s control relationships with others over time, and the effective dates when such relationships hold. We use these links where ownership/control is in any BHC or bank and for which the exact ownership percent is reported. We iterate through the entire chain of relationships for a given entity to infer the ultimate BHC at each point in time, and we adjust the deposit amount recorded in the Summary of Deposits for the ultimate ownership share in the original entity.

When matching the Summary of Deposits data with the bank mergers data, we follow Granja and Paixao (2019): we measure the level of deposits of each acquired bank during the merger year as the level of deposits as of June 30th of the merger year if the merger occurs after June 30th; otherwise, we measure deposits as of June 30th of the previous year.

Between 2009 and 2019 there are a total of 1442 mergers, covering 1812 distinct counties. Table A.3 shows the number of mergers in each year, as well as the distribution of the number of mergers across counties for each year. Table A.4 shows the largest 50 mergers in the sample, by number of counties affected, listed by chronological order.
Figure A.1: Equilibrium Entry

The above figure shows the equilibrium number of entrants as a function of the fixed entry cost C_e, in the entry model of Appendix A.5. The x-axis shows the fixed entry cost C_e. The y-axis shows the equilibrium number of entrants, $N(C_e)$, which we calculate by solving (32) and (33). We use the cost function (13), and we set $\theta = 0.04, \mu = 0.5, k = 10^{-5}$.
The above figure shows equilibrium markups when there is moral hazard, for different values of χ. The x-axis shows the HHI, as we vary the number of lenders N. The y-axis shows the equilibrium markup, $r_j - \frac{\psi(r_j, \delta)}{1-\psi(r_j, \delta)}$, calculated as the RHS of (39). We set $\delta = 0.1, \theta = 0.04$.
The above figure shows model outcomes, for different values of HHI and q, in the logit model described in Appendix A.8. The top left panel shows equilibrium interest rates, r. The top middle panel shows default rates, δ. The top right panel shows markups over the break-even interest rate, $r - \frac{\delta}{1 - \delta}$. The bottom left panel shows consumer surplus, (49). The bottom right panel shows total loan quantity. All simulations use $\alpha = 10, \mu = 1.5, k = 0.001$.
The above figure shows monthly auto loan originations. The top panel shows the number of loans, while the bottom panel shows the volume. The blue line shows the TU data series, while the red line shows a similar CFPB data series. Source: TransUnion and CFPB.
The above figure shows the total number of observations within each credit rating bin. Credit scores are given by VantageScore ratings. Source: TransUnion
The above figure shows the average auto loan market HHI in each mainland US county in 2009. Darker shades show more concentrated auto lending markets.
Source: TransUnion
The above figure shows mean interest rates in a county for given credit score ranges, broken down by ventile of HHI using alternative samples or measurement. The measurement or sample is noted above each panel. HHI is defined using the volume of auto loans, that is \(HHI = \sum_i^N s_i^2 \), where \(s_i \) is a lender’s share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
The above figure shows mean interest rates in a county for given credit score ranges, broken down by ventile of HHI using alternative measurement. The measurement change is noted above each panel. For the top panel, HHI is defined using the number of auto loans, that is \(HHI = \sum_{i} s_i^2 \), where \(s_i \) is a lender's share of auto lending in a county within a credit score range. For the middle panel, HHI is constructed using lenders' market shares by number of loans, rather than total loan amounts. Credit score rangers are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
Figure A.9: Interest Rates and Competition Excluding New Entrants

Credit Score Below 600

Credit Score Above 600

The above figure shows mean interest rates in a county for given credit score ranges, broken down by ventile of HHI. The sample is restricted to lenders that operated since 2009, and thus excludes new entrants. HHI is defined using the volume of auto loans, that is \(HHI = \sum_{i} s_i^2 \), where \(s_i \) is a lender’s share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
Figure A.10: Maturity and Competition

Credit Score Below 600

Credit Score Above 600

The above figure shows mean loan maturity in a county for given credit score ranges, broken down by ventile of HHI. HHI is defined using the volume of auto loans, that is \(HHI = \sum_{i} s_i^2 \), where \(s_i \) is a lender's share of auto lending in a county within a credit score range. Credit score ranges are denoted above each panel. Credit scores are given by VantageScore ratings. Source: TransUnion.
Figure A.11: Geographic Distribution of Failed Bank Deposit Shares

The above figure shows the deposit share in 2008 of the three largest banks that failed during the 2008 crisis, Wachovia, Washington Mutual and Countrywide. Source: Federal Reserve Call Reports
Figure A.12: Geographic Distribution of Mergers

The above figure shows counties affected by bank mergers. Source: NIC and Federal Reserve Call Reports
The above figure shows auto lending HHI, broken down by ventile of bank deposit market HHI. HHI is defined using the volume of auto loans or deposits, that is $HHI = \sum s_i^2$, where s_i is the share of auto lending or deposits in a county within a credit score range. Source: TransUnion and Federal Reserve Call Reports
Figure A.14: HHI Following Acquisition

The above figure shows average HHI, by the numbers of years since a bank merger occurred. HHI is defined using the volume of auto loans or deposits, that is
\[HHI = \sum_i s_i^2 \], where \(s_i \) is the share of auto lending or deposits in a county within a credit score range. Source: TransUnion and Federal Reserve Call Reports.
Table A.1: Concentration and Interest Rates by Lender

The table shows the relationship between the number of loans rates and HHI, split by credit score at the county, lender by year level. The first four columns vary the inclusion of lender fixed effects. The second four columns split the sample by whether a lender offers only auto loans, or other types of consumer credit. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln(Interest Rate)</td>
<td></td>
<td>Ln(Interest Rate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Sample</td>
<td>Auto Lenders</td>
<td>All Lenders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Score</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>600-850</td>
<td>300-600</td>
<td>600-850</td>
<td>300-600</td>
<td>600-850</td>
<td>300-600</td>
<td>600-850</td>
</tr>
<tr>
<td>Ln(HHI)</td>
<td>-0.0737***</td>
<td>-0.0727***</td>
<td>0.110**</td>
<td>0.105**</td>
<td>-0.0689***</td>
<td>0.173**</td>
<td>-0.0785***</td>
<td>0.0282</td>
</tr>
<tr>
<td></td>
<td>(0.0103)</td>
<td>(0.00996)</td>
<td>(0.0517)</td>
<td>(0.0502)</td>
<td>(0.0114)</td>
<td>(0.0764)</td>
<td>(0.00921)</td>
<td>(0.0245)</td>
</tr>
<tr>
<td>County X Credit Score Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lender Fixed Effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,866,741</td>
<td>1,865,935</td>
<td>5,213,296</td>
<td>5,212,710</td>
<td>1,107,222</td>
<td>2,401,999</td>
<td>758,663</td>
<td>2,810,678</td>
</tr>
<tr>
<td>R²</td>
<td>0.678</td>
<td>0.689</td>
<td>0.802</td>
<td>0.805</td>
<td>0.728</td>
<td>0.813</td>
<td>0.622</td>
<td>0.760</td>
</tr>
</tbody>
</table>
Table A.2: Concentration and Interest Rates by Lender Size

This table shows the relationship between the number of loans rates and HHI, split by credit score at the county, lender by year level. The sample is split by quartiles of total lender size, measured by the total volume of auto loans. The first four columns show estimates for borrowers with VantageScore scores below 600, while the second four columns show estimates for borrowers with VantageScore scores above 600. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

<table>
<thead>
<tr>
<th>Lender Size</th>
<th>1<sup>st</sup> Quart.</th>
<th>2<sup>nd</sup> Quart.</th>
<th>3<sup>rd</sup> Quart.</th>
<th>4<sup>th</sup> Quart.</th>
<th>1<sup>st</sup> Quart.</th>
<th>2<sup>nd</sup> Quart.</th>
<th>3<sup>rd</sup> Quart.</th>
<th>4<sup>th</sup> Quart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(HHI)</td>
<td>-0.0944***</td>
<td>-0.0562***</td>
<td>-0.105***</td>
<td>-0.0327***</td>
<td>-0.0327***</td>
<td>-0.0327***</td>
<td>-0.0327***</td>
<td>-0.0327***</td>
</tr>
<tr>
<td></td>
<td>(0.0123)</td>
<td>(0.00826)</td>
<td>(0.0165)</td>
<td>(0.00958)</td>
<td>(0.0249)</td>
<td>(0.0331)</td>
<td>(0.0580)</td>
<td>(0.0719)</td>
</tr>
<tr>
<td>County X Credit Score Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>621,988</td>
<td>450,106</td>
<td>407,226</td>
<td>387,118</td>
<td>1,150,927</td>
<td>1,325,956</td>
<td>1,378,026</td>
<td>1,358,034</td>
</tr>
<tr>
<td>R^2</td>
<td>0.556</td>
<td>0.741</td>
<td>0.721</td>
<td>0.767</td>
<td>0.705</td>
<td>0.790</td>
<td>0.837</td>
<td>0.786</td>
</tr>
</tbody>
</table>
Table A.3: Number of Merger Events by Year

This table shows the annual number of bank mergers and acquisitions. Source: NIC

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>55</td>
<td>52</td>
<td>66</td>
<td>109</td>
<td>134</td>
<td>162</td>
<td>189</td>
<td>173</td>
<td>153</td>
<td>184</td>
<td>165</td>
</tr>
</tbody>
</table>
Table A.4: Top 50 List of Bank Mergers

This table lists the top 50 bank mergers ranked by number of counties covered by the acquired bank during the merger year. Source: NIC, Federal Reserve Call Reports.

<table>
<thead>
<tr>
<th>Event Date</th>
<th>Acquired Bank Name</th>
<th># Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-5</td>
<td>PROVIDENT BANKSHARES CORPORATION</td>
<td>23</td>
</tr>
<tr>
<td>2010-10</td>
<td>SOUTH FINANCIAL GROUP THE</td>
<td>58</td>
</tr>
<tr>
<td>2010-12</td>
<td>J. R. MONTGOMERY BANCORPORATION</td>
<td>42</td>
</tr>
<tr>
<td>2011-7</td>
<td>MARSHALL & ILSLEY CORPORATION</td>
<td>87</td>
</tr>
<tr>
<td>2012-7</td>
<td>AMERICAN STATE FINANCIAL CORPORATION</td>
<td>18</td>
</tr>
<tr>
<td>2013-2</td>
<td>BANCTRUST FINANCIAL GROUP, INC.</td>
<td>18</td>
</tr>
<tr>
<td>2013-4</td>
<td>CITIZENS REPUBLIC BANCORP, INC.</td>
<td>73</td>
</tr>
<tr>
<td>2013-4</td>
<td>WEST COAST BANCORP</td>
<td>13</td>
</tr>
<tr>
<td>2013-9</td>
<td>FIRST M & F CORPORATION</td>
<td>17</td>
</tr>
<tr>
<td>2013-10</td>
<td>LIBERTY BANCSHARES, INC.</td>
<td>15</td>
</tr>
<tr>
<td>2014-1</td>
<td>STELLARONE CORPORATION</td>
<td>34</td>
</tr>
<tr>
<td>2014-4</td>
<td>STERLING FINANCIAL CORPORATION</td>
<td>62</td>
</tr>
<tr>
<td>2014-7</td>
<td>PIEDMONT COMMUNITY BANK HOLDINGS, INC.</td>
<td>21</td>
</tr>
<tr>
<td>2014-10</td>
<td>FIRST CITIZENS BANCORPORATION, INC.</td>
<td>50</td>
</tr>
<tr>
<td>2015-2</td>
<td>COMMUNITY FIRST BANCSHARES, INC.</td>
<td>15</td>
</tr>
<tr>
<td>2015-5</td>
<td>CENTRAL BANCSHARES, INC.</td>
<td>13</td>
</tr>
<tr>
<td>2015-7</td>
<td>Heritage Bank of the South</td>
<td>22</td>
</tr>
<tr>
<td>2015-8</td>
<td>SUSQUEHANNA BANCSHARES, INC.</td>
<td>40</td>
</tr>
<tr>
<td>2015-11</td>
<td>Hudson City Savings Bank</td>
<td>23</td>
</tr>
<tr>
<td>2015-11</td>
<td>CITY NATIONAL CORPORATION</td>
<td>18</td>
</tr>
<tr>
<td>2016-4</td>
<td>NATIONAL PENN BANCSHARES, INC.</td>
<td>18</td>
</tr>
<tr>
<td>2016-5</td>
<td>AnchorBank, fsb</td>
<td>18</td>
</tr>
<tr>
<td>2016-7</td>
<td>COMMUNITY & SOUTHERN HOLDINGS, INC.</td>
<td>28</td>
</tr>
<tr>
<td>2016-8</td>
<td>FIRSTMERIT CORPORATION</td>
<td>97</td>
</tr>
<tr>
<td>2016-9</td>
<td>FIRST NIAGARA FINANCIAL GROUP, INC.</td>
<td>59</td>
</tr>
<tr>
<td>2016-10</td>
<td>TALMER BANCORP INC.</td>
<td>25</td>
</tr>
<tr>
<td>2017-3</td>
<td>YADKIN VALLEY FINANCIAL CORPORATION</td>
<td>36</td>
</tr>
<tr>
<td>2017-4</td>
<td>CARLILE BANCSHARES, INC.</td>
<td>17</td>
</tr>
<tr>
<td>2017-5</td>
<td>CASCADE BANCORP</td>
<td>21</td>
</tr>
<tr>
<td>2017-5</td>
<td>MERCHANTS BANCSHARES, INC.</td>
<td>13</td>
</tr>
<tr>
<td>2017-6</td>
<td>BANK OF THE OZARKS INC</td>
<td>101</td>
</tr>
<tr>
<td>2017-11</td>
<td>BANCORPSOUTH, INC.</td>
<td>97</td>
</tr>
<tr>
<td>2017-11</td>
<td>FIRST SOUTH BANCORP, INC.</td>
<td>18</td>
</tr>
<tr>
<td>2017-12</td>
<td>NORTH AMERICAN FINANCIAL HOLDINGS, INC.</td>
<td>61</td>
</tr>
<tr>
<td>2017-12</td>
<td>PARK STERLING CORPORATION</td>
<td>27</td>
</tr>
<tr>
<td>2018-1</td>
<td>HCBF HOLDING COMPANY, INC.</td>
<td>15</td>
</tr>
<tr>
<td>2018-1</td>
<td>CENTRAL COMMUNITY CORPORATION</td>
<td>13</td>
</tr>
<tr>
<td>2018-2</td>
<td>Bank Mutual</td>
<td>29</td>
</tr>
<tr>
<td>2018-4</td>
<td>MAINSOURCE FINANCIAL GROUP, INC.</td>
<td>42</td>
</tr>
<tr>
<td>2018-9</td>
<td>ZIONS BANCORPORATION</td>
<td>113</td>
</tr>
<tr>
<td>2019-1</td>
<td>FCB FINANCIAL HOLDINGS, INC.</td>
<td>17</td>
</tr>
<tr>
<td>2019-1</td>
<td>STATE BANK FINANCIAL CORPORATION</td>
<td>15</td>
</tr>
<tr>
<td>2019-4</td>
<td>AMERICUS FINANCIAL SERVICES, INC.</td>
<td>17</td>
</tr>
<tr>
<td>2019-7</td>
<td>FIDELITY SOUTHERN CORPORATION</td>
<td>23</td>
</tr>
<tr>
<td>2019-8</td>
<td>TCF FINANCIAL CORPORATION</td>
<td>38</td>
</tr>
<tr>
<td>2019-9</td>
<td>MIDSOUTH BANCORP, INC.</td>
<td>23</td>
</tr>
<tr>
<td>2019-9</td>
<td>LIBERTY SHARES, INC.</td>
<td>14</td>
</tr>
<tr>
<td>2019-11</td>
<td>LANDRUM COMPANY</td>
<td>14</td>
</tr>
<tr>
<td>2019-12</td>
<td>SUNTRUST BANKS, INC.</td>
<td>224</td>
</tr>
</tbody>
</table>
Table A.5: Concentration, Failures and Interest Rates

The first two columns show the relationship between ln(HHI) and the share of deposits in the three banks that failed during the financial crisis. The second three columns show the relationship between the log of interest rates and the share of deposits in the three banks that failed during the financial crisis. The last three columns show the relationship between ln(HHI) and the log of interest rates, instrumenting using the share of deposits in the three banks that failed during the financial crisis. In each pair, the first column shows the relationship for low credit score borrowers (VantageScore below 600) while the second column shows the relationship for high credit score borrower (VantageScore above 600.) The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln(Interest Rate)</td>
<td>First Stage</td>
<td>Reduced Form</td>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share Failed Banks</td>
<td>-0.739***</td>
<td>-0.995***</td>
<td>0.180**</td>
<td>-0.241</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.133)</td>
<td>(0.0826)</td>
<td>(0.253)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(HHI)</td>
<td></td>
<td></td>
<td></td>
<td>-0.243**</td>
<td>0.242</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0982)</td>
<td>(0.250)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27887</td>
<td>31773</td>
<td>27887</td>
<td>31773</td>
<td>27887</td>
<td>31773</td>
</tr>
<tr>
<td>R^2</td>
<td>0.406</td>
<td>0.418</td>
<td>0.014</td>
<td>0.012</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Table A.6: Concentration, Interest Rates and Failures Split by Credit Score Group

The top panel regresses HHI on the deposit share in 2008 of the three largest failed banks, Wachovia, Countrywide and Washington Mutual. The bottom panel presents 2SLS estimates of interest rates of HHI, instrumenting for HHI with the deposit share in 2008 of the three largest failed banks. The sample is split by borrowers’ credit scores groups, denoted above each column. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. ∗p < .1, ∗∗p < .05, ∗∗∗p < .01.

Panel A: HHI Following Acquisition

<table>
<thead>
<tr>
<th>Credit Score</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550-600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600-650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750-800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank HHI</th>
<th>Share Failed Banks</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300-550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>550-600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600-650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>650-700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700-750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>750-800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

County Fixed Effects	Yes						
Year Fixed Effects	Yes						
Merger Year Fixed Effects	Yes						
Observations	26049	27094	29219	30154	29864	29310	28070
R²	0.332	0.393	0.400	0.385	0.369	0.368	0.389

Panel B: Interest Rates Following Acquisition

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years Since Merger</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.281***</td>
<td>-0.325***</td>
<td>-0.0390</td>
<td>0.103*</td>
<td>0.195***</td>
<td>0.283***</td>
<td>0.349***</td>
</tr>
<tr>
<td></td>
<td>(0.0742)</td>
<td>(0.0904)</td>
<td>(0.0583)</td>
<td>(0.0594)</td>
<td>(0.0582)</td>
<td>(0.0639)</td>
<td>(0.0790)</td>
</tr>
</tbody>
</table>

County Fixed Effects	Yes						
Year Fixed Effects	Yes						
Merger Year Fixed Effects	Yes						
Observations	26049	27094	29219	30154	29864	29310	28070
Table A.7: Concentration, Interest Rates and Bank Acquisitions

The table shows estimates of HHI or log interest rates on the number of years since a bank merger or acquisition occurred, split by borrowers having credit scores below 600. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, **p < .05, ***p < .01.

Panel A: HHI Following Acquisition

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bank HHI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Score 300-600</td>
<td>Credit Score 600-850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years Since Merger</td>
<td>0.00186∗∗∗ (0.000691)</td>
<td>0.00186∗∗∗ (0.000691)</td>
<td>0.00173∗∗ (0.000672)</td>
<td>0.00173∗∗ (0.000672)</td>
</tr>
<tr>
<td>County Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Merger Year Fixed Effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>27,481</td>
<td>27,481</td>
<td>31,298</td>
<td>31,298</td>
</tr>
<tr>
<td>R²</td>
<td>0.958</td>
<td>0.958</td>
<td>0.959</td>
<td>0.959</td>
</tr>
</tbody>
</table>

Panel B: Interest Rates Following Acquisition

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln(Interest Rate)</td>
<td>Credit Score 300-600</td>
<td>Credit Score 600-850</td>
<td></td>
</tr>
<tr>
<td>Years Since Merger</td>
<td>-0.00835∗∗ (0.00399)</td>
<td>-0.00835∗∗ (0.00399)</td>
<td>0.00175 (0.00195)</td>
<td>0.00175 (0.00195)</td>
</tr>
<tr>
<td>County Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Merger Year Fixed Effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>27,481</td>
<td>27,481</td>
<td>31,298</td>
<td>31,298</td>
</tr>
<tr>
<td>R²</td>
<td>0.375</td>
<td>0.375</td>
<td>0.827</td>
<td>0.827</td>
</tr>
</tbody>
</table>
Table A.8: Concentration, Interest Rates and Bank Acquisitions Split by Credit Score Group

The table shows estimates of HHI or log interest rates on the number of years since a bank merger or acquisition occurred, split by borrowers' credit scores groups. The inclusion of fixed effects is denoted beneath each column. Standard errors are clustered at the county level. Credit scores are given by VantageScore ratings. Source: TransUnion. *p < .1, ** p < .05, *** p < .01.

Panel A: HHI Following Acquisition

<table>
<thead>
<tr>
<th>Credit Score</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-550</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>550-600</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>600-650</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>650-700</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>700-750</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>750-800</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
<tr>
<td>800+</td>
<td>0.00181** (0.000706)</td>
<td>0.00190*** (0.000689)</td>
<td>0.00172** (0.000687)</td>
<td>0.00180*** (0.000676)</td>
<td>0.00177*** (0.000666)</td>
<td>0.00204*** (0.000674)</td>
<td>0.00206*** (0.000666)</td>
</tr>
</tbody>
</table>

Panel B: Interest Rates Following Acquisition

<table>
<thead>
<tr>
<th>Ln(Interest Rate)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years Since Merger</td>
<td>-0.00774** (0.00368)</td>
<td>-0.00442 (0.00492)</td>
<td>-0.00174 (0.00261)</td>
<td>-0.000360 (0.00176)</td>
<td>0.00265 (0.00192)</td>
<td>0.00562** (0.00229)</td>
<td>0.00397* (0.00235)</td>
</tr>
</tbody>
</table>

County Fixed Effects	Yes						
Year Fixed Effects	Yes						
Merger Year Fixed Effects	Yes						
Observations	25683	26689	28792	29706	29424	28877	27661
R^2	0.309	0.349	0.568	0.701	0.757	0.803	0.801