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Abstract

We build a rich panel dataset tracking two measures of housing market liquidity:
time-on-market and price dispersion. The two measures co-vary closely at seasonal
and business-cycle frequencies, but there is substantial independent variation in
the cross-section of counties. This suggests that the two measures reflect different
dimensions of market liquidity. Using a housing search model, we show that time-on-
market and price dispersion can be thought of as equilibrium outcomes from a supply
and demand system for liquidity. Consistent with the model’s predictions, proxies
for liquidity supply are negatively correlated with both measures, whereas a proxy
for liquidity demand is negatively correlated with time-on-market, but positively
correlated with price dispersion.
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1 Introduction

Assets are liquid if they can be sold quickly and at stable prices. According to this
definition, the residential real estate market in the US is highly illiquid. Houses take
many months to sell, and realtor commissions and other fees amount to 6-10% of house
prices. Illiquidity is also reflected in idiosyncratic price dispersion: similar houses can
sell for very different prices at similar points in time. This idiosyncratic price component
is quantitatively large, as it accounts for more than half of total capital gains volatility
for individual homes. However, there is little understanding in the literature of how
market liquidity varies across regions and over time, and what forces determine liquidity

in residential real estate markets.

In this paper, we build a rich panel dataset tracking two housing market liquid-
ity measures: time-on-market and idiosyncratic price dispersion. The two measures
co-vary closely at seasonal and business-cycle frequencies, but there is substantial in-
dependent variation in the cross-section of counties. This observation suggests that
time-on-market and price dispersion measure different aspects of liquidity. We build
a search-and-bargaining model of the housing market, and show that time-on-market
and price dispersion arise as equilibrium outcomes from a supply and demand system
for liquidity. Increases in liquidity supply cause both measures to decrease. Increases
in liquidity demand cause time-on-market to decrease, but price dispersion to increase.
Consistent with the model’s predictions, proxies for liquidity supply are negatively corre-
lated with both liquidity measures in the data, whereas a proxy for liquidity demand is
negatively correlated with time-on-market but positively correlated with price dispersion.

We start our analysis by measuring time-on-market and price dispersion for a large set
of US counties over time. Time-on-market is defined as the average time between when a
house is listed and when it is sold. Idiosyncratic price dispersion is the extent to which
similar houses sold at similar points in time sell for different prices. To measure this, we
tirst regress log sale prices of houses on county-month fixed effects, house fixed effects,
and a smooth function of house characteristics and time. We then take the residuals from
this regression, which can be flexibly aggregated cross-sectionally and over time, as our

measure of idiosyncratic price dispersion.

We show that time-on-market and price dispersion are countercyclical and seasonal,
and co-move with other measures of housing market “hotness”, such as sales volume and

average price. Counties which are more cyclical or seasonal in one variable also tend to



be more cyclical or seasonal in other variables. In the cross-section of counties, there is
large variation in both time-on-market and price dispersion. The 10th and 90th percentiles
of time-on-market are, respectively, 2.40 and 4.20, and the 10th and 90th percentiles of
price dispersion are 14.0% and 22.7%. While time-on-market and price dispersion are
positively correlated, there is substantial idiosyncratic variation. Time-on-market and
price dispersion are not very well explained by each other, or by the level of house prices.
For example, house prices and time-on-markets are virtually identical in Rochester and
Baltimore, but the two cities exhibit large differences in idiosyncratic price dispersion:
14.1% and 27.5%, respectively. This difference is similar to the difference in annual return
volatilities of US high yield bonds and emerging markets stocks.

These stylized facts suggest that housing market liquidity appears to be a multi-
dimensional object, which time-on-market and price dispersion measure different aspects
of. We build a search-and-bargaining model to explain the variation in time-on-market
and price dispersion. In our model, price dispersion arises from heterogeneity in seller
and buyer preferences: sellers have different utility costs of keeping their houses on the
market per unit time, and buyers receive an independent match quality shock every time
they match with a house. Both dimensions of heterogeneity affect the distribution of
prices in equilibrium. Buyers with higher match quality draws pay higher prices, and
sellers with higher holding costs sell for lower prices.

In the model, the main drivers of market outcomes are the supply and demand for
liquidity. Liquidity supply is buying pressure: the inflow rate of buyers, which determines
equilibrium market tightness. Liquidity demand is the average urgency of sellers to sell
their houses. Liquidity supply changes create positive co-movement in time-on-market
and price dispersion: when there are more buyers, sellers can sell faster and at more
stable prices, causing price dispersion and time-on-market to both decrease. Liquidity
demand changes create negative co-movement: when sellers” urgency increases, sellers
collectively sell faster, causing prices to be lower and more dispersed, so time-on-market

decreases, but price dispersion actually increases.

Through the lens of the model, markets with high liquidity supply will have low
time-on-market and price dispersion, whereas markets with high liquidity demand will
have low time-on-market but high price dispersion. Thus, neither metric alone is sufficient
as a measure of market liquidity. Time-on-market can be low, either because there are
many buyers and markets are tight, or because sellers have high urgency, and sell quickly

despite incurring large liquidity discounts.



Our model makes testable predictions about cross-sectional variation in liquidity
measures: proxy variables for liquidity supply should be negatively associated with
both price dispersion and time-on-market, whereas measures of liquidity demand should
correlate negatively with time-on-market, but positively with price dispersion. We test the
predictions of our model in the data. The first proxy that we use is county net migration
rate. Intuitively, a county that has a high inmigration rate should have a large mass of
buyers interested in purchasing houses. Consistent with our model’s predictions, net

inmigration is negatively correlated with both price dispersion and time-on-market.

Next, we use an empirical approach based on Schubert (2021) to construct a plausibly
exogenous shock to liquidity supply: migration spillovers from high-productivity areas. If
a certain county experiences large productivity shocks, house prices will increase. This
will tend to cause outmigration from the county, which will create net inmigration flows
to areas with strong historical migration links to the county. These migration flows are
plausibly exogenous shocks to housing market tightness. As our model predicts, areas
which experience large migration shocks have lower time-on-market and lower price
dispersion.

Our proxy for liquidity demand is the ratio of average household income to average
house prices. Intuitively, household income is a direct measure of the value of house
sellers” time. Holding fixed house prices, higher-income sellers should be willing to sell
faster, even if this lowers sale prices, since their opportunity cost of keeping their houses
on the market is higher. Our model thus predicts that higher-income areas should have

lower time-on-market, but higher price dispersion. We verify this prediction in the data.

Our empirical results survive a number of robustness checks. The results largely hold
in panel regressions, though some coefficients lose significance. Our results about price
dispersion hold using three other estimation methods: a pure hedonic price model, a
pure repeat-sales model, and a model in which estimated residuals are non-parametrically
adjusted for the number of times a house is sold, and the average time between house
sales. Our results about time-on-market hold using two other measures, from Zillow and
Realtor.com. Moreover, we argue that our empirical results are difficult to explain using
alternative theories, such as unobserved house heterogeneity, asymmetric information,

and adverse selection.

Finally, we calibrate the model to the data. We use the empirical relationship between
time-on-market and price dispersion to estimate the menu of prices and time-on-markets
that sellers with different holding costs face, and the “liquidity discounts” that sellers
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incur if they sell their houses quickly. Under our model estimates, a seller who chooses to
spend an additional month on the market sells at a price 5% higher. This is consistent with
estimates of liquidity discounts in the housing market microstructure literature, which
range from 1.9% to around 11%. Hence, our model can quantitatively match the aggregate
relationship between time-on-market and price dispersion, with parameters that imply

reasonable values of sellers” liquidity discounts relative to previous literature.

Our results have implications for academics and policymakers. There is a large
academic literature on housing market liquidity, and many industry participants use
various measures to analyze the “hotness” or liquidity of housing markets cross-sectionally
and over time.! Time-on-market is commonly used as a measure of liquidity in both the
academic literature and industry practice. However, while it is less commonly studied
by practitioners, the academic literature has shown that idiosyncratic price dispersion is
very high for residential real estate, and is important in accounting for risk and returns of

housing as an asset class.

Time-on-market would be a reasonable measure of housing market liquidity in a
world in which all liquidity metrics co-move closely, since we could predict any other
welfare-relevant liquidity measure using time-on-market. We find that this is not the case:
there are many markets with low time-on-market but high price dispersion, and vice
versa, and our model explains why this can happen. Practically, our findings imply that
academics and policymakers who are interested in studying and monitoring liquidity
conditions in housing markets should calculate and track idiosyncratic price dispersion,

in addition to existing metrics such as time-on-market.

1.1 Related literature

This paper is related to several literatures. Most closely related is work studying id-
iosyncratic house price dispersion. Case and Shiller (1988) is one of the early papers to
show that prices of individual houses are much more volatile than city-wide average
prices. Giacoletti (2017), using California residential real estate data, and Sagi (2015),
using commercial real estate data, show that idiosyncratic house price risk does not
scale linearly with holding periods, suggesting that much of idiosyncratic house price

risk is caused by market illiquidity at the time of sale. Several papers provide evidence

1Some examples are Realtor.com’s Market Hotness Index, Zillow’s report on Hottest Markets for 2019,
Redfin’s report on Hottest Neighborhoods 2020, and an Inman article on hotness in the Chicago housing
market.


https://www.realtor.com/research/reports/hottest-markets/
https://www.zillow.com/research/hottest-markets-jobs-22696/
https://www.redfin.com/news/hottest-neighborhoods-2020/
https://www.inman.com/2016/06/06/chicago-housing-market-isnt-quite-heating-yet/

in support of this hypothesis. Giacoletti (2017) shows that contractions in local credit
availability increase idiosyncratic risk. Ben-Shahar and Golan (2019) show that improved
disclosure of transaction prices reduces price dispersion in the Israeli housing market.
Landvoigt, Piazzesi and Schneider (2015) show that idiosyncratic variance increased in

San Diego following the 2008 housing bust.

Our contribution to this literature is two-fold. First, we propose a novel strategy
of measuring idiosyncratic price dispersion at the level of individual sales rather than
returns. The advantage of this approach is that idiosyncratic price dispersion can then be
flexibly aggregated cross-sectionally and over time. This measurement strategy allows us
to document a set of new stylized facts about idiosyncratic price dispersion described in
Section 3. Second, we construct a search-and-bargaining model of housing markets that
provides microfoundation for the relationship between time-on-market and idiosyncratic

price dispersion.

Our results also relate to the literature studying liquidity measurement in housing
markets. Lippman and McCall (1986) is an early paper proposing time-on-market as a
liquidity measure. Kluger and Miller (1990) proposes a Cox proportional hazard model
to measure liquidity in housing markets. Lin and Vandell (2007) constructs a model to
justify using aggregate time-on-market as a measure of housing market liquidity. Carrillo
(2013), constructs a measure of housing market hotness using time-on-market data, as
well as the sale-to-list price ratio. Our findings suggest that neither time-on-market nor
price dispersion alone are sufficient for measuring housing market liquidity. In particular,
time-on-market can be low both because liquidity supply is high or because liquidity
demand is high. Hence, both metrics are important for assessing the performance of the

US housing market.

Another strand of literature studies seasonal and cyclical co-movements in housing
markets. Several papers document volume, prices, and time-on-market are correlated in
housing markets; see, for example, Stein (1995), Krainer (20014), Genesove and Mayer
(2001), Leung, Lau and Leong (2002), Clayton, Miller and Peng (2010), Diaz and Jerez
(2013), Ngai and Tenreyro (2014), and DeFusco, Nathanson and Zwick (2017). We
contribute to this literature by showing that idiosyncratic price dispersion is also seasonal,
cyclical and is correlated with time-on-market and other measures of market tightness.
Two other papers that analyze the relationship between list prices and time-on-market at
the level of individual house sales are Drenik, Herreno and Ottonello (2019), who study

Spanish commercial real estate, and Guren (2018). Drenik, Herreno and Ottonello (2019)



attempts to rationalize the data using adverse selection, without search frictions, and
Guren (2018) emphasizes strategic complementarity in sellers” price-setting decisions. Our
model abstracts away from both of these forces, focusing on market tightness and its

effects on price dispersion.

In terms of the modeling approach, our work fits into the literature on applying search-
and-bargaining models to housing markets? and to financial markets more generally.?
Our modeling approach is closely related to Albrecht et al. (2007), Albrecht, Gautier and
Vroman (2016), Anenberg and Bayer (2015), and Sagi (2015). Albrecht et al. (2007) study
a random search model of the housing market with two seller types. Albrecht, Gautier
and Vroman (2016) construct a directed housing search model with two seller types,
which can predict sellers” asking prices and the sale-to-ask spread. Anenberg and Bayer
(2015) allows continuous match quality shocks and a discrete number of seller types. Sagi
(2015) allows a discrete number of seller types. Relative to this literature, an innovation
of our model is that we allow for continuously distributed persistent seller values as
well as match-specific quality shocks. In an appendix, we show that the model can also
accommodate continuously distributed persistent buyer values. The model, nevertheless,

remains analytically tractable.

Finally, several studies provide empirical estimates of price versus time-on-market
trade-off faced by individual sellers. See Genesove and Mayer (1997), Genesove and
Mayer (2001), Levitt and Syverson (2008), Hendel, Nevo and Ortalo-Magné (2009), Guren
(2018), Buchak et al. (2020) for estimates of non-foreclosure liquidity discounts, and
Pennington-Cross (2006), Clauretie and Daneshvary (2009), Campbell, Giglio and Pathak
(2011), Harding, Rosenblatt and Yao (2012), Zhou et al. (2015) for estimates of foreclosure
discounts. We provide a comprehensive survey of this literature in Appendix 3. When
calibrated to the average US data, our model is able to match estimates of liquidity

discounts from this literature.

2See, for example, Wheaton (1990), Krainer (2001b), Albrecht et al. (2007), Novy-Marx (2009), Piazzesi
and Schneider (2009), Genesove and Han (2012), Anenberg and Bayer (2015), Ngai and Tenreyro (2014),
Head, Lloyd-Ellis and Sun (2014), Piazzesi, Schneider and Stroebel (2015), Sagi (2015), Albrecht, Gautier and
Vroman (2016), Guren (2018), Gabrovski and Ortego-Marti (20194), Gabrovski and Ortego-Marti (2019b),
Arefeva (2019), Guren and McQuade (2019), and Ouazad and Ranciere (2019).

3See, for example, Duffie, Garleanu and Pedersen (2005), Duffie, Garleanu and Pedersen (2007), Vayanos
and Wang (2007), Vayanos and Weill (2008), Weill (2008), Afonso (2011), Duffie, Qiao and Sun (2017),
Gavazza (2016), Trejos and Wright (2016), Hugonnier, Lester and Weill (2018).



1.2 QOutline

The rest of the paper proceeds as follows. Section 2 describes our data and measurement
strategy. Section 3 describes stylized facts about housing market liquidity, in the cross-
section and time-series. Section 4 describes our model, theoretical results, and predictions.
Section 5 contains tests of the model’s predictions. Section 6 contains robustness checks
and alternative explanations of our findings. Section 7 contains our calibration. Section 8

discusses implications of our findings and concludes.

2 Data and measurement

2.1 Data sources

The main data source we use for house prices is microdata on single-family house sales and
house characteristics from the Corelogic Tax and Deed database, spanning the time period
2000 to 2016. For time-on-market, we use the Corelogic MLS dataset. For demographic
data on county-years and counties, as well as data on county-to-county migration, we use
ACS 1-year and 5-year samples. For data on industry-specific wages and employment by
county, we use Quarterly Census of Employment and Wages (QCEW). Further details of
data sources and data cleaning steps are described in Appendix A.

Since we estimate price dispersion using a repeat-sales specification, we filter to
counties with a large enough number of sales; details of how we select counties are
described in Appendix A.1. Descriptive statistics for counties in our primary estimation
sample are shown in Table 1. Our primary dataset comprises 11 million house sales
within 472 counties. As Appendix Table Al shows, our estimation sample contains 14.7%
of all counties, but covers 61.7% of the US population. Our sample is concentrated in
relatively large, dense, and high-income counties, but is representative in terms of other

demographic characteristics.

We analyze two liquidity metrics: average time-on-market and idiosyncratic price
dispersion. We define time-on-market as the difference between the closing date and the
original listing date of sold houses. We describe our strategy of measuring idiosyncratic
price dispersion below.



2.2 Measuring idiosyncratic price dispersion

We measure house price dispersion by regressing observed house sale prices on a set of
predictors, and taking the residual. Our preferred specification for log house prices is:

Pit = Vi +Net + e (x4, 1) + €t (1)

Where i indexes properties, ¢ indexes counties, and t indexes months. In words, (1) says
that log prices pit are determined by a time-invariant house fixed effect, y;, a county-
month fixed effect, n¢t, a smooth function f. (x;,t) of observable house characteristics x;
and time t, and a mean-0 error term €;;.

Specification (1) combines elements of repeat-sales and hedonic models of house prices.
The house fixed effect term, y;, absorbs all features of a house, observed and unobserved,
which have time-invariant effects on the price of house i. The 1 term absorbs parallel
shifts in log house prices in a county over time. The f. (x;,t) term allows houses with
different observable characteristics x; to appreciate at different rates: for example, the
fc (x4, t) term allows larger houses to appreciate faster than smaller houses, or houses in
the east of a certain county to appreciate faster than houses in the west. Additional details
on how we implement specification (1) are described in Appendix A.7.

We estimate price dispersion at the level of individual house sales using the estimated
residuals, &;, from (1). While each individual estimate is very noisy, these estimates can
be flexibly aggregated over time and across geographical regions. For example, we will
use &, to denote the empirical estimate of standard deviation of all &;; terms in county c.
¢ can be thought of as the log standard deviation of house prices, after controlling for
features in (1), so we will sometimes refer to these estimates as logSD. As we describe
in Appendix A.7, we apply a degrees-of-freedom adjustment to €;, so the squared error
estimates are unbiased at the county level.

3 Stylized facts

In this section, we demonstrate a number of stylized facts about price dispersion and time-
on-market. The first set of facts concerns time-series patterns in our liquidity measures,
sales volume, and prices.

Fact 1. In the time series,



e Price dispersion and time-on-market are seasonal: both measures are lower in the summer
hot season, and higher in the winter cold season of the housing market.

* Price dispersion and time-on-market are countercyclical: both measures decreased in the
2000-2005 housing boom, increased in the bust, and decreased in the recovery.

Figure 1 shows the seasonal behavior of prices, total sales, time-on-market, and logSD,
aggregated to the level of calendar months over the period 2000-2016. All four variables
are seasonal: during summer, sales and prices are higher, and time-on-market and price
dispersion are lower. On average, comparing June values to January values, summer
prices are 2.30% higher, sales are 64.8% higher, time-on-market is 0.517 months (16.2%)
lower, and price dispersion is 1.08% of house prices lower (6.43% in relative percentage
points). Figure 2 analyzes this further by dividing counties into 3 quantile buckets, based
on how seasonal prices are. This plot shows that more seasonal counties are more seasonal
in all variables: that is, when seasonal price variation in larger, seasonal variation in sales,

time-on-market, and price dispersion also tends to be larger.

Figure 3 shows the behavior of all four variables at the yearly level, across counties.
Once again, all four variables co-move robustly. In the 2000-2005 boom, prices and sales
increased, and time-on-market and price dispersion decreased. During the crash, prices
and sales decreased, and time-on-market and price dispersion increased. During the
recovery, we observe the reverse. As of 2016, on average across counties, sales, time-on-
market and price dispersion are now roughly back to their level in 2000, though prices
have increased somewhat. Quantitatively, average time-on-market falls from 2.66 months
in 2000 to 2.46 months in 2004, rises to 3.5 months in 2011, and falls to 2.62 months in
2016. Price dispersion falls from 16.5% in 2000 to 15.7% in 2004, rises to 18.2% in 2011,
and falls to 17.1% in 2016.

Figure 4 divides counties into three quantile buckets, based on the size of the housing
cycle, measured as the ratio between average prices in 2000 and 2005. Similar to the right
panel of Figure 1, we see that counties which had bigger price booms also had larger
decreases in time-on-market and price dispersion during the boom, and larger increases
during the bust.

In summary, Fact 1 says that, at both seasonal and business-cycle frequencies, time-
on-market and price dispersion co-move with each other, and with volumes and prices,
in intuitive ways: when markets are hotter, prices and volumes are higher, and time-

on-market and price dispersion are lower. Moreover, these co-movements appear to be
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driven by a single underlying factor, since counties which experience larger changes in
one variable also experience larger changes in others. Thus, in the time series, price
dispersion and time-on-market appear to measure market hotness, in a manner similar to
price or volume increases. Next, we analyze the behavior of these liquidity measures in

the cross-section of counties.

Fact 2. In the cross-section of US counties,

 There is substantial variation in idiosyncratic price dispersion and time-on-market.

e Price dispersion and time-on-market are positively correlated, but there is substantial inde-

pendent variation.

® There is substantial variation in price dispersion and time-on-market for counties with
similar house prices.

The observations in Fact 2 are based on Figure 5, in which we plot the cross-section of
time-on-market and idiosyncratic price dispersion, &, across counties. There is substantial
dispersion in both liquidity measures. The mean of &, is 18.3% of house prices, and the
standard deviation is 3.65%. The 10th percentile is 14.0% and the 90th percentile is 22.7%.
For time-on-market, the mean is 3.24 months, the standard deviation is 0.755, the 10th
percentile is 2.40, and the 90th percentile is 4.20.

Moreover, in the cross-section of counties, time-on-market and price dispersion are not
well explained by each other, or by the level of house prices. Time-on-market and price
dispersion are positively correlated, but the R? from a univariate regression is only 0.199.
Both measure are correlated with prices: high-price counties tend to be in the lower left
quadrant of Figure 5, so high-price counties tend to have lower price dispersion and time-
on-market. However, there is substantial variation in time-on-market and price dispersion
which is not explained by average prices: the R? values from regressing time-on-market
and price dispersion on mean prices, respectively, are 0.0511 and 0.233.

These observations suggest that, in the cross-section of counties, “liquidity”, as mea-
sured by time-on-market and price dispersion, appears to vary significantly across counties
with similar average prices. Moreover, the fact that time-on-market and price disper-
sion have substantial independent variation suggests that housing market liquidity is,
in some sense, a multi-dimensional object, which time-on-market and price dispersion
measure different aspects of. To better understand these facts, we proceed to construct a
search-and-bargaining model of the housing market.

10



4 Model

To rationalize the stylized facts described in Section 3, we build an analytically tractable
search-and-bargaining model of a housing market. In our model, price dispersion arises
from heterogeneity in seller and buyer preferences: sellers have different utility costs of
keeping their houses on the market per unit time, and buyers receive an independent
match quality shock every time they match with a house. Sellers, therefore, face a trade-off
between selling quicker or selling at a higher price. We use this model to study how
the supply of liquidity, measured by the buyers’ inflow rate, which results in a higher
buyers-to-sellers ratio, and the demand for liquidity, measured by average holding costs

of sellers, determine time-on-market and price dispersion in equilibrium.

4.1 Setup

There is a unit mass of houses which are ex-ante identical. Time is continuous, and all
agents discount the future at rate r. There are three kinds of agents in the model: sellers,
buyers, and matched homeowners. The lifecycle of agents in the model is as follows:
buyers purchase houses and become matched homeowners, matched homeowners receive
separation shocks to become sellers, and sellers leave the market upon successfully selling
their houses.

Sellers. We use Ms to denote the mass of sellers in the market who are waiting to sell
their houses to buyers. Once a seller successfully sells her house, she permanently leaves
the market, attaining a continuation value which we normalize to 0. Each sellers has some
time-invariant holding cost, c, which she incurs per unit time her house is on the market. c
is drawn from F () when a homeowner unmatches from her house and becomes a seller.
We assume that F () is uniform, with mean ¢ and support [ — A, ¢ + A.]. We use Vs (c)
to denote the expected utility of a seller with cost ¢ in equilibrium. Let Feq (c) denote the
distribution of holding utilities among sellers in stationary equilibrium, which will in
general differ from F(c).

Sellers with higher holding costs ¢ will tend to sell faster, but at lower prices. There are
many possible sources of differences in c. Since selling houses involves significant time
and effort for owners, sellers with higher incomes may have higher values of c. Sellers
who are moving within the same city may be willing to hold on to their houses for longer
than sellers who are moving out of the city (Anenberg and Bayer (2015)). Sellers who have
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less home equity to extract upon sale may have a relatively high value of cash, and thus
will be willing to wait longer to sell at higher prices (Genesove and Mayer (1997), Guren
(2018)). Our model is agnostic with respect to the exact source of this heterogeneity.

Buyers. Potential buyers enter the market at some exogeneous flow rate ng, and each
buyer draws a value & ~ H () for entering the city. & can be thought of as representing
the attractiveness of amenities and job opportunities in the county, which may vary
idiosyncratically across buyers. After observing &, each potential buyer can choose to
either enter the city, receiving utility & immediately and becoming an active homebuyer,
or leave forever, receiving utility normalized to 0. Entry decisions are irreversible. We use
Vg to denote the expected value of an unmatched buyer in stationary equilibrium. Buyers

will only enter if their expected utility from entry is positive, that is:
E+Ve >0 (2)
Hence, the inflow rate of buyers in stationary equilibrium is:

ng (1 —H(-Vg))

These assumptions imply that the entry rate of buyers responds to market conditions:
the inflow rate of buyers increases when buyers’ expected value Vg is high. Similar
assumptions are made in a number of other papers (Novy-Marx (2009), Head, Lloyd-Ellis
and Sun (2014)).

We use M3p to denote the mass of active buyers who are present in the market. All
active buyers are identical, and receive flow utility normalized to 0 while waiting to buy a
house. Buyers meet sellers through a matching process we describe below. When a buyer
meets a seller, he draws, independently across matches, some idiosyncratic match utility
€ ~ G (+) for the house. If the buyer buys the house, he becomes a matched homeowner,
receiving e from the house per unit time, until he receives a separation shock and becomes
a seller. We assume that G (-) is non-centered exponential, with lower bound ¢y, and
standard deviation oe.

Our baseline model assumes buyers, after they have entered the market, are undiffer-
entiated; in Appendix B.7, we extend the model to include persistent buyer heterogeneity,

and show that the main theoretical results are unchanged.

Matched homeowners. Matched homeowners are buyers who have purchased houses,
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and have not yet received separation shocks to become sellers. Each house is owned
either by a matched homeowner or a seller, so the mass of matched homeowners is always
1—Ms. A homeowner with type e receives flow utility e from their house per unit time.
At Poisson rate Apq, homeowners receive separation shocks: they draw some ¢ ~ F(-), and
becomes a seller with cost c. We use Geq (€) to denote the distribution of match utilities

among matched homeowners, which will in general differ from G (e).

Price determination. Prices are set through bilateral Nash bargaining. Suppose that a
buyer is matched with a seller with holding cost ¢, and the buyer draws match utility e.
If the buyer purchases at price P, the buyer receives Vj (e) — P, and the seller leaves the
market and receives P. If the buyer does not purchase, the buyer receives Vg and the seller

receives Vs (c). The bilateral match surplus from trade, as a function of € and c, is thus:
Vm (€) — Vg — Vs (c) 3)

Trade occurs in all cases where the bilateral match surplus is nonnegative. Thus, a seller
with holding cost ¢ will trade with any buyer with match utility € higher than some trade
cutoff €* (c), which satisfies:

Vm (€*(c)) = Vg + Vs (c)

When trade occurs, the price is set to give the seller a share 0 of the bilateral match
surplus. That is, the trade price P (c, €) is:

P(c,e) =Vs(c)+0(Vm(e) —Vp—Vs(c)) (4)
We assume that ¢ is sufficiently low that, in equilibrium,
€ (c) > eg Ve

that is, no seller type wishes to trade with all buyer types.

We note that, in the model, the only drivers of price dispersion are sellers” and buyers’
preferences. There are other possible drivers of price dispersion in practice. For example,
realtor quality affects time-on-market and prices (Gilbukh and Goldsmith-Pinkham (2019)).
We abstract away from these other factors for simplicity; they can be thought of as adding
additional error terms to the price equation (4) in the model.
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Match formation. Matches between buyers and sellers are generated at a flow rate
m (Mg, M), which depends on the masses of buyers My and sellers Mg present in the
market. We assume that m (Mg, Ms) is Cobb-Douglas with constant returns to scale:

m (Mg, Ms) = aM¥M¢®

From the perspective of any given buyer or seller, matching occurs at Poisson rates Ag
and Ag, given by:

A :m(MB/MS) N :m(MB,Ms)
B MB ZAN MS

4.2 Equilibrium

Stationary equilibrium, in our model, requires two sets of conditions to be satisfied: the
decisions of entrants, buyers, sellers, and matched homeowners must be optimal; and
inflows and outflows of all kinds of agents must be equal. The following proposition
states the equilibrium conditions. Formal derivations of these conditions are in Appendix
B.1.

Proposition 1. Given primitives:
T, X, (b/ e/ AM/T]B/ C, A, €0, O0¢, H()

a stationary equilibrium of the model is described by buyer and seller masses Mg, Ms, stationary
distributions Feq (c) and Geq (€), matching rates As, Ag, value functions Vs (c),Vm (€), Vs, and
a trade cutoff function €* (c), which satisfy the following conditions:

Buyer, seller, and matched owner Bellman equations:

Vo =hu [ [ 100 (Vaele) Vi Vo (€)1 dG (e) e () ®
o) = e ths [ 0(V(e) Vo Vs (e)dG (e) ©
iele) = e+ A [ Vo) aF o) Vi (o) 7)

14



Trade cutoffs:

Vm (€" (¢)) = Vs (c) + VB (8)

Matching rates:
MsAs = MpAg = aME M ® 9)

Flow equality:

(1—Ms) Amf (c) = AsMsfeq (c) (1—G (e (c))) (10)
. J AsMs [féeo 1(2 > €* () dG (&)| dFeq (c) .
0 (&) = T M (1— G (€7 (0))) dFeq () an
(1—Ms)Am =ng (1 —H(=Vp)) (12)

Our model admits simple expressions for two liquidity measures: time-on-market and
price dispersion.

Claim 1. In stationary equilibrium, expected time-on-market for a seller of type c is:

1
TOM{e) =3 =G (e () (13)

Expected time-on-market across all seller types is thus:

1
TOM =€ |5 G e e

the variance of P (c, €) among trading sellers and buyers is:

2
Var (P (c,€e)) = Varep) (Vs (c)l—i— (TiG;M) (15)

Buyer match utility

-~

Seller holding costs

Expression (15) shows that TOM (c), the equilibrium time-on-market of seller of type
c depends on the rate at which the seller meets buyers, As, and the probability of trade
conditional on a match, 1 — G (e*(c)). TOM (c) is also decreasing: sellers with higher
urgency c always tend to sell faster. Thus, two forces can change time-on-market. Time-
on-market will be lower when markets are thicker, Ag is higher, and all sellers meet buyers
faster. Time-on-market will also be lower if sellers” average holding costs ¢ are high, since

the buyer cutoffs e* (c) will decrease, and sellers will sell faster by being less selective.

Expression (15) shows that equilibrium price dispersion arises from two sources:
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differences in sellers’ value functions Vs (c), caused by differences in sellers” holding
costs; and differences in buyers’ match utilities e. When market thickness changes, in
our model, the buyer match utility term stays constant, but the seller cost term changes.
The following claim helps illustrate the effects of market thickness on the seller cost term.
First, define:

P(c)=E[P(e,c)|c]

as the expected sale price attained by a seller of type c.

Claim 2. We have:
—TOM (c)

~ TOM(c) + 0 (16)

P’ (c) = V5 (¢)

where TOM (c) is expected time-on-market for a seller of type c.

Sellers face a tradeoff between prices and time-on-market. Urgent sellers, with high
values of c, sell faster, but get lower average prices as a result. The derivative P’ (c)
measures how much a seller’s average sale price would decrease if her holding cost ¢
increased by a small amount. Claim 2 shows that P’ (c) depends on average time-on-
market. Intuitively, if markets are thick and all sellers sell quickly, sellers will also sell at
similar prices, so P’ (c) is low. When markets are thin and time-on-market is high for all
sellers, P’ (c) is high, and differences in ¢ will translate into larger price dispersion. In
fact, we show in the following claim that if time-on-market TOM (c) increases, point-wise

for every c, then equilibrium price dispersion also increases.

Claim 3. Fix 1,0, F (¢), 0%. Consider two sets of model parameters,
O = (ocl,d>1,?\1 M, eé) , 0, = (cxz, &%, A, e%)

such that time-on-market is uniformly higher in stationary equilibrium under ©;; that is,

letting TOMg, (c) denote the equilibrium time-on-market function under ©,
TOMg, (c) > TOMg, (c) Vc

Then equilibrium price dispersion will also be higher under ©; than ©,.

4.3 Comparative statics

To illustrate how our model maps primitives to outcomes, we solve the model computa-

tionally, and show comparative statics with respect to buyers inflow rate ng and sellers
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average holding costs ¢.* Specifically, Figure 6 shows average prices, E(P), average time-
on-market, TOM, and price dispersion in levels, Var(P), and relative price dispersion,
LogSD(P).> LogSD(P) is the model counterpart to our empirical measure of idiosyncratic
price dispersion.

The left panel shows how outcomes vary as we change the buyer inflow rate, ng. As
np increases, the market is tighter, so sellers are able to sell quicker and at higher prices.
Since time-on-market decreases, price dispersion in levels, Var(P), also decreases. As a
result, LogSD(P) unambiguously decreases, because the numerator, which depends on
Var(P), decreases, and the denominator, E(P), increases.

The right panel demonstrates what happens when we change sellers” average holding
costs, €. As € increases, sellers’ costs of staying on the market increase, so they sell faster
and at lower prices. Thus, by Claim 2, price dispersion in levels, Var(P), also decreases.
However, LogSD(P) still increases, because the average price E(P) falls at a faster rate
than Var(P) in the nominator.

Thus, there are two main channels through which market liquidity affects relative price
dispersion, LogSD(P). The first channel is through dispersion in sellers’ value functions,
Vs (c). Any change in liquidity supply or demand that results in higher TOM/(c), also
leads to higher dispersion in Vs (c) and, therefore, higher Var(P). The second channel
is through changes in the average price E(P). As the average price increases, the relative

price dispersion LogSD(P) decreases.

4.4 The supply and demand for liquidity

In Figure 7, we simulate our model. The top two panels show the time-on-market and
expected price menu generated by individual sellers with different holding costs. We
normalize expected prices such that the expected price of a seller with median holding
cost is 1. Each line corresponds to one equilibrium. The dots represent the time-on-market
and expected price pairs chosen by sellers with Oth, 30th, 60th, and 100th percentile
holding costs c.

In our model, there are two forces that drive liquidity measures, which we call liquidity
supply and liquidity demand. Liquidity supply is ng, the inflow rate of buyers. Intuitively,

4We assume ¢ ~U[c — Ag, T+ Agl, €eg0=4,0=033,Ac =2, An=0.1,r=0.05 =1, =0.84,0 =0.5,
& ~N(0,40).
Var(P)
E(P)

SFor ease of computation, we approximate LogSD(P) ~
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when there are many buyers, the supply of liquidity to sellers is high. In equilibrium,
time-on-market decreases for all sellers: the entire curve shifts towards the left. Moreover,
the menu compresses vertically: the prices attained by different types of sellers are closer
to each other. Hence, price dispersion also declines. Thus, when liquidity supply increases,
both time-on-market and price dispersion decrease.

Liquidity demand is ¢, the average urgency of sellers to sell. When ¢ increases, time-
on-market decreases, as sellers try to sell faster, but price dispersion increases: the
gaps between the black dots increase. Increases in ¢ cause average prices to decrease,
increasing relative price dispersion. Thus, when liquidity demand increases, time-on-

market decreases, but relative price dispersion increases.

Both effects are summarized in the bottom panel of Figure 7. This plot shows the two
aggregate liquidity measures: average time-on-market on the x-axis, and market-level
price dispersion as a percentage of average price on the y-axis. Each curve is a fixed value
of ng, and shows outcomes as we vary ¢. We see that, holding fixed liquidity supply
ng, varying liquidity demand, ¢, causes time-on-market and price dispersion to co-move
negatively. Holding fixed liquidity demand ¢, increasing liquidity supply ng causes the
entire frontier to shift: the market is able to attain both lower time-on-market and lower

price dispersion.

The model sheds light on the stylized facts we documented in the previous section.
Time-on-market and price dispersion can shift due to either liquidity supply or demand.
In the time series, at both seasonal and business-cycle frequencies, both liquidity measures
co-move positively with each other, and negatively with prices and volume. Through the
lens of our model, this is consistent with time-series movements being driven primarily
by liquidity supply shifts. Liquidity supply is higher in boom periods, and in the summer
hot season, so prices and volume are higher, and time-on-market and price dispersion are
both lower.

In contrast, to explain the independent variation in time-on-market and price disper-
sion in the cross-section of counties, both liquidity supply and demand must play a role.
Counties towards the bottom left of Figure 5 likely have high liquidity supply, leading
both time-on-market and price dispersion to be low; similarly, counties towards the top
right have low liquidity supply. Counties towards the top left have low time-on-market,
but high price dispersion: our model rationalizes this by saying liquidity demand is high.
Sellers in these areas have high holding costs, so they choose to sell quickly, even though

this leads to lower and less stable prices. Similarly, counties towards the bottom right
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have low liquidity demand: sellers are willing to wait longer to sell at higher and more
stable prices.

The idea that time-on-market and price dispersion are jointly determined by the supply
and demand for liquidity generates two testable predictions to bring to the data: proxies
for liquidity supply and liquidity demand should have different correlations with the two
liquidity measures.

Prediction 1. Suppose a variable Z; is correlated with liquidity supply: it is positively correlated
with g, the buyer entry rate. Z; should be negatively correlated with price dispersion and
time-on-market.

Prediction 2. Suppose a variable Z; is correlated with liquidity demand: it is positively correlated
with ¢, the average seller cost. Z; should be negatively correlated with time-on-market, but
positively correlated with price dispersion.

5 Empirical results

Liquidity supply. In Table 2, we test Prediction 1 in the cross-section, by estimating the
following two specifications:

logSD. = Z3 a1 + XcB1 + €c (17)

TOM, = Z3p + Xcfo + €c (18)

Where, Z? is a county-level liquidity supply shifter, and X, is a vector of controls. We
control for third-order polynomials in a number of control variables, which account
for the demographic composition of the county as well as characteristics of its housing
stock: the average age of houses, average square footage, average bedroom and bathroom
counts of sold houses, county’s population density, and the fractions of the county’s
population which are aged 18-35, 35-64, black, high school and college graduates, married,
unemployed, and homeowners.

Ideally, proxies for liquidity supply should be variables associated with net buying
pressure: liquidity supply should be high in cities where there are many buyers, relative
to the available housing stock. We use two proxies for liquidity supply. The first is the
population growth rate in a county: high population growth should imply high inflow
rates of buyers, which implies that housing markets should be tight. We show results from
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these regressions in Table 2. Columns 1 and 3 show results from regressing logSD and
time-on-market on population growth rates. Both coefficients are negative, supporting
Prediction 1. Columns 2 and 4 add state fixed effects: both coefficients remain negative,
though the time-on-market coefficient loses significance.

Finally, column 5 regresses logSD on time-on-market and controls, and column 6
regresses logSD on time-on-market, controls, and state fixed effects. Time-on-market and
logSD are significantly positively associated in the cross-section in both specifications,
suggesting that the positive association in Figure 5 survives controlling for various
observables.

Migration rates are affected by a large number of variables, so they may not be
an exogeneous shifter of liquidity supply. We use an empirical approach based on
Schubert (2021) to construct a plausibly exogeneous shock to liquidity supply: migration
spillovers from high-productivity areas. Intuitively, suppose, for example, Cook County
experiences large productivity shocks, which increase house prices. This will tend to
create outmigration from Cook County, which will create net inmigration flows to counties
with strong historical migration links to Cook County. These migration flows are thus
plausibly exogenous shocks to housing market tightness in counties connected to Cook
County by migration.

Formally, we construct plausibly exogenous local wage “Bartik” shocks B¢ 20122016
by combining local employment shares w, ; 20190 of workers in 2-digit NAICS industries
indexed by i in county c¢ in 2010 with national wage growth rate AIn W__; 2012-2016 in
that industry over the period of interest 2012-2016.°

Be2012-2016 = ) We,i2010A I W_c i 20122016 (19)

i
We measure migration exposure “5&%—2012 of county ¢ to county ¢’ economic shocks as a
fraction of migrants to county c that came from county ¢’ using ACS 2008-2012 5-year

sample.” We then define our liquidity supply shifter as:

%We fix industry exposure shares at their 2010 level to reduce bias from endogeneity in the local industry
exposure. We also compute national wage growth as leave-one-out measures to avoid mechanical correlation
between the national trend estimate and county c wages.

7We calculate migration shares using ACS 2008-2012 5-year data sample to avoid concerns over endoge-
nous changes in the migration weights. To minimize measurement error, we exclude such counties ¢’such
that fewer than 150 people migrated to ¢ from c’.
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— !
Mc = Z 50082012 Bc’ 2012—2016 (20)

o
One concern for our identification assumptions is that, if Cook County and, for example,
Orange County have large historical migration flows, they may also have similar industrial
composition. This could cause our exclusion restriction to be violated, because produc-
tivity shocks in Cook County and Orange County could be correlated. To address this
concern, we follow Chodorow-Reich and Wieland (2020) and include Orange County’s
own productivity shock, B 2012-2016, as a control variable in the regression. Effectively,
identification is then coming from variation in Cook County’s productivity shocks that is
orthogonal to productivity in Orange County.

In Table 3, we show estimates of specifications (17) and (18), where we include M. as
the instrumental variable, and control for B, 2912-2016. Columns 1 and 4 show results for
logSD and TOM respectively on the instrument, without any controls: both coefficients
are negative and significant, consistent with our theory’s predictions. Columns 2 and
5 add demographic controls: coefficients remain negative and significant. Columns 3
and 6 add state fixed effects, and both coefficients lose significance, perhaps because the
instrument does not have sufficient power within states. Together, the specifications in
Table 3 lend additional support to Prediction 1, that increases in liquidity supply are

associated with decreases in both time-on-market and price dispersion.

Liquidity demand. Prediction 2 of the model states that variables which are correlated
with liquidity demand - sellers’ costs ¢ — should drive time-on-market and price dispersion

in opposite directions. To test this, we run the following regressions.
logSD: = ZP oy + XcB1 + €c (21)

TOM, = ZD o + X2 + € (22)

We control for the same variables as in (17) and (18). Our liquidity demand shifter is
household income, controlling for house prices. The reasoning behind this proxy is that
income measures households” value of time. Higher income households should have
a higher value of time, so they should have larger opportunity costs for keeping their
houses on the market. Hence, higher income households should be willing to sell their
houses faster, even if they have to sell for lower prices. Counties with high income-to-price
ratios should thus have high liquidity demand: in the aggregate, home sellers in these
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counties should shift along the liquidity supply curve, selling faster, despite incurring
lower and less stable prices as a result.

Columns 1 and 2 of Table 4 show that this holds in the data. Controlling for prices,
higher average income is associated with lower time-on-market, but actually higher price
dispersion. The magnitudes of these correlations are nontrivial: a 10% increase in average
income is associated with approximately a 0.5% increase in price dispersion, and a 0.15
month (roughly 4.5 day) decrease in time-on-market. Similarly, holding fixed income,
higher prices are associated with higher time-on-market, and lower price dispersion.
Prediction 2 does not produce this result directly, but this is intuitive. What matters is
how high incomes are relative to prices. When prices are high relative to incomes, waiting
costs are relatively lower, so sellers wait longer, but prices are more stable. When house
prices are low relative to incomes, sellers” holding costs are higher relative to house prices,
so sellers sell faster and at less stable prices.

5.1 Alternative explanations

Here, we discuss some possible alternative explanations of our empirical results.

Liquidity supply. Several papers argue that the fraction of unsophisticated market
participants — agents who are irrational, uninformed, or inexperienced — tends to increase
during housing booms, and that these agents tend to achieve worse outcomes than more
sophisticated participants. For example, several studies suggest that dispersion in market
participants” beliefs (Glaeser and Nathanson (2017), Nathanson and Zwick (2018)) and
the market share of short-term speculators (Bayer et al. (2011), DeFusco, Nathanson and
Zwick (2017)) both increase during housing booms. Another strand of literature shows
that more informed market participants, such as realtors and local buyers, are better able
to time their trades, and thus achieve higher returns on average (Kurlat and Stroebel
(2015), Chinco and Mayer (2015)). Finally, Gilbukh and Goldsmith-Pinkham (2019) shows
that more experienced realtors sell houses faster, and that the share of inexperienced
realtors tends to increase during housing booms.

Based on this literature, one might expect one or both measures of housing market
liquidity to worsen during booms, as markets are increasingly dominated by unsophis-
ticated agents. Our results show that exactly the opposite occurs: both time-on-market
and price dispersion decreased during the boom, and the decrease is larger in counties

with larger volume and price movements. Our explanation for this fact is that, in boom
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periods, the increase in market tightness means that the supply of liquidity is greater,
allowing agents to do better on both dimensions. The increased unsophisticated agents’
activity may still play a role, but it seems to be overwhelmed by the increase in liquidity
supply in the data.

We note that all of our liquidity statements deal with price dispersion, not price levels.
Average prices can depart from fundamentals while maintaining high levels of liquidity —
in particular, for bubble goods such as money, liquidity can be very high while prices are
disconnected from fundamentals. Our results show that, while booms may well involve
irrationality and a departure of price levels from fundamentals, booms also improve
liquidity and stabilize relative prices.

Liquidity demand. The Nash bargaining model that we use implicitly assumes that
agents have perfect information. In practice, the seller could be more informed about
the quality of her house than the buyer. A number of papers argue it is indeed the
case (Kurlat and Stroebel (2015), Stroebel (2016)). This mechanism could affect both
time-on-market and price dispersion. Qualitatively, however, asymmetric information
and adverse selection should create both delays in trade, and increased price dispersion.
Thus, if liquidity differences across high- and low-income counties are largely driven by
differences in the degree of adverse selection, time-on-market and price dispersion should
co-move positively, which is not consistent with our stylized facts.

Another explanation for the positive association between income and price dispersion is
that high-income counties could have a more heterogeneous housing stock. Local housing
markets could be thinner, since each house is slightly different, causing price dispersion
to be higher. Within our model, there are two ways to rationalize this relationship: first,
the effective buyer inflow rate, g, could be lower when houses are more heterogeneous,
since any individual house has fewer interested buyers. Second, the variance of buyer
values, o, could be larger, if buyers have more specific preferences over different house
characteristics.

However, comparative statics results in Appendix B.8 show that, within our model,
both of these parameter changes would increase price dispersion as well as time-on-
market. Intuitively, decreasing ng lowers the number of buyers, so sellers have to wait
longer. Increasing the variance of buyer values increases sellers’ returns from waiting
longer, causing sellers to optimally wait longer. Thus, neither force can explain the fact
that higher income, controlling for prices, correlates with lower time-on-market.

Intuitively, a large class of theories can explain positive co-movement in time-on-
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market and price dispersion, but it is harder to explain the negative co-movement we find.
Our model rationalizes this by saying that, when sellers have higher values of time, they
rationally trade off “dollar liquidity” for increased “time liquidity”, by choosing to sell
faster but at less stable prices. We are not aware of other theoretical forces that would

move time-on-market and price dispersion in opposite directions.

6 Robustness checks

6.1 Panel regressions

Most of our cross-sectional results also hold in panel regressions. In Appendix Tables
A2 and A3, we run panel regressions of time-on-market and price dispersion on the
same liquidity supply and demand shifters as in Tables 2 and 4. The results from panel

regressions are mostly analogous to the cross-sectional results.

6.2 Measurement concerns

Our results are robust to several different ways to measure price dispersion and time-on-
market. In Appendix C.2, we consider three different ways to estimate price dispersion: a
pure repeat-sales specification for prices, a pure hedonic specification, and a nonparametric
adjustment for time-between-sales and the number of times a house is sold. The results
are shown in Appendix Figures A2 to A4, and Appendix Tables A4 to A7. Appendix C.3
discusses how our estimation methodology for price dispersion relates to other papers in
the literature on idiosyncratic house price dispersion, and demonstrates that our measures
of price dispersion are in line with the literature. In Appendix C.4, we consider time-
on-market measures from Zillow and Realtor.com, and results are shown in Appendix
Figures A5 and A6, and Appendix Tables A8 to A10. In all cases, results are qualitatively
unchanged.

Conceptually, specification (1) is designed to capture price dispersion generated by
search frictions, taking out as much as possible of price variation which is generated by
house characteristics. Since (1) includes both house fixed effects and time-varying effects
of observable characteristics, (1) can absorb both observed and unobserved characteristics
of houses which have time-invariant effects on prices, and observable characteristics with

time-varying effects on prices.
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There are two effects of house characteristics on prices which specification (1) cannot
capture. First, our data only allow us to observe characteristics at a single point in time, so
specification (1) cannot capture price changes caused by time-varying house characteristics.
For example, we cannot account for the effects of house renovations or improvements on
prices. Second, while specification (1) absorbs time-invariant effects of unobservables into
the house fixed effects, vi, (1) cannot account for time-varying effects of unobservable
characteristics. For example, if some houses have better construction quality than others,
and the effect of construction quality on prices changes over time, this would be attributed
to the error term in (1).

Both effects are likely to be quantitatively small. First, Giacoletti (2017) observes
data on remodeling expenditures for houses in California. Accounting for remodelling
decreases the estimated standard deviation of returns by only around 2% of house prices.
Second, in Appendix C.2, we show that the f. (xj, t) term only slightly decreases our
estimated residuals, implying that time variation in the market value of observable house
characteristics plays a relatively small role in our data. The features we include in x; are
the main variables used in most hedonic regressions, so time variation in the market value
of unobservables is likely to play a similarly small role. Thus, we believe that both issues

are unlikely to have quantitatively large effects on our estimates of standard errors.

7 Calibration

In this section, we calibrate our model to data to estimate the menu of prices and time-
on-markets that sellers with different holding costs face. Time is measured in years. We
calibrate the model to average US-level data in 2016.

7.1 Methodology

Externally calibrated parameters. We set the yearly discount rate r = 0.052, so that the
annual discount factor is 0.95. We assume symmetric bargaining power, so 6 = 0.5; this
is also used by, for example, Anenberg and Bayer (2015) and Arefeva (2019). We choose
the matching function elasticity ¢ to be 0.84, based on Genesove and Han (2012), who
estimate this elasticity using the National Association of Realtors survey data, which
captures both buyer and seller time-on-market. This estimate is also used by Anenberg
and Bayer (2015). Since we do not observe buyer time-on-market, we cannot separately
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identify the matching efficiency parameter « and the inflow of buyers ng, so we normalize
the match efficiency parameter to o« = 1.

Moment matching. The remaining parameters in our model are the rate at which
matched homeowners become sellers Ayy, the buyer entry rate ng, the parameters of seller
holding cost distribution, which we assume to be U[c — A, € + A.], and the parameters
of the buyer match value exponential distribution €y, o¢. First, we choose Am, M, €, €9, 0c
to match target moments from our data, and from the literature. The three moments
that we calculate from our data are the sales-weighted sample averages of average house
price (Zillow’s ZHVI) and average time-on-market (Zillow), and the turnover rate — total
house sales as a fraction of the total housing stock (Corelogic deed and tax). Moments we
use from the literature are the average number of houses that buyers visit before buying,
from Genesove and Han (2012), and the dispersion in buyers’ values for houses, from
Anundsen, Larsen and Sommervoll (2019). Table 5 shows the values of empirical moments
that we target.

Next, we choose A to match the empirical relationship between time-on-market
and price dispersion. Claim 2 in Section 4 shows that time-on-market determines the
extent to which dispersion in sellers” holding costs, A, translates into dispersion in
sellers’ continuation values, Var(Vs(c)), which in turn translates into dispersion in prices,
Var(P). Hence, the empirical relationship between time-on-market and price dispersion is
informative about A.. We use the coefficient from the panel regression of price dispersion
(logSD) on time-on-market controlling for average prices to calibrate A.. Controlling for
the direct effect of prices on logSD allows us to isolate the effect of time-on-market on
dispersion in sellers” values. Since time-series changes in prices, logSD, and time-on-
market are likely to be driven by changes in liquidity supply, we perturb the liquidity
supply parameter in our model, ng, around the equilibrium to generate the model-implied
relationship between time-on-market and price dispersion. Then, we calibrate A. such that
the model-implied relationship between price dispersion and time on market matches the
empirical coefficient. We describe our moment matching procedure in detail in Appendix
D.1.

Table 5 shows our estimated parameter values that we estimate. We estimate that
match quality € has a lower bound of $564 monthly, or $6,772 annually, and a standard
deviation of $299 monthly, or $3,593 annually. While these seem somewhat low, buyers
see many houses before buying, so the average value of e among successful buyers is

$1,534 monthly, and $18,408 annually. We assumed that sellers’ values are uniformly

26



distributed on [¢ + A¢, € — A.]. We estimate that the mean ¢ is equal to $6,458 per month,
and the range parameter A. is equal to $4,208. We then calculate that buyers” average
value from homeownership as the integrated flow value of match utility €, until buyers

receive a separation shock, to be equal to $176,271. Similarly, we calculate that sellers

average total loss from keeping their houses on the market is equal to $14,349.

7.2 Results

Using the estimated parameter values for our model, we estimate “liquidity discounts”:
how much faster impatient sellers sell their houses relative to patient sellers, and how
much lower impatient sellers” prices are as a result. Figure 8 shows the “menu” of

time-on-markets and average prices attained by sellers with different values.

Sellers with 75th percentile holding cost ¢ spend on average 3.13 months on the market,
and attain expected sale prices of $271,957. Sellers with 25th percentile holding cost spend
1.79 months, and attain expected sale prices of $252,684. That is, 75th percentile sellers
take 1.34 more months to sell, and achieve $19,273 higher prices — in percentage terms, 7%
higher prices. The implied effect of spending an extra month on the market is, therefore,
5% higher prices.

These estimates are useful, because the tradeoff between time-on-market and average
sale prices has been extensively studied in the housing literature. In Table 6, we survey
a number of estimates of the magnitude of this tradeoff from the housing literature.
We divide papers into two groups, based on whether estimates use foreclosed houses
or not, since price discounts in the foreclosure literature are systematically higher than
estimates from other papers. The non-foreclosure shed light on tradeoffs between prices
and time-on-market using various variables that shift sellers” urgency to sell: owners’
equity position (Genesove and Mayer (1997), Guren (2018)), nominal losses (Genesove and
Mayer (2001)), whether the homeowner is a realtor (Levitt and Syverson (2008)), whether
the house is FSBO (Hendel, Nevo and Ortalo-Magné (2009)), and whether the seller uses
an I-buyer (Buchak et al. (2020)). These papers find effects with consistent signs: forces
that lead sellers to sell faster also lead to lower average sale prices. We can thus calculate
liquidity discounts from each of these papers, by dividing the estimated price effect by
the time-on-market effect, and scaling these estimates so that they represent the implied
percentage price increase from spending an extra month on the market. Further details
on how we arrive at these estimates are described in Appendix D.3.
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The main finding from Table 6 is that the non-foreclosure estimates of liquidity
discounts are mostly within the range of 1.9% to 11%.8 That is, the literature estimates
that, if a seller spent an extra month on the market, she would attain a sale price
around 1.9% to 11% higher on average. Our estimated effect, of 5%, is right in the
middle of this range. We note that we did not use the liquidity discount as a target
moment in our estimation. Liquidity discounts essentially depend on the distribution
of sellers” holding costs, which we estimate using aggregate-level estimates of buyer
value heterogeneity, prices, volume, time-on-market, as well as the estimated correlation
between price dispersion and time-on-market.

Our calibration thus shows that our model can simultaneously rationalize the relation-
ship between aggregate price dispersion and time-on-market across counties and over
time, and micro-estimates of the tradeoff between time-on-market and average prices
faced by individual house sellers. Thus, besides its qualitative role in rationalizing the
behavior of time-on-market and price dispersion in the cross-section of counties, our
model appears to be sufficiently realistic that it can be used for quantitatively studying
the link between aggregate market liquidity measures, and what they imply about the

decisions facing individual home sellers.

8 Conclusion

In this paper, we have constructed a rich panel tracking time-on-market and price dis-
persion across US counties over time. In the time series, at both seasonal and business
cycle frequencies, time-on-market and price dispersion co-move closely. However, in the
cross-section of counties, there is substantial independent variation: time-on-market and
price dispersion are not well correlated with each other, or with the level of house prices.

We constructed a search-and-bargaining model to rationalize these findings. Time-
on-market and price dispersion can be thought of as equilibrium outcomes within a
supply-demand system for liquidity: supply and demand shifters drive the outcomes to
co-move differentially. We find support for the model’s predictions in the data. Moreover,
calibrated to the data, the model can simultaneously match the macro-relationship between
aggregate time-on-market and price dispersion, and estimates of liquidity discounts

faced by individual sellers at the micro-level in the housing microstructure literature.

8There is one outlier: the upper bound of the estimate from Genesove and Mayer (2001) is 24%.
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Together, our findings suggest that time-on-market alone is not sufficient for measuring
housing market liquidity: academics and policymakers who are interested in studying
and monitoring housing market liquidity should calculate and track idiosyncratic price
dispersion alongside time-on-market, as the two metrics contain partially independent

information.

There are a number of directions for further research. One is to analyze the effects of
different market mechanisms on idiosyncratic price dispersion. We use Nash bargaining as
a simple reduced-form model of price-setting. In practice, price-setting mechanisms differ
somewhat in different housing markets: most houses are sold via bilateral bargaining
based on a posted list price,” but in some markets explicit auctions are used.'® A natural
extension of our results is to analyze whether different trading mechanisms are associated

with higher or lower levels of time-on-market and idiosyncratic price dispersion.

Another question is how the composition of housing market participants influences
aggregate liquidity measures. A number of papers show that different classes of partici-
pants in housing markets achieve different prices and average returns. Housing markets
may be more efficient, and thus idiosyncratic price dispersion may be lower if participants
are more sophisticated. For example, Chinco and Mayer (2015) shows that out-of-town
second-home buyers achieve lower capital gains than local buyers, Myers (2004), Ihlanfeldt
and Mayock (2009), and Bayer, Ferreira and Ross (2016) study racial price gaps in the
housing market, and Goldsmith-Pinkham and Shue (2019) that men attain higher returns
in housing markets than women. Bayer et al. (2011) and Giacoletti and Westrupp (2017)
study the effects of house flippers, and Gilbukh and Goldsmith-Pinkham (2019) study the
performance of experienced versus inexperienced realtors. Future work could analyze
how the composition of housing market participants affects liquidity measures in housing

markets.

9See Han and Strange (2016) for a discussion of the role of house list prices. Guren (2018) analyzes the
relationship between house list prices and sale prices, arguing that sellers face strategic complementarities
in adjusting list prices.
19Han and Strange (2014) analyzes time-series and cross-sectional trends in the prevalence of auctions.
Arefeva (2019) constructs a dynamic search model which suggests that auctions amplify house price
volatility.
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Figure 1: Seasonal variation in sales, prices, logSD, and time-on-market
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Notes. Total sales, average prices, logSD, and time-on-market (TOM) by calendar month.
The time period of the data is 2000 to 2016. All variables are indexed by dividing by
their January level. LogSD, our measure of idiosyncratic price dispersion, is calculated
according to specification (1). TOM is from the Corelogic MLS data. Sales is calculated
using the Corelogic data. Price comes from a repeat-sales monthly price index: we regress
log sale prices on county-month and house fixed effects, and take the county-month fixed
effects as a price index. For all variables, we filter out low-frequency trends by fitting a
piece-wise linear trend with break points every 3 years, subtracting away the predicted
values, and adding back the mean. The price, TOM, and LogSD lines are constructed as
sales-weighted averages across counties to the calendar-month level, and then indexed so
that the series is equal to 1 in January. Further details of data construction are described
in Appendix A.5.
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Figure 2: Seasonal variation in sales, prices, logSD, and time-on-market, heterogeneity
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Notes. Prices, sales, time-on-market, and logSD for three quantile buckets of counties,
divided based on the ratio between summer and winter prices. Each color represents one
quantile bucket of counties. The time period of the data is 2000 to 2016. All variables
are indexed by dividing by their January level. LogSD, our measure of idiosyncratic
price dispersion, is calculated according to specification (1). TOM is from the Corelogic
MLS data. Sales is calculated using the Corelogic data. Price comes from a repeat-sales
monthly price index: we regress log sale prices on county-month and house fixed effects,
and take the county-month fixed effects as a price index. For all variables, we filter
out low-frequency trends by fitting a piece-wise linear trend with break points every
3 years, subtracting away the predicted values, and adding back the mean. The price,
TOM, and LogSD lines are constructed as sales-weighted averages across counties to the
calendar-month level, and then all series are indexed to equal 1 in January. Further details
of data construction are described in Appendix A.5.
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Figure 3: Business cycle variation in sales, prices, logSD, and time-on-market
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Notes. Yearly prices, sales, time-on-market, and logSD. The time period of the data is 2000
to 2016. LogSD, our measure of idiosyncratic price dispersion, is calculated according to
specification (1). TOM is from the Corelogic MLS data. Price is the Zillow home value
index. The price, TOM, and LogSD lines are constructed as sales-weighted averages
across counties for each year, and then all four series are indexed to equal 1 in 2000.
Further details of data construction are described in Appendix A.5.
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Figure 4: Business cycle variation in sales, prices, logSD, and time-on-market, heterogene-

ity
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Notes. Yearly prices, sales, time-on-market, and logSD for three quantile buckets of
counties, divided into three buckets based on the ratio between average prices in 2000
and 2005. Each color represents one quantile bucket of counties. The time period of the
data is 2000 to 2016. LogSD, our measure of idiosyncratic price dispersion, is calculated
according to specification (1). TOM is from the Corelogic MLS data. Sales is calculated
as the sum of all sales in the Corelogic data. Price is the Zillow home value index. The
price, TOM, and LogSD lines are constructed as sales-weighted averages across counties
for each year, and then all four series are indexed to equal 1 in 2000. Further details of
data construction are described in Appendix A.5.
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Figure 5: Cross-sectional distribution of LogSD and TOM
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Notes. Distribution of time-on-market and price dispersion across counties. The data
period is 2012-2016. Each data point is a county. LogSD, our measure of idiosyncratic
price dispersion, is calculated according to specification (1). Time-on-market is from the

Corelogic MLS data. We divide houses into three quantile buckets, high, medium, and
low, according to median sale prices.
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Figure 6: Model comparative statics
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Notes. The two panels show how average price, E(P), average time-on-market, TOM,
price dispersion in levels, Var(P), relative price dispersion, LogSD(P), change as we vary
buyers inflow rate ng (left panel) and average holding cost ¢ (right panel).

41



Figure 7: Liquidity supply and demand
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Notes. The top two panels show the expected price and time-on-market schedules chosen
by sellers with different holding costs. The black dots represent the expected price and
time-on-market pairs chosen by sellers with Oth, 30th, 60th, and 100th percentile holding
cost c. The price is normalized by the price attained by a seller with a median holding
cost. The top left panel plots price and time-on-market schedules for three different
values of buyers inflow rate ng = 0.085,0.087,0.089. The top right panel plots price
and time-on-market schedules for three different values of sellers average holding costs
¢ = 0.3,0.5,0.7. The bottom panel plots equilibrium average time-on-market on the x-axis,
and equilibrium market-level price dispersion as a percentage of average price on the
y-axis. Each curve is a fixed value of ng, and shows outcomes as we vary ¢.
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Figure 8: Calibrated liquidity discounts
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Notes. This plot shows the average price and time-on-market achieved by sellers with
different holding utilities ¢, under our calibrated model. The x-axis is time-on-market,

and y-axis is price, in USD thousands. The red stars represent, from left to right, the 25th,
50th, and 75th percentiles of seller holding utilities.
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Table 1: Descriptive statistics, county sample

| Name \ Mean SD P10 P90 |
Average monthly sales 418 597 72 919
Mean price (x1000 USD) 491.2 1462.0 143.6 581.7
Mean TOM (Months) 3.25 075 243 4.20
Total counties 472
Total sales 11,807,040

Notes. Summary statistics of average monthly sales, average prices, and average time-on-
market, across counties in our sample. Monthly sales and mean price data are from the
Corelogic Deed dataset. Time-on-market is calculated from the Corelogic MLS dataset at
the house sale level as the average difference between closing date and original listing
date.
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Table 5: Moment and parameter values

| Moment  Value Parameter  Value |

Price 266.72 AM 0.052

LogSD 16.84% eg 0.5644

TOM (Months) 2.554 o 0.2994
Turnover rate 0.051 ng 0.05124
Num. visits 9.960 c 6.458
PD-TOM Corr 0.876 Ac 4.208

Notes. Target moments and estimated parameter values for our calibrated model.
€0, 0¢,C, A are reported in thousands of US dollars per month. Turnover rate and
Am are yearly turnover and separation rates respectively, and ng is a fraction of the unit
mass of houses per year.
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Table 6: Liquidity discounts in the literature

| Paper

Type

| 1-month effect |

Genesove and Mayer (1997)
Genesove and Mayer (2001)
Levitt and Syverson (2008)

Hendel, Nevo and Ortalo-Magné (2009)

Guren (2018)

Buchak et al. (2020)

Non-foreclosure
Non-foreclosure
Non-foreclosure
Non-foreclosure
Non-foreclosure
Non-foreclosure

11.02%
1.92%-24%
11.68%
4.50%
2.46%-6.15%
1.92%-4.46%

Pennington-Cross (2006)

Clauretie and Daneshvary (2009)
Campbell, Giglio and Pathak (2011)
Harding, Rosenblatt and Yao (2012)
Zhou et al. (2015)

Foreclosure
Foreclosure
Foreclosure
Foreclosure
Foreclosure

22%

10%

27%

5%
11%-26%

Notes. Estimates of 1-month price effects and foreclosure discounts from the literature. For
the non-foreclosure lines, the estimates correspond to how much prices would increase
if time-on-market increased by a month. The foreclosure discount estimates compare
foreclosusure prices or returns, to prices on comparable houses which were not foreclosed
on. Further details of how we calculated these quantities are described in Appendix D.3.
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Appendix

A Supplementary material for Section 2

A.1 Corelogic tax, deed, and MLS data

Our data on house sales comes from the Corelogic deed dataset, which is derived from
county government records of house transactions. Corelogic records the price and date of
each sale, and housing units are uniquely identified, within a FIPS county code, by an
Assessor Parcel Number (APN), and APN sequence number, which is assigned to each
plot of land by tax assessors. Our data on house characteristics comes from the Corelogic
tax assessment data for the fiscal year 2016-2017, which contains, for each property, its
latitude, longitude, year built, square footage, and numbers of bedrooms and bathroom:s,
as of 2016-2017. We merge the tax data to the Corelogic deed data by APN and FIPS
county code.

We clean the datasets using a number of steps. First, we use only arms-length new
construction sales or resales of single-family residences, which are not foreclosures, which
have non-missing sale price, date, APN, and county FIPS code in the Corelogic deed
data, and which have non-missing year built and square footage in the Corelogic tax data.
As mentioned in the main text, we use only data from 2000 onwards, as we find that
Corelogic’s data quality is low prior to this date. Even after throwing out pre-2000 data,
we find that some counties have very low total sales for early years, suggesting that some
data is missing. To address this, we manually filter out some early county-years for which
the total number of sales is low.

We use the dataset that results from these cleaning steps to measure sales and average
prices by county. This subsample is, however, unsuitable for estimating price dispersion,
and we apply a few additional cleaning steps for the subsample we use to estimate price
dispersion regressions in Subsection 2.2.

First, our measurement of price dispersion uses a repeat-sales specification, so we can
only use houses that were sold multiple times. Moreover, we wish to filter out “house
flips”, as well as instances where reported sale price seems anomalous. If a house is ever
sold twice within a year, we drop all observations of the house. Most of these kinds of

transactions appear to be either flips, which are known to be a peculiar segment of the
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real estate market (Bayer et al. (2011), Giacoletti and Westrupp (2017)), or duplication bugs
in the data, where a single transaction is recorded twice or more. To filter for potentially
anomalous prices, if we ever observe a property whose annualized appreciation or
depreciation is above 50% for any given pair of sales, we drop all observations of the
property. Finally, if a house is ever sold at a price which is more than 5 times higher or
lower than the median house price in the same county-year, we drop all observations of

the house from our dataset.

Specification (1) involves a fairly large number of parameters: house and county-month
fixed effects, as well as many parameters in the f, (x;, t) polynomial term. We thus require
a fairly large number of house sales in order to precisely estimate (1), so we filter to
counties with at least 1000 house sales remaining, and with at least 10 sales per month on
average, after applying the filtering steps described above.

Appendix Table Al shows characteristics of the counties in our estimation sample,
compared to the universe of counties from the ACS. Our dataset constitutes approximately
14.7% of all counties. Counties in our sample are larger and denser than average, so
our sample constitutes around 61.7% of the total US population. The average income
of counties in our sample is somewhat higher than average, but our sample is quite
representative of all counties in terms of age, race, and the fraction of the population that

is married.

We measure time-on-market using Corelogic MLS dataset, which contains data on
individual house listings. As in the deed and tax data, housing units are uniquely
identified, within a FIPS county code, by an Assessor Parcel Number (APN). We only use
listings of single-family residences that were sold eventually with non-missing original
listing and closing dates and non-missing FIPS county code. We define time-on-market
as the difference between closing date and original listing date. We drop listings with
time-on-market longer than 900 days, and winsorize listings with time-on-market longer
than 550 days. We then use listing-level time-on-market to compute county-year-month
and county-year average time-on-market. We require county-year-month triplets to have
at least 10 listings, and county-year pairs to have at least 50 listings. Otherwise we record

county-year-month or county-year average time-on-market as missing.
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A2 ACS

We use county-level demographic information from the ACS. For our cross-sectional
regressions, we use the ACS 5-year sample spanning the years 2012-2016. For our panel
regressions, we use ACS 1-year samples spanning the years 2006-2016. The demographic
and housing stock characteristics we use are total population, population growth rate,
total number of housing units, log average income, unemployment rate (calculated as
one minus the fraction of population which is employed, divided by the fraction of the
population in the labor force), the vacancy rate (calculated as the fraction of all surveyed
houses which are vacant), the fraction of population aged 18-35 and 35-64, and the
fractions of the population which are black, married, high school graduates, and college
graduates. To construct migration shares, we use county-to-county migration flows from
the ACS 2008-2012 5-year sample. To minimize measurement error when computing
in-migration exposure of county c to county c’, we drop all origin-destination pairs such

that fewer than 150 people migrated from the origin to the distination.

A.3 Quarterly Census of Employment and Wages

We use 2010, 2012, and 2016 data files from Quarterly Census of Employment and Wages
(QCEW) to get data on industry-specific wages and employment for each county.

A.4 Other time-on-market data sources

We use two other alternative data sources for time-on-market data: Zillow Research time-
on-market, which is available at the county-month level from 2010-2016, and Realtor.com
time-on-market, which is available at the county-month level from 2012-2016.

A.5 Yearly and seasonal data construction

To construct the dataset used in Figures 3 and 4, we first filter to counties which we
observe every year from 2000 to 2016. This leaves us with 447 counties, comprising
approximately 40.17 million home sales. To construct the LogSD line in Figures 3 and 4,
we average €2 over all observations within a given county-year, then take the square root
of the resultant average. The time-on-market line represents the sales-weighted average

of time-on-market across county-months in a given year, and the price line represents
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the sales-weighted average of the Zillow Home Value Index for single-family residences
across county-months in a given year. Results are qualitatively very similar if we instead
use the Corelogic price index, or a price index which we construct using the Corelogic
data.

To construct the seasonal dataset, we filter to counties in which we observe positive
sales for every month from 2000 to 2016. This is stricter than our filter for the yearly
plots, so we get somewhat fewer counties: we are left with 162 counties, comprising
approximately 21.19 million home sales over this time period. We first collapse the data
to year-month level, taking the sum over sales in all counties, the mean over all éizt terms
that we estimate, and the sales-weighted average of time-on-market. For monthly prices,
we do not use Zillow or Corelogic’s house price indices, as both are seasonally adjusted;
instead, we estimate a price index at the county-month level by regressing log house
prices on county-month and house fixed effects, and taking the exponent of the county
tixed effects as our price index.

Since all four variables — prices, price dispersion, sales, and time-on-market — have
low-frequency trends over time, for the seasonal dataset, we detrend the data by fitting a
piece-wise linear trend with break points every 3 years, subtracting away the predicted
values, and adding back the mean. We then average the filtered series over years to the
calendar month level, index each series to its January level, and plot the resultant series in

Figures 1 and 2.

A.6 Cross-sectional data construction

To construct the county-level dataset, we take the average of the estimated residuals &2
for each county in our sample for the time period 2012-2016. We use this time period to
match the time horizon of the 5-year ACS sample. We measure total housing units and
other demographic covariates for counties using the 2012-2016 ACS 5-year sample, as
described in Appendix A.2 above.

Note that while our cross-sectional regressions only use estimates of €2 from 2012-2016,

these estimates are calculated based on data from the entire sample period 2000 to 2016.
i
but only use error estimates from the 5-year period 2012-2016 for our cross-sectional

In other words, we estimate house fixed effects and error terms &:, using a 17-year period,

regressions. Using the full sample period for the baseline regression is important, since
we could not estimate house fixed effects without a fairly long sample period, in which
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many houses are sold twice. Using the restricted sample for the cross-sectional regressions
allows us to match the time period of the ACS 5-year sample that we use for county
demographics.

A.7 Implementation of specification (1)

When we estimate specification (1), it is computationally infeasible to estimate a fully
interacted polynomial in all house characteristics for f. (x;, t), so we use an additive

functional form:

fe (xi,t) = glotom9 (¢, laty, longy) + g59™ (t, sqfty) + g¥ v (¢, yrbuilt;) +
4 gbathrooms ( hgthrooms;) (23)

g?edmoms (t,bedrooms;)

The functions gi*'°"9, g59™, and g¥™™" are interacted third-order polynomials in their

constituent components, and the functions g2¢47o°ms and gPathrooms interact dummies for
a given house having 1, 2, 3 or more bedrooms and 1, 2, 3 or more bathrooms respectively

with third-order polynomials in time.

Additivity in specification (23) rules out many interaction effects between charac-
teristics. Older or larger houses can appreciate faster or slower than newer or smaller
houses. However, houses which are both large and old are constrained to appreciate at a
rate which is the sum of the “old house” and “large house” effects on prices. The only
interaction term we include is the gi*"°™ (t, lat;, long;) function, which interacts latitude
and longitude. This is important because it is implausible that latitude and longitude
have additive effects on prices; effectively, this specification allows house prices to vary

smoothly as a function of a house’s geographic location over time.

Given this functional form for f¢ (x;, t), specification (1) is a standard fixed effects

regression, and we estimate specification (1) using OLS separately for each county in our

sample. Once we have estimated specification (1), we estimate squared residuals &2, for

each house sale as:
) N¢

i s

where N, is the number of house sales in county c, and K is the number of parameters

Ne¢
Ne—Ke

causes variance estimates to be unbiased at the county level; this is important to include

(Pit - f)it)z (24)

estimated from specification (1). The term

is a degrees-of-freedom correction, which

because most houses are sold relatively few times, so the number of parameters K. is
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nontrivially large relative to the number of house sales N. in our dataset.

More formally, assuming homoskedasticity within counties, O'izt = 0%, the degrees-of-

freedom correction in expression (24) causes the expectation of 2 to be equal to the true
variance, 02. We thus apply the homoskedastic variance adjustment term here, as we
are not aware of any computationally tractable way to implement a degrees-of-freedom
correction in the general heteroskedastic case. However, in Appendix C.2, we further
adjust the estimated residuals &;; to account for the number of times a house is sold and

the average time-between-sales, and show that our results are robust to this adjustment.

B Supplementary material for Section 4

B.1 Stationary equilibrium conditions
B.1.1 Bellman equations

Given the buyer match rate Ag, trade cutoffs €* (c), the equilibrium distribution of seller
values Feq (c), and the seller value function Vs (c), the equilibrium value of buyers, Vg,

must satisfy:
W=t [ [ 100 (a0 Ve V(NI dG (O dFeg (0] (25)

In words, expression (25) can be interpreted as follows. At rate Ag, the buyer is matched
to a seller with type randomly drawn from Feq (-), and the buyer draws match quality e
from G (-). If the buyer’s match quality draw, €, is higher than the seller’s match quality
cutoff, €* (c), trade occurs, and the buyer receives a share (1 —6) of the bilateral match

surplus.

Similarly, given the seller match rate As, trade cutoffs €* (c), and the buyer value Vg,

the seller value function Vs (c) satisfies:

Vs (c) :v+7\5/ 0 (Vm(e)—Vg—Vs(c))dG (e) (26)

e>e*(c)

In words, expression (26) states that a seller of type c receives flow value —c from their
house while they are waiting for buyers. At rate Ag, the seller meets a buyer with match
value € randomly drawn from G (-). If e > €* (c), trade occurs, and the seller receives a
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share 0 of the bilateral match surplus.

The expected value Vy; of matched owners is determined by the Bellman equation:

VM (€) = € +Am (/Vg (¢)dF(c) — Vm (6)) (27)

In words, expression (27) states that matched owners get flow value € while matched to
their house and receive separation shocks at rate Ay, at which point they become sellers
and attain the expectation of the seller value function Vs (c) over the seller holding cost
distribution F (c).

B.1.2 Flow equality conditions

First, consider flow equality for sellers. In equilibrium, the rate at which matched

homeowners receive separation shocks and become sellers of type c is:
(1—Ms) Amf (c) (28)

In words, this is the product of the total mass of matched homeowners, 1 — Mg; the rate at
which homeowners receive separation shocks, Ayj; and the density f (c) of entering sellers
with value c.! The equilibrium rate at which sellers of type c sell their houses and leave
the market is:

Msfeq (€) As (1 —G (e" (c))) (29)

In words, this is the product of the mass of sellers, Ms; the density of values among sellers
in equilibrium, feq (c); the rate at which sellers are matched to buyers in equilibrium, As;
and the probability that the match utility draw e exceeds the trade cutoff €* (c) for a seller
of type ¢, which is 1 — G (e* (c)). In stationary equilibrium, expressions (28) and (29) must
be equal.

Flow equality for individual seller types implies that the total rate at which matched

homeowners become sellers is equal to the total rate at which sellers sell and exit; that is,

integrating (28) and (29) over c, we have:

(1—MS)AM:/A5M3 (1— G (e (€))) feq (c) de (30)

c

HSince the distribution F (c) of holding costs does not depend on matched homeowners’ match utility e,
we do not need to explicitly integrate over the distribution Geq (€) in expression (28).
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Moreover, since each successful sale turns a buyer into a matched homeowner, the RHS of
(30) is also equal to the rate at which buyers turn into matched homeowners.

Second, inflows and outflows for matched homeowners with match utility e must
be equal. Matched homeowners’ separation rate Ap; does not depend on their match
utility €, so the distribution of match utilities among matched homeowners is equal to the
distribution of match utilities among successful home buyers, which is:

J AsMs [ff 1(2 > €* () dG (&)| dFeq (c)

€=€(

JeAsMs (1= G (e (c))) dFeq (c)

Geq (e) =

In words, the numerator is the flow rate at which a seller of value c successfully trades
with a buyer with match utility below €, integrated over the equilibrium distribution
feq (c) of holding costs ¢ among sellers. The denominator is the RHS of (30), the total flow

rate at which buyers become matched homeowners.

Finally, the rate at which buyers enter the market must be equal to all other flow rates.

If all buyers with value above some cutoff &* enter, the inflow rate of buyers is equal to:

ng (1 —Fg (7))

Hence, we must have:
(1—Ms)Am =np (1 —Fg (&)

Substituting for the cutoff £* using (2), this simplifies to:

(1—Ms)Am =ng (1 —Fg (—Vp)) (31)

B.2 Proof of Claim 1

B.2.1 Time-on-market

Time-on-market for a seller of type c is the inverse of As (1 — G (e* (c))), which is the
product of the equilibrium rate at which sellers meet buyers, As, and the fraction of
meetings for a seller of type c that result in trade, (1— G (€ (c))). Average time-on-
market, (14), is the expectation of this.
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B.2.2 Price dispersion

From (4), prices are:
P(e,c) =0 (Vm(e)—Vg—Vs(c))+ Vs(c) (32)

We wish to take the variance of expression (32) with respect to the joint distribution of
holding costs ¢ and match utilities e within the set of pairs of buyers and sellers that

match and trade in any given moment; call this joint distribution F, (c, €).

First, let Fi (c) be the marginal distribution of seller holding costs ¢, among the
stationary mass of seller types that trade in any given time period. By flow equality in
expression (10) of proposition 1, the marginal distribution of ¢ among sellers who trade
and exit the market at any moment must be the same as the distribution of ¢ among
sellers that enter the platform; thus, we simply have:

Fir (c) = F(c) (33)
Thus, to characterize Fy, (c, €), we need only characterize
Fu (€] c)

for all c; that is, the distributions of buyer match utilities, conditional on trade occurring
and conditional on a given seller holding cost c. Each time a seller of holding cost c meets

a buyer, a random match quality € ~ G (-) is drawn; trade occurs if € > €* (c). Thus,
Fir(elc)=G(e|le>e"(c)) (34)

that is, the conditional distribution of match qualities €, conditional on a seller having
holding cost ¢ and trade occurring, is simply the distribution of € conditional on it being
above the trade cutoff €* (c).

Having characterized F; (c, €), we can now take the variance of expression (32) for

prices. Applying the law of iterated expectations, price variance can be written as:

Var (P (e,)) = ey (o) [VaTeryee) (P(&,6) 1))+ Varery o) (Eeryyieie) P (€,) | ]
(35)
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Substituting (33) and (34), we can write this as:

Var (P (G,C)) = ECNF(C) [VaTewG(€‘€>€*(c)) (P (G,C) | C) +Varc~F(c) (E€~G(€|e>e*[c)) [P (€,C) | C])
(36)

First, we characterize the left term on the RHS of (35). Conditional on c, the only random
term in P (€, ¢) conditional on c is the buyer’s match utility €; thus, substituting expression

(49) for P (e, c) and ignoring constant terms, we have:

0
T+ AM

2
Vare~G(e|e>e*(c)) (P (6, C) | C) = ( ) vare~G(e\e>e*(c)) (6)

In words,
VaTe~G(e|e>e*(c)) (6)
is the variance of an exponential random variable €, conditional on € being above some

cutoff €* (c), which is greater than its lower bound €(. This conditional distribution has

variance equal to the unconditional variance of e, 0'%, for any cutoff €* (c); thus, we have:

0 2
VaTe«G(e|e>e*(c)) (P (€, C) | C) = (T—f‘)\]\/[) G% (37)

Since expression (37) is independent of ¢, we also have:

0 2
Ec~F(c) Vare~G(e|e>e*(c)) (P(e,c) | C)] = (T'f‘}\M) Uﬁ (38)

Now we move to the right term in expression (35). Substituting expression (49) for

prices, we have:

VCITCNF(C] <Ee~G(e|€>e*(c)) [P (€,C) ’ C]) =

e—e*(c)
varc~F(c) (Ee~G(ee>e*(c)) {VS (C) +0 (W) ’ C]) (39)

Rearranging, and moving Vs (c) out of the conditional expectation, this is equal to:

S)

Vare () (VS (c) + m

EeGlefeser(c)) [€ — € (c) | C]) (40)
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Since we have assumed G (-) is exponential, and €* (c) > €, the term:

Ee~FtT(e\c) [e—€"(c)|c]

is equal to o, the standard deviation of €. It is thus constant with respect to €* (c) and
thus ¢, and can be ignored when calculating the variance in (40). Hence,

VaTc~F(c) (Ee~G(e|€>e*(c)) [P (e, c) | C]) = Varc~F(c) (Vs (c)) (41)

Substituting (38) and (41) into (36), we have

2
Var (P (e,c)) = Varepy (Vs (c)) + (Tf)\M) 02 (42)

Now, taking the expectation of prices from (49) below, we have:

0o,

E[P(e,c)l =EI[Vs(c)]l+ T

(43)
Using (42) and (43), we get (15).

B.3 Expressions for Vy (e),e* (c),P (e, c)

To begin with, we analytically characterize Vi, (e). From expression (27), we have:

VM (€) = e+ Am (/Vg (c) dF (c) —Vm (e))

Solving for Vi (€), we have:

VM (6) T‘-i-)\M T—f—)\M /Vg dF (44)

Using expression (44), we can also characterize the trade cutoff function €* (c). Trade

occurs if:
Vm (e) = Vg + Vs (c)

}\M €
P>
r+}\M/VS(C)dF(C)+1‘+7\M/VB+VS(C) (45)
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Since we have assumed that €* (c) is greater than €, the lower bound of G(-), we can treat
expression (45) as an equality. Solving for €* (c), we have:

€* () = (r-Mo) Ve + Vi (0] = A | Vs ) dF (o) (46)
Using (44) and (46) we can also characterize equilibrium prices. From (4), we have:
P(e,c)=Vs(c)+0(Vm(e)—Vg—Vs(c))

Substituting for Vi (e) using (44), we have:

Plee)=Vs(e)+0 (=S M [ dF e -Ve-Vsle)) @7

Now, we can write (46) as:

)\M _ e* (C)
M [V ) dF (e) = Vi — Vi (o) =~ 49)
Hence, substituting (48) into (47), we get:
Ple,c)=Vs(c)+0 (=S (49)
€,c)=Vs(c v

B.4 Proof of Claim 2

From expression (6) in proposition 1, the seller value function Vs (c) is:
Vs (c) :—C+7\5/ 0 (Vm(e)—Vg—Vs(c))dG (e)
e>e*(c)

Differentiating with respect to c, using the Leibniz rule, we have:

de* (¢)
dc

7\5/6 (—Vs(c))1(e>€*(c))dG (e) (50)

Vs (€) = =1 —As0 (Vm (€ (¢)) — VB — Vs (¢)) g (e* (c)) +

By definition of €* (c) in (8):
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Vm (€7 (c)) = Vg — Vs (c) =0

so the middle term is 0. Hence, (50) becomes:
Vs () = —1+2As6 (V5 (¢)) (1—G (e (¢)))
Solving for V¢ (c), we have:

1
T 1 A0 (1—G (e ()

Substituting expression (14) for TOM (c) in the denominator of (51), we have:

Vs (c) (51)

-1
0

Vs (c)=——
T+ ToM(q

Rearranging, we have (16).

B.5 Proof of Claim 3

From expression (16), if TOMg, (c) > TOMg, (c) for all ¢, and if 1,0 are the same in the
two sets of primitives, then V¢ (c) must also be strictly larger in absolute value, pointwise

in ¢, under parameters ©; than O,, for all c. From expression (15) in Claim 1, we have:

2
Var (P (c,€)) = Varc~F(.) (Vs () + ( Boc )

T4+ AM
Seller holding costs -
Buyer match utility

Holding fixed G (¢€), the buyer value term in Var (P (g, c)) is also the same under the two
sets of primitives. Hence, we must prove that, if V¢ (c) is strictly increased pointwise in c,

then Var, r() (Vs (c)) must also strictly increase.

To prove this, suppose a random variable X has some distribution function G (). Its

variance can be written as:

Var (X) = min / (x —%)*dG (x) (52)
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To prove expression (52), note that:

/(x—v‘c)sz (x) :/(X—E(X)-i-E(X)—)_C)ZdG (x)

z/(x—E(x))2+2(x—E(x)) (E (x) — %) + (E (x) — %)% dG (x)

:/(X—E(x))z+(E(x)—>zJ2dG (x)

Thus,

rrgn/(x—i)sz (x) :m)_(in/(x—E(x))sz (x)+/(E(x)—>‘c)2dG (x)

_ / (x—E (x))2dG (x) = Var (X)

Now, call the distribution of Vs (c) among trading sellers Fy, (V). Using expression

(52), we can write the variance of Vs (c) as:
Var (Vs (c)) = min / (V—=V)2dFy, (V) (53)

\%

Since the distribution of ¢ among trading sellers is F (c), and Vs (c) is a function of ¢, by

changing variables to integrate over c, we have:

Var (Vs (e]) = min [ (Vs (c) = Vs (6)dF )

c 2
zmc_in/ </ V5 (c) dc> dF (c) (54)

A uniform increase in V (c) causes the integral in (54) to strictly increase for any ¢. Thus,

Hence, (53) becomes:

if V¢ (c) is uniformly larger in absolute value under ©; than ©,, then Var (Vs (c)) must
also increase, and thus Var (P (€, c)) must also increase.
B.6 Derivation of model quantities

In this Appendix, we derive expressions for average prices, time-on-market, and price
dispersion, which are plotted in Figure Al. The average transaction price conditional on
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trade is:

//P(e,c) dG (e|e>e€e"(c)) dF (c)
This is the expectation of the price function P (e, c) over the joint distribution of €, c among

successfully trading buyers and sellers.

Average time-on-market, over the distribution of realized sales, is:

/TOMS (c) dF (¢)

This is simply the average of time-on-market for a seller of holding cost ¢ over the
distribution of holding costs F (c); note that we showed in (33) above that the distribution
of holding costs among trading sellers is simply Fi (c) = F(c).

From Claim 1, equilibrium price variance as:

o \* ,
Vare gy (Vs (c)) + (1‘+7\M) (o

B.7 Heterogeneous buyer urgency

We can extend the main model to accomodate persistent buyer heterogeneity. Suppose
that buyers have some persistent type u ~ H (u), drawn at the point that buyers enter
the market. Unmatched buyers receive flow utility u per unit time they are waiting to
purchase their houses. Transaction prices become a function of sellers” holding cost c,

buyers” urgency u, and buyers” match utility e:
Plc,u,€e) = Vs (c)+6(Vm(e) = Vg (u) — Vs (c)) (55)
Thus, the match quality cutoff condition becomes:
Vm (€7 (e,u)) = Vg (u) + Vs (c)
Analogous to the main text, for our theoretical results, we will need to assume that

" (c,u) > ¢y Ve,u
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Buyers’ and sellers” value functions become, respectively:

Vo =i hs [ 101-0) (Vae () Vo (W) < V6 (€))] 4G (€) dFeg (e

Vo) =—e s [ [ 0(Vle) - Vi w Vs ()46 (€ dHe (W) 66

The flow equality conditions for sellers and matched owners must now integrate over the
equilibrium distribution Heq (1) of buyer urgencies:

(1T—Ms) Amf () = AsMsTeq (C)/ [1—G (e (c,u))] dHeq (u)

u

i JAsMs [fe 1(¢ > e* (c,u)) dG (é)} dFeq (c) dHeq (1)

Gea (€)= =T XM (1= G (e (6, w)T) dFeq (¢) dFieg (1]

Moreover, there is an additional flow equality constraint requiring inflows and outflows

of all buyer types to be equal:
i (1) = AgMheq (w) [ 116 (€ (¢,)] dFeq c)
(¢

Somewhat surprisingly, despite these changes to stationary equilibrium conditions, claims
1 and 2 continue to hold. To prove claim 1, note that, when buyers have heterogeneous

values, the matched owner value function is unchanged:

Vum (€)

€ }\M
= V. dF 57
T+7\M+Y+Am/c 5 (c) (c) (57)

The derivations in Appendix B.3 thus imply that:

(58)

P(c,u,e) =Vs(c)+6 (%W)

Now, similar to (35), we take the variance of prices, applying the law of iterated expecta-

tions with respect to c and u, to get:

Var (P (c,u,€)) = Ec ot (can [Varethr(dc/u) (P(c,we€)lc u)} n

Vare yr. (cu) <E€~Gn(€|0/u) [P(c,u,€)]c, u]) (59)
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Where, analogously to expression (35), Fi; (c, u) is the joint distribution of ¢ and u among
trading buyers and sellers, and F, (e | ¢, u) is the conditional distribution of € given c,u
among trading buyers and sellers. Analogously to the argument to Appendix B.2, we
have:

Fir(elc,u) =G (e]le>e"(c,u))

The joint distribution F, (c,u) is more complicated to characterize; however, by flow
equality, the marginal distributions of Fi (c,u) must be equal to the distributions of
entering buyer and seller types, F (c) and H (u). This implies that the following steps in
Appendix B.2 go through essentially unchanged. Going through the steps, for the top
term of (59), we have:

Vare~G(e|e>e*(c,u)) (P(c,u,€)|cu) =

0 \? 0 \?
(T+}\M> VaTe~G(e|e>e*(c,u)] (e) = <T+7\M> 0%

For the bottom term, substituting expression (58) for prices, we have:

Varc,ud:tr[c,u) (Ee~G(e|e>e*(c,u)) [P(c,u,€)lc, u])

e—e*(c,u)
= vaTc,u~Ftr(c,u) (Ee~G(ee>e*(c,u)) |:V5 (C) +0 (W) ¢, u:|)

0
T+ AM

=Vare ur,, (cu) (Vs (c)+ EcGele>e*(cu) le—€*(c,u)|c, u]) (60)

Again, the left term of (60),

Ee~G(e\e>e*(c,u)) [e —¢€” (C,u) | c,ul

is equal to o, which is independent of c, 1, so we can ignore it in the variance calculation;
(60) thus simplifies to

varc,u~Ftr(c,u) (VS (C))

which is independent of u, so this simplifies further to the variance with respect to the
marginal distribution of c, that is,

Vare gy (Vs (¢))
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This proves (15). The proof of (14) is identical to the baseline model. Finally, differentiating
(56), we have:

Vi (c) :1+Ase/

/ (—Vs(c))1(e > €*(c,u)) dG () dHeq (u) (61)
uJe>e*(c,u)
The total match rate facing a seller of type c is the inverse of time-on-market, so we have:

1
CAs [, f€>€*(clu] 1(e > e*(c,u))dG (e) dHeq (u)

TOM (c) (62)

Combining (61) and (62), we have:

1 ~ TOM(c)
~ rTOM(c)+6

Vs (c) = 5
T+ oMo

proving claim 2.

B.8 Comparative statics

To illustrate how our model maps primitives to outcomes, we solve the model computa-
tionally, and supplement comparative statics results in the main text. Specifically, figure
6 shows how average prices, E(P), average time-on-market, TOM, and price dispersion
in levels, Var(P), and relative price dispersion, LogSD(P), change with respect to buyers’
inflow rate ng, homeowners’ separation rate A, parameters of buyers’ match utility
distribution €, o¢, and parameters of sellers” holding cost distribution ¢, A.

C Supplementary material for Section 6

C.1 Panel regressions

Table A2 shows county-year panel regressions of logSD¢t and TOM_ on various liquidity
supply measures, where a data point is a county-year. We use the time horizon 2007-2016,
as the ACS 1-year samples with coverage of our variables are only available from 2007
onwards. This largely confirms findings from table 2 in the main text. Column 1 shows that

time-on-market is positively correlated with logSD¢; in the panel specification. Columns
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2 and 3 show that inmigration rates are negatively correlated with price dispersion and

time-on-market in panel specifications. All coefficients are statistically significant.

Table A3 shows results from regressing logSD.t and TOM,; on income and prices.
The results are mostly analogous to those of Table 4: price increases predict decreases
in logSD¢¢, and income increases predict increases in logSD¢. Price increases predict
increases in TOMc, but the coefficient of TOM,; on income is not significant.

C.2 Price dispersion robustness checks

In this appendix, we show that our main results are robust to using three alternative
methods for estimating price dispersion.

Pure repeat sales specification: First, we omit the polynomial f. (x;,t) term from (1),

estimating residuals using the specification:

Pit = Yi +Nct + €it (63)

This corresponds to a pure repeat-sales specification for log prices.

Pure hedonic specification: Second, we omit house fixed effects from (1), estimating
residuals using the following specification:

Pit = Net + fe (x4, t) + €y (64)

Adjusting for time-between-sales and times sold: Specification (1) implies that
idiosyncratic price variance does not depend on the holding period. Also, when estimating
(1), é%t will tend to be larger for houses which are sold more times, because the house
fixed effect y; is estimated more precisely.

Let tbs; be the average time-between-sales for house i, and let sales; be the total
number of times we see house i being sold. Figure A2 plots a kernel regression fit of our
estimated residuals, |éi¢|, against tbs;, separately for sales; equal to 2, 3 and 4, for houses
with tbs; between the 1st and 99th percentiles for each value of sales;. We see that the

estimated logSD, |éi¢/, is on average higher when sales; and tbs; are larger.

To ensure that these measurement issues are not driving our results, we attempt to
purge &% of any variation which can be explained by tbs; and sales;. First, we filter to
houses sold at most four times over the whole sample period, with estimated values of €2
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below 0.25. We then run the following regression, separately for each county:

éizt = g. (salesy, tbs;) + it (65)
Where, g (sales;, tbs;) interacts a vector of sales; dummies with a fifth-order polynomial
in tbs;. The residual (i from this regression can be interpreted as the component of the
house’s price variance which is not explainable by sales; and tbs;. We then add back the
mean of ¢ within county c:

é'szSadj,it = G+ Ec [é%t} (66)

2
it/
all variation which is explainable by a smooth function of sales; and tbs;. We use these

e2os agj,it €an be interpreted as the baseline estimates, &5, nonparametrically purged of

estimates in the regressions of table A7.

Qualitative results: Figure A3 compares residuals from the pure repeat-sales and
pure hedonic specifications, (63) and (64) respectively, to our baseline residuals. The
top left panel shows that the difference between repeat-sales residual estimates and the
estimates from our baseline specification are quantitatively quite small, implying that the
polynomial term f. (x;, t) plays a relatively small role in fitting prices.

Figure A3 shows that residual estimates from the pure hedonic specification are
substantially higher than from our baseline specification, implying that house fixed effects
are very important for accurately fitting prices. Note that we have included a degrees-
of-freedom correction in all specifications, so this bias is not mechanically caused by
estimating a larger number of parameters. Practically, Figure A3 implies that idiosyncratic
price dispersion can be estimated fairly well simply by taking the average residuals from
a repeat-sales regression. We do not show time-between-sales adjusted residuals, because

they are on average equal to residuals from the baseline specification, due to (66).

Figure A4 shows how the different estimates of price dispersion behave seasonally
and over the business cycle. All four measures are seasonal, with changes of similar
magnitudes. Over the business cycle, the baseline, repeat-sales, and TBS-adjusted estimates
behave very similarly. The hedonic estimate behaves somewhat differently, but is also
noticeably countercyclical.

Our regression results are robust to all three different ways of measuring price disper-

sion. Table A4 collects specifications using logSD as the dependent variable from Tables
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2,3, and 4 in the main text. The signs of all coefficients in both specifications are the same

as those in the main text, and most variables are significant.

In Tables A5, A6, and A7, we estimate all specifications in Table A4, using each of
the three alternative estimates of price dispersion. Most results are qualitatively and
quantitatively similar to those from the baseline specification. Across all specifications,
prices, time-on-market, vacancy rates, and population growth rates are correlated with

price dispersion significantly and in the expected directions.

C.3 Comparison of price dispersion estimates to literature

A number of other papers have attempted to measure idiosyncratic house price dispersion.
Giacoletti (2017) uses the same Corelogic data that we use to measure idiosyncratic price
dispersion in the metropolitan areas of San Francisco, San Deigo, and Los Angeles. Unlike
our specification (1), Sagi (2015) and Giacoletti use returns, rather than individual house
sales, as the primary unit of analysis.!? Using returns, rather than sales, as the unit of
analysis is more appropriate to the extent that the difference between an individual house’s
price and the county index follows a random walk. However, Sagi (2015) and Giacoletti
show that the random walk assumption is rejected in the data; idiosyncratic variance does
scale with holding periods, but much more slowly than under a random walk model. A
related paper is Carrillo, Doerner and Larson (2019), which finds that excess returns of

individual houses over market averages are mean-reverting in subsequent transactions.

The results of these papers thus support the use of our specification (1) to measure
price dispersion. Specification (1) goes further, assuming that idiosyncratic variance has no
relationship with holding period; this is violated in the data, but we relax this in Appendix
C.2. The benefit of our measurement strategy is that, since we can measure errors at the
level of individual house sales, rather than pairs of purchases and sales, our estimates of
idiosyncratic price dispersion can be flexibly aggregated cross-sectionally and over time.
This is necessary for us to produce our stylized facts, which we believe are new to the
literature: that idiosyncratic price dispersion is countercyclical, seasonal, and correlated
with time-on-market and other measures of market tightness. These results build on and

12There are a number of other differences between Giacoletti’s methodology and ours. First, Giacoletti
measures returns with respect to Zillow’s home value index, rather than adding county-month fixed effects
as we do in this paper. Second, Giacoletti does not allow returns to flexibly vary over time as a function of
house characteristics — characteristics are allowed to affect returns, but not in a time-dependent manner.
Third, Giacoletti incorporates data on remodeling expenses in measuring price dispersion, which we do not
do in this paper.
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complement Giacoletti (2017), who shows that contractions to mortgage credit availability
at the zipcode level are associated with increased idiosyncratic variance, and Landvoigt,
Piazzesi and Schneider (2015), who show that idiosyncratic variance increased in San
Diego following the 2008 housing bust.

Peng and Thibodeau (2017) uses a purely hedonic specification to measure price
dispersion, analyzing the relationship between idiosyncratic price dispersion and various
other variables in the cross-section of zipcodes. To address the possibility that the hedonic
model determining prices changes over time, Peng and Thibodeau (2017) runs separate
hedonic regressions for different time periods. We address this issue through the hedonic
fc (xi,t) term in specification (1), which effectively allows the hedonic coefficients on
different characteristics to change continuously over time. In Appendix C.2, we measure
price dispersion using a purely hedonic specification for log prices, similar to Peng and
Thibodeau (2017); this does not substantially change our results.

Two other papers which measure idiosyncratic price dispersion are Anenberg and
Bayer (2015) and Landvoigt, Piazzesi and Schneider (2015). Anenberg and Bayer (2015), as
an input moment for estimating their structural model, estimate the idiosyncratic volatility
of house prices using a repeat-sales specification with zipcode-month and house fixed
effects, without allowing characteristics to affect prices over time. Landvoigt, Piazzesi
and Schneider (2015) estimates idiosyncratic price dispersion assuming that the only
characteristic that affects mean returns is a house’s previous sale price. Our specification
(1) does not nest that of Landvoigt, Piazzesi and Schneider (2015), since we do not include
previous sale prices in specification (1); however, to the extent that the factors which affect
prices are summarized by our house characteristics x, our specification will also be able

to capture these trends.

Quantitatively, Giacoletti (2017), using data from 1989 to 2013, finds that the standard
deviation of idiosyncratic component of returns is approximately 9.6%-11.8% in San Diego,
13.9%-16.5% in Los Angeles, and 13.7-17.6% in San Francisco. Landvoigt, Piazzesi and
Schneider (2015) finds a similar SD of 8.8%-13.8% for San Diego over the time horizon
1999-2007. In our sample, over the time period 2000-2017, we estimate return standard

deviations of 15.7% for San Diego, 16.8% for Los Angeles, and 19.1% for San Francisco.

13T calculate these quantities, we take sales-weighted averages of 62 for all counties within the San
Diego-Carlsbad-San Marcos, San Francisco-Oakland-Fremont, and Los Angeles-Long Beach-Anaheim
CBSAs. We then multiply &. by a factor of v/2, to convert standard deviations of prices at each sale to
standard deviations of returns, which can then be compared directly to the estimates in Giacoletti (2017)
and Landvoigt, Piazzesi and Schneider (2015).
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Our estimates are thus roughly in line with the estimates from Giacoletti (2017) and
Landvoigt, Piazzesi and Schneider (2015), preserving the ordering of idiosyncratic price
dispersion between the three regions, although our estimates are somewhat higher than
theirs. Moreover, similar to our findings, Landvoigt, Piazzesi and Schneider (2015) finds
that price dispersion increased during the 2008 housing bust, though their sample does
not include the subsequent recovery. Thus, our paper, Giacoletti (2017), and Landvoigt,
Piazzesi and Schneider (2015) arrive at similar estimates using different methodologies,
datasets, time horizons, and geographic definitions, suggesting that the stylized facts we
document are fairly robust to different measurement strategies.

C.4 Time-on-market robustness checks

For robustness, we repeat our main analyses using two different data sources for time-on-
market: Realtor.com time-on-market, which is available at the county-month level from
2012 to 2017, and Zillow Research time-on-market, which is available from 2010 to 2018.

In Figure A5, we aggregate both time-on-market sources to the county level, using data
within the interval 2012-2016, and show how they correlate with Corelogic time-on-market
across counties. Realtor.com time-on-market is somewhat lower than Corelogic, and
Zillow time-on-market is somewhat higher, but all three measures are very positively
correlated.

Figure A6 shows how Zillow and Realtor.com time-on-market behave seasonally and
over the business cycle. All three data sources display seasonality, although the patterns
and magnitudes are somewhat different for the Realtor.com data. While the Zillow and
Realtor.com data do not go very far back in time, all data sources display a decrease in

time-on-market from around 2010 onwards.

Table A8 collects specifications using time-on-market as the dependent variable from
Tables 2 and 4 in the main text. The signs of all coefficients in both specifications are
the same as those in the main text, and most variables are significant. In Tables A9 and
A10, we repeat the regressions of Table A8 using Zillow and Realtor.com time-on-market

respectively as dependent variables. Most results are qualitatively unchanged.

D Supplementary material for Section 7
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D.1 Moment matching

The free parameters in our model are Ay, Mg, €, A, €9, 0%. We match these parameters to
data moments using an inner-outer loop procedure. In the outer loop, we match A., and
in the inner loop we solve for all other parameters conditional on A.. In the inner loop,
for any guess for A., we choose other parameters to exactly match five data moments. In
the outer loop, we generate a model-implied relationship between time-on-market and
price dispersion using a procedure described in Subsection D.1.2, and we choose A to
match the model-implied TOM-PD relationship to the data. Computational details of how
we solve the model for a given choice of parameters are described in Appendix D.1.3.

D.1.1 Inner loop

Given any value of A;, we choose Apm, Mg, ¢, €0, G% to match the average values of five
moments. Three of the target moments come from a sample of counties in 2016.

We target two moments from other papers in the literature. The first is the average
number of houses that buyers visit before buying, which Genesove and Han (2012) find
to be 9.96, in the US. The second is the dispersion in buyer values for houses, from
Anundsen, Larsen and Sommervoll (2019). Using data on Norwegian residential real
estate auctions,'* Table 1 of Anundsen, Larsen and Sommervoll (2019) reports a variety of
summary statistics about bid-ask, bid-appraisal, and bid-sell spreads. We target the lowest
spread in Table 1, the difference between the opening bid price and the ask price, which
is 6.45% of house prices on average. This will tend to produce conservative estimates of

buyer value-induced price variance.

We match buyer-induced price variance in the model by requiring the square root of
buyer match utility-induced price variance to equal 6.45% of house prices; that is, we will

1 0 2
E(P(c,€)) \/(T+7\M) 0% = 0.0645

While the mapping between moments and parameters is complex, roughly speaking,

choose o such that:

the input parameters determine the output moments as follows. The lower bound, e,

and dispersion, 2, of buyer utilities jointly determine the level of buyer-induced price

14We use these data because we are unaware of publically available bid data on housing auctions in the
UsS.
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dispersion and the overall level of house prices. The mean of seller holding utilities, ¢,
and the lower bound, €, affect average gains-from-trade and thus move prices and the
average number of house visits by buyers before purchasing. The entry rate ng of buyers
determines market tightness, which determines average time-on-market. The separation

rate Ay is tightly linked to the turnover rate.

Since buyer- and seller-induced price variance do not add up to total price variance,
there is a residual term. This could be driven by a number of factors: such as unobserved
house-level heterogeneity or renovations, or realtor bargaining frictions. Using our
estimates, we can do a simple accounting of roughly how much of total price dispersion,
under our estimates, is attributable to preferences. That is, we can decompose total logSD

in the data into components attributable to buyer values, seller values, and residuals:

Vare gy (Vs (c)) 1 0 \?2
(0.168)* ~ —— - ( ) 0% +0%q; 67
(E(P(c,e)))z (E(P (c,e)))2 r+7\M € residual ( )
Seller holding value Buyer match value

In our baseline model estimates, the seller holding value component has a standard
deviation of 4.39% of prices, the buyer component is 6.45% of house prices, and the
unobserved heterogeneity component is 14.92% of house prices. In terms of variance
fractions, 6.80% of total logSD is attributable to seller values, 14.67% to buyer values, and
78.53% to unobserved heterogeneity. Thus, in our baseline calibration, preferences can
account for a nontrivial component of total idiosyncratic dispersion, but a large fraction is
attributed to residual factors.

D.1.2 Outer loop

In the data, we have several ways to measure the relationship between price dispersion and
time-on-market. The coefficient is relatively similar in the panel, seasonal and time-series

regression specifications. For our calibration, we use the panel regression coefficient.

To most closely match the data, holding fixed Apm, €, A, €o, 0%, we perturb ng to simu-
late model implied grids of dollar price dispersion and time-on-market. We divide dollar
price dispersion by the average price at the initial set of parameters Ay, 1g, €, A, €o, G% to
obtain percentage price dispersion. We then regress simulated percentage price dispersion
from our model on simulated time-on-market, to generate a model-predicted regression
coefficient. We choose A. to match this model-predicted TOM-logSD relationship to the
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county panel coefficient.

D.1.3 Computation

Computationally, we solve the model by varying Mg rather than ng; this is computationally
simpler, and for any equilibrium in terms of Mg, we can back out an ng which implements
this equilibrium, through (12). Given a vector of parameters 1, &, §, 0, Apm, M3, €, A, €o, cr%
we solve the model by iteratively solving the Bellman equations and flow equality condi-
tions until convergence. Given guesses for feq (c), Ms, we calculate As and Ag, and then
numerically solve (5), (6), (7) for Vs (c),Vm (€), Vg, €* (c). Given guesses for the trade
cutoff €* (c), we can then use (10) to solve for f.q (c). We iterate these equations, updating
in a penalized matter; if the result of one iteration on Mg implies some new value Ms, for

the next iteration, we update Mg to:
(1—1) Mg +tMg

For small enough t, the iteration converges. While we were not able to prove that
the model admits a unique solution, in our simulations, the model reached the same

equilibrium point from many different starting values.

D.1.4 Estimating surplus

We calculate buyers’ total expected surplus as | %ﬁ;(cndF

holding costs from staying on the market as [ ¢- TOM(c) dF(c).

(c), and sellers’ total expected

D.2 Log price variance approximation

In our data, idiosyncratic price variance corresponds to the residual from a regression in
which the dependent variable is the log sale price; hence, the residual can be interpreted
as the variance of log prices. In the model, the variance of prices is computationally
easy to calculate, using the analytical result of claim 1, but the variance of log prices is
more complex. For computational simplicity, in generating the variance of log prices in

the model, we use the following linear approximation, based on the Taylor expansion of
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log (P) around its mean P:
Var (log (P)) ~ Var (log (P) + P;#P) = Var (?) = %Var (P)

Hence, we generate the variance of prices as the variance of model-generated prices,
divided by the squared mean of model-generated prices, where we calculate the variance
of model-generated prices using expression (15) of Claim 1.

D.3 Literature estimates of liquidity discounts

A number of papers in the literature have documented various factors which affect
sale prices and time-on-market, through a channel which is plausibly related to seller
patience. For each of these papers, we calculate the implied 1-month effects, essentially by
dividing the estimated price effects by estimated time-on-market effects. We describe our
calculation methodology for each row of Table 6 below. We divide the papers into two
groups: papers which estimate foreclosure discounts, and those which estimate “liquidity
discounts” driven by factors other than foreclosure. The reason for this is that foreclosure
discount estimates are systematically higher than liquidity discounts.

Liquidity discounts

* Genesove and Mayer (1997), using data from Boston, MA from 1990-1992, analyzes
the relationship between owners’ equity position, time-on-market, and prices. Intu-
itively, owners who have higher home equity set higher list prices, take longer to
sell, and achieve higher sale prices. They find that a homeowner with loan-to-value
1 sells for 4.3% higher than a homeowner with loan-to-value 0.8, and remains on
market 15% longer. Assuming average time-on-market is 2.6 months, the estimated

1-month effect is:
4.3%

m - 1102 /0

* Genesove and Mayer (2001), using data from condos in Boston, MA from 1990-1997,
analyze the behavior of sellers subject to different amounts of nominal losses, due to
the time they purchased their houses. Sellers subject to nominal losses set higher
list prices, sell more slowly, and sell for higher prices. They find that sellers pass
through around 3-18% of nominal losses; hence, with a 10% higher nominal loss,
sellers set asking prices between 0.3% and 1.8% higher. Time-on-market is around
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3-6% higher. In our data, average time-on-market is around 2.6 months. We can
calculate an upper bound on the 1-month effect by taking the upper estimate of the
price effect, and the lower estimate of the time-on-market effect, of a 10% nominal

loss:
1.8%

(0.03) (2.6)

As a lower estimate, we can plug in the lower estimate of the price effect and the

= 24%

upper estimate of the time-on-market effect:

0.3%

(0.06) (2.6) 1.92%

Levitt and Syverson (2008), using data from Cook County, IL from 1992-2002, analyze
sales of realtor-owned houses. They find that realtors tend to sell more slowly, but
for higher prices: realtors spend around 9.5 extra days on market, and sell for 3.7%
higher prices. The estimated 1-month effect is:

37 = 11.68%

95
(%)
Note that this estimate assumes that all realtors do is set higher list prices. Realtors
are likely to have a better selling technology — for example, they may be more
effective at finding buyers. In this case, this is likely to be an overestimate of the
1-month effect.

Hendel, Nevo and Ortalo-Magné (2009) analyze FSBO transactions, using data
spanning 1998-2005 in Wisconsin, WI. They find that FSBO sales take around 20 days
longer to sell, and sell at the same price, but without sellers” realtor commissions. If

we assume realtor commissions are 3%, this gives an estimated 1-month effect of:

D 45%

(%)

There are clearly other differences between FSBO sales and MLS sales, but this

gl
3lS

corresponds to the 1-month discount if we simply think of FSBO sales as a slower,

but higher-price way to sell a house.

Guren (2018) uses data from Los Angeles, San Diego, and San Francisco, from
1988-2013. Similar to Genesove and Mayer (1997), Guren uses price appreciation
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since purchase as an instrument for sellers” marginal utility for cash, and thus sellers’
urgency. While Guren emphasizes the curvature of demand, we can use the slope of
demand to estimate the 1-month price effect, using the IV estimates in his Figure 2.
In this figure, a relative markup change of 4% — that is, from -0.02 to 0.02 — changes
the 13-week sale probability of a house from 0.5 to 0.4. Assuming that house sales
follow a Poisson process, and assuming 4 weeks in a month, the sale probabilities
map to expected time-on-markets of 6.5 months and 8.125 months, respectively.
Assuming list prices pass through perfectly to sale prices, this gives a lower estimate

of the 1-month effect of: A

8.125—6.5
We note that the estimated time-on-markets, using this method, are much higher

= 2.46%

than our estimate of 2.6 months. If we instead assume time-on-market increases by
25%, using a base of 2.6 months, we can calculate an upper estimate of the 1-month

effect as:
4

(B2 —1) (2.6)

Another caveat to note is that our assumption that list prices pass through perfectly

=6.15%

to sale prices is likely an overestimate. In support of this assumption, however,
in Appendix D.1, Guren writes that "the modal house sells at its list price" in his

sample.

* Buchak et al. (2020) analyze I-buyers, using data from Phoenix, Las Vegas, Dallas,
Orlando, and Gwinnet Atlanta, from 2013-2018. They find that I-buyers purchase
houses at at around 3.6% lower prices. In addition, we found that Zillow charges
the standard 6% realtor commission, as well as around 1.4-8% extra fees, depending
on the region in question. Thus, combining the price discount and the explicit fee, a
buyer is effectively paying around 5-11.6% more than they would pay if they used a
realtor, in order to sell instantly. Assuming time-on-market is 2.6 months, we can
calculate upper and lower estimates on the implied 1-month effect as:

5 11.6

R - 192 /0, W - 44:6 /0

Foreclosure discounts

¢ Pennington-Cross (2006), using confidential data, finds foreclosure discounts or
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around 22% of house prices.

Clauretie and Daneshvary (2009), using data from Las Vegas from 2004-2007, find

foreclosure discounts averaging around 10%.

Campbell, Giglio and Pathak (2011), using data from Massachusetts from 1987-2009,
tind foreclosure discounts of around 27%. Note that Campbell, Giglio and Pathak
also analyze discounts from “forced sales”, driven by deaths or bankruptcies of
sellers, but which are not foreclosures. These discounts are much smaller, at 3-7%.
This is in the range of the 1-month effects from our model and other papers, but the
paper does not report the average time-on-market difference between forced sales

and normal sales, so we cannot calculate a 1-month effect.

Harding, Rosenblatt and Yao (2012), using data from 13 MSAs from 1990-2008, calcu-
late foreclosure discounts using a “holding period returns” methodology. Figure 2 of
Harding, Rosenblatt and Yao (2012) shows that that, while returns are very high for
foreclosures held for 1 year, foreclosed houses held for 2-4 years only make around
5% excess returns on average. The estimates vary somewhat across specifications,

but tend to be lower than other papers in the literature.

Zhou et al. (2015), using data from 16 CBSAs from 2000-2012, finds foreclosure
discounts ranging from around 11% (Los Angeles) to 26% (Chicago). The average
across CBSAs is around 15%. There is also substantial time-series variation in the

estimates.
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Figure Al: Model comparative statics
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Notes. The six panels show how average price, E(P), average time-on-market, TOM, price
dispersion in levels, Var(P), relative price dispersion, LogSD(P), change, as we vary (from
top to bottom, left to right) buyers inflow rate ng, homeowner separation rate A, the
buyer match utility parameters €, o, and the seller holding cost parameters ¢, A..
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Figure A2: Effect of number of sales and time-between-sales on LogSD
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Notes. Variation of our estimated idiosyncratic house price residuals, &2, with respect
to the average time between house sales, and the number of times a house is sold. We
calculate &2 for each house sale using specification (1), and then run a kernel regression
of €2 on tbs;, the average time between house sales for house i. We run this regression
separately for houses sold 2, 3, and 4 times, corresponding to the black, yellow, and blue

lines. The figure shows the kernel regression estimates of conditional means of &2,.
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Figure A3: LogSD: alternative measurements
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Notes. The left panel shows, on the x-axis, estimates of &. from the baseline specification,
(1), and on the y-axis, estimates of 6. from specification (63). Specification (63) is a pure
repeat-sales model of house prices, omitting the f. (x;, t) term from specification (1), which
is a flexible function of house characteristics and time. The right panel shows, on the
x-axis, estimates of 6. from the baseline specification, and on the y-axis, estimates of
6. from specification (64). Specification (64) is a pure hedonic model of house prices,
omitting the house fixed effect term vy; from specification (1). In both plots, the sample
period is 2012-2016. Each data point represents one county.
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Figure A4: LogSD: Alternative measures in the time-series
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Notes. The left panel shows the four estimates of price dispersion — the baseline spec-
ification (1), the pure repeat-sales model (63), the pure hedonic model (64), and the
time-between-sales adjusted estimates (66), over calendar months. For all variables, we
filter out low-frequency trends by fitting a piece-wise linear trend with break points every
3 years, subtracting away the predicted values, and adding back the mean. We then index
all lines to equal 1 in January. The right panel shows our four estimates of price dispersion
over the business cycle. All four lines are constructed as sales-weighted averages across
counties for each year, and then all series are indexed to equal 1 in 2000. For both plots,
the time period is 2000 to 2016.
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Figure A5: Time-on-market: alternative measurements
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Notes. The left panel shows Corelogic MLS time-on-market on the x-axis, against Real-
tor.com time-on-market on the y-axis. The right panel shows Corelogic MLS time-on-
market on the x-axis, against Zillow time-on-market on the y-axis. In both plots, the
sample period is 2012-2016. Each data point represents one county.
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Figure A6: Time-on-market: alternative measurements time series
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Notes. The left panel shows our three estimates of time-on-market — from Corelogic,
Realtor.com, and Zillow — over calendar months. For all variables, we filter out low-
frequency trends by fitting a piece-wise linear trend with break points every 3 years,
subtracting away the predicted values, and adding back the mean. We then index all
lines to equal 1 in January. The right panel shows our four estimates of price dispersion
over the business cycle. All four lines are constructed as sales-weighted averages across
counties for each year. We index Corelogic time-on-market to equal 1 in 2000. We index
Realtor.com and Zillow time-on-market so that they are equal to the indexed Corelogic
time-on-market in the first year that we observe them.
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Table A1l: Characteristics of counties in our dataset

| | Sample mean  All counties mean |

Population 420,717 100,027
Pop / Sq mile 992 290
Housing units 171,513 42,120
Avg income $77,984 $61,995
% Age 18-35 22.4% 20.7%
% Married 49.9% 51.3%
% Black 11.1% 9.00%
Total counties 472 3,220
Total pop (1000’s) 198,578 322,088

Notes. Characteristics of counties in our primary estimation sample, compared to all
counties in ACS 2012-2016 5-year sample. All variables — population, population density,
the number of housing units, age, fraction of population which is married, and fraction of
population which is Black — are from the ACS 2012-2016 5-year sample. “Sample mean”
shows the mean of the variable within our main sample of counties. “All counties mean”
shows the mean within all counties in the ACS 2012-2016 sample.
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