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Abstract

Cryptocurrency exchange market structure is fragmented, since cryptocurrencies are
fungible, but customers cannot move freely across cryptocurrency exchanges. We build
a model where exchanges with captive customers are linked by arbitrageurs, showing
that “star-shaped” equilibria can exist, in which arbitrageurs endogenously coordinate
on one exchange as a liquidity hub. The model predicts that large exchanges’ listing
decisions should influence price dispersion, arbitrage flows, trade volumes, and listing
decisions on small exchanges. We provide evidence for the model’s predictions using
data on exchange prices and trade volumes, as well as blockchain token flows across
exchanges.
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1 Introduction

Markets typically function best when they are centralized, yet modern financial asset markets
are often surprisingly fragmented. Fragmentation is particularly extreme in the international
market for cryptocurrency exchanges. Cryptocurrencies are very concentrated as an asset
class: a few cryptocurrencies account for over half of the entire sector’s market cap. But cryp-
tocurrency exchanges are very fragmented: there are over a thousand active cryptocurrency
exchanges worldwide, offering their customers fairly similar sets of assets to trade.

This paper analyzes the fragmented structure of the international cryptocurrency exchange
market. We ask a number of questions. Why are there so many cryptocurrency exchanges?
How do exchanges strategically interact with each other? More tentatively, is the current
market structure of crypto exchanges a historical accident, or is it in some sense adapted to
primitive features of cryptocurrencies as an asset class?

To motivate our answer, we first observe that crypto exchange markets resemble the
structure of commodity markets. Commodities such as gold, oil, or wheat are globally fungible,
but costly to transport. They are thus not traded on centralized global exchanges. Instead,
buyers and sellers within regions are matched in small regional markets; supply and demand
imbalances across regions are addressed by specialized “arbitrageurs”, who transport goods
across markets in response to price gaps. Certain regional markets may evolve into trading
“hubs”, serving as focal points of arbitrage activity and distribution centers for surrounding
markets.

We propose that similar forces shape cryptocurrency exchange market structure. Cryp-
tocurrencies are globally fungible, but crypto customers in different regions may use different
fiat currencies and face different regulatory restrictions; this effectively creates trading costs
across customer groups, analogous to physical transportation costs for commodities. A
natural response to these costs is a “network of exchanges” market structure, in which many
small exchanges emerge to connect customers who are “close” to each other, and specialized
arbitrageurs take on the role of moving inventory between exchanges.

Building on these ideas, in this paper, we analyze a simple model in which a number of
ex-ante identical exchanges with captive customer bases are imperfectly linked by arbitrageurs.
We show that a star network can emerge in equilibrium, where arbitrageurs each link a
“peripheral” exchange to a common “central” exchange. In such equilibria, the central exchange
endogeneously acquires outsized influence: since peripheral exchanges are connected through
the center, listings of new coins on central exchanges will tend to decrease price dispersion
and increase arbitrage flows and trading volumes across all peripheral exchanges. We find
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empirical support for our model’s predictions. We thus provide a narrative explaining how
crypto exchange fragmentation emerges from the primitives of cryptocurrencies as an asset
class, which has implications for the regulation of exchanges and inter-exchange arbitrageurs.

In our model, a single coin is traded on a number of ex-ante identical exchanges, each with
a fully captive customer base. Customers have declining marginal utility for the coin due to
inventory costs, and receive random inventory shocks. A number of identical arbitrageurs each
choose a pair of exchanges to link. Arbitrageurs cannot hold net positions in the coin, but can
transport quantity between exchanges subject to transportation costs, profiting from price
gaps between linked exchanges. Markets clear in a one-shot uniform-price double auction,
in which we assume customers and arbitrageurs both bid competitively. In equilibrium,
arbitrageurs move the coin from exchanges with larger inventory shocks towards those with
smaller shocks. Arbitrage is imperfect due to transportation costs, so exchanges with excess
initial inventory end up with lower final prices.

Our core result is that, when arbitrageurs’ transportation costs are low relative to captive
customers’ inventory costs, star network equilibria emerge, in which arbitrageurs coordinate on
each linking a “peripheral” exchange to a common “central” exchange. Intuitively, the central
exchange is deeper but has more stable prices, creating a tradeoff between exploiting large
initial price gaps and reducing price impact. When transportation costs are high, arbitrageurs
are capacity-constrained and prioritize larger initial price gaps, favoring peripheral-peripheral
connections. When transportation costs are low, arbitrageurs prefer the deeper liquidity
available at the central exchange, allowing star network equilibria to emerge.

Our model makes a number of empirical predictions. Prices and arbitrage flows should
reflect the star structure of arbitrage connections: peripheral exchange prices should tend to
be more correlated with the central exchange than with each other, and arbitrage flows should
tend to concentrate at the central exchange. Since peripheral exchanges are connected through
their links to the central exchange, central exchanges’ decisions to list new coins should have
a disproportionate effect on market outcomes. Before a coin can be traded on a central
exchange, each peripheral exchange is an isolated market for the coin: price dispersion across
peripheral exchanges should be high, and trade volume on each exchange should be low. After
central exchanges list a coin, arbitrageurs can move inventory across peripheral exchanges
in response to peripheral inventory shocks; this should decrease coin price dispersion, and
increase trade and arbitrage volumes on peripheral exchanges. Anticipating increased trade
volumes, peripheral exchanges which have not already listed the coin should have a higher
propensity to list.

We test our model’s predictions using price and volume data for 770 coins across 254
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exchanges from January 2017 to December 2023, as well as a novel dataset of cross-exchange
coin flows on the Ethereum blockchain. Following the literature and industry discourse, we
treat two exchanges, Binance and Coinbase, as central. As our model predicts, centrality is
visible in both prices and arbitrage flows. Price correlations show a star network structure:
price correlations between peripheral exchanges and Coinbase or Binance are systematically
higher than price correlations between pairs of peripheral exchanges. Moreover, consistent
with findings in the literature (Kroeger and Sarkar, 2017; Makarov and Schoar, 2020; Dyhrberg,
2020; Borri and Shakhnov, 2023), we find that price gaps between peripheral and central
exchanges tend to quickly mean-revert, with peripheral prices moving more than central
prices. As the literature has documented using Bitcoin blockchain data (Makarov and Schoar,
2021), Ethereum on-chain flows also have a core-periphery structure: arbitrage flows through
Binance and Coinbase are large in absolute terms, as well as relative to their trade volume.

We then test our model’s predictions about the effects of central exchange listings by
running difference-in-differences regressions. After central exchanges list a new coin, dispersion
in coin prices across peripheral exchanges tends to decrease; trade and arbitrage volumes
involving the coin tend to increase; and peripheral exchanges that have not listed the coin
have a higher propensity to list. These results are consistent with our model’s predictions.
They contrast with a view in which customers can easily move across exchanges; in this case,
central exchange coin listings should tend to cannibalize peripheral exchanges’ customers,
decreasing trade volumes and listing propensity on peripheral exchanges.

Consistent with the view that these effects are driven by peripheral-central arbitrage links,
we find that peripheral exchanges which have greater price correlations with central exchanges
also experience larger volume increases after central exchange listings, and are more likely to
follow central exchange listings. Our results hold throughout our sample period, and survive
in subsamples of exchanges that implement AML/KYC requirements, and that are less likely
to fake trade volumes. We provide evidence suggesting our results are not fully explained by
confounding factors such as changes in investor attention to coins, or possible “endorsement”
effects of central exchange listings.

Our theoretical and empirical results suggest that large exchanges have substantial
influence over the rest of the cryptocurrency market; policymakers may wish to monitor
or regulate the listing decisions of large exchanges. Our results suggest that arbitrageurs
are also a point of potential regulatory oversight. Policymakers could impose registration
and reporting requirements on crypto exchange arbitrageurs; similar to the requirements
imposed on market participants playing analogous roles in traditional financial markets, such
as authorized participants in ETF markets, and designated market makers in equity markets.
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Arbitrageur regulation is a potential policy lever regulators can use to modulate the efficiency
of local cryptocurrency markets.

Finally, our results provide a narrative explanation of modern crypto exchange market
structure. Cryptocurrency exchanges are the boundary between the world’s unified inter-
national cryptocurrency rails, and its many fragmented fiat and regulatory systems. As in
commodity markets, a “network of local exchanges” loosely linked by arbitrage is a natural
response. Extrapolating this narrative, we can tentatively predict the near-term future of
exchange market structure: some degree of exchange fragmentation is likely to persist as long
as fiat and regulatory frictions across customer bases remain.

This paper theoretically and empirically analyzes the structure of the cryptocurrency
exchange market. Theoretically, we show that factors analyzed in prior empirical studies –
customers who wish to trade identical assets, separated by frictions that resemble “trans-
portation costs” – can support a core-periphery network structure in equilibrium, through the
strategic behavior of arbitrageurs. In such a structure, “central” exchanges’ listing decisions
should influence cross-exchange price dispersion, peripheral exchanges’ trade and arbitrage
volumes, and listing decisions. We empirically confirm these predictions; to our knowledge,
our findings that central exchange listings decrease peripheral price dispersion, and increase
arbitrage volumes and listing propensities, are new to the literature.

Our theoretical results are related to classic papers showing how liquidity-seeking traders
may concentrate on a single market (Admati and Pfleiderer, 1988; Pagano, 1989), as well
as more recent results on core-periphery network formation in OTC markets (Chang and
Zhang, 2015; Wang, 2016; Babus and Hu, 2017; Hugonnier, Lester and Weill, 2022; Farboodi,
Jarosch and Shimer, 2023) and interbank lending markets (Craig and Ma, 2022; Farboodi,
2023), and the effects of core-periphery market structure on market outcomes (Viswanathan
and Wang, 2004; Dunne, Hau and Moore, 2015; Üslü, 2019; Dugast, Üslü and Weill, 2022).
We believe we are the first paper to show conditions under which core-periphery networks of
exchanges can emerge, through arbitrageurs’ strategic link formation decisions.

Our model contrasts with a theoretical literature on exchange competition, which shows
that competition tends to lower fees, but may lower execution likelihood (Colliard and
Foucault, 2012) or increase adverse selection or “quote sniping” opportunities (Budish,
Cramton and Shim, 2015; Biais, Foucault and Moinas, 2015; Baldauf and Mollner, 2021).
The economics of our model is different because we assume exogeneously captive customers.
Technically, instead of the limit-order-book models used in this literature (Biais, Foucault
and Moinas, 2015; Chao, Yao and Ye, 2019; Budish, Lee and Shim, 2024), our model is a
simplified demand-schedule submission game (Rostek and Yoon, 2020).
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Malamud and Rostek (2017), Rostek and Yoon (2021), Wittwer (2021), and Chen and
Duffie (2021) use double-auction models to study how fragmentation affects trading outcomes
and social welfare. In contrast, our goal is to analyze the endogeneous formation of inter-
exchange links. Babus and Kondor (2018) model dealer-customer OTC trading on an
exogeneous network as a one-shot demand-schedule game; we differ from their model in many
ways, such as assuming private values and studying arbitrageurs’ entry decisions. Other
papers on endogeneous market structure in double-auction models are Yoon (2018), Babus
and Parlatore (2022), and Wu (2024).

Empirically, this paper is related to a large literature showing that there is substantial
price dispersion across cryptocurrency exchanges, which appears to be driven by demand
shocks that are not fully eliminated by arbitrage. Makarov and Schoar (2020) show that
inter-exchange BTC price differences are too large to be explained purely by transaction
costs, and argue they are instead driven by capital controls. Financial restrictions appear
to be an important driver of crypto demand: Yu and Zhang (2022) show that local BTC
prices increase with economic policy uncertainty, and Choi, Lehar and Stauffer (2022) find
that crypto prices tend to be higher in more financially restrictive countries.

Dyhrberg (2020), Borri and Shakhnov (2023), Hautsch, Scheuch and Voigt (2024), and
other papers document a variety of frictions to inter-exchange arbitrage: price dispersion is
related to exchanges’ geographic location, fiat currency choices, BTC price volatility, and
settlement latency. Augustin, Rubtsov and Shin (2023) show that the introduction of BTC
futures contracts decreases exchange price dispersion. Other papers analyzing crypto price
dispersion across exchanges include Kroeger and Sarkar (2017), Makarov and Schoar (2019),
Tsang and Yang (2020), Borri and Shakhnov (2022).

Though we do not focus on returns, our empirical findings are related to the finding
that central exchange listings tend to increase coin prices (Ante, 2019; van Kampen, 2022;
Talamas, 2021; Li et al., 2022). Shams (2020) shows that coins listed on similar exchanges
have greater return comovement; this is distinct from, and complementary to, our finding
that large exchange listings decrease within-coin price dispersion. Benedetti and Nikbakht
(2021) analyze “cross-listings”, defined as the second time a coin is ever listed, finding that
coin prices, trade volumes, and coin network growth increase after cross-listings. Their
analysis is related to, but distinct from, our analysis of the effect of large exchange listings;
moreover, Benedetti and Nikbakht do not analyze coin price dispersion, on-chain flows, or
listing propensity. We more loosely relate to an empirical literature analyzing exchange
fragmentation in equity markets (Foucault and Menkveld, 2008; O’Hara and Ye, 2011), and an
empirical literature on OTC markets (Di Maggio, Kermani and Song, 2017; Hagströmer and
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Menkveld, 2019; Li and Schürhoff, 2019; Hendershott et al., 2020); we discuss the differences
between the crypto and equity exchange settings in Section 2.

We also contribute to a literature analyzing blockchain flow data. Makarov and Schoar
(2021) analyze the Bitcoin blockchain, clustering exchanges based on flows, and finding that
Binance, Coinbase, and Huobi have highest flow centrality. Cong et al. (2023a) analyze
activity concentration on the Ethereum blockchain, though they do not focus on exchanges.
Dyhrberg (2020) and Hautsch, Scheuch and Voigt (2024) show that crypto arbitrage flows are
associated with exchange price gaps. We believe we are the first to analyze inter-exchange
token flows on Ethereum; we complement Makarov and Schoar (2021) in finding that Coinbase
and Binance play a central role for Ethereum-based coins.

The paper proceeds as follows. Section 2 describes institutional background around
cryptocurrency exchanges. Section 3 describes our model. Section 4 describes our data.
Section 5 provides evidence of the core-periphery structure in prices and arbitrage flows,
and Section 6 tests our model predictions regarding the effects of central exchange listings.
Section 7 presents robustness checks of our empirical results. We discuss our results and
conclude in Section 8.

2 Institutional Background

Cryptocurrency exchanges, analogous to exchanges for stocks, bonds, and other financial
assets, allow customers to exchange fiat currencies for cryptocurrencies. Crypto exchanges
operate as custodial platforms: they allow users to deposit fiat or cryptocurrencies, hold
these assets on their behalf, and facilitate trading among users. For the vast majority of
exchanges, trading is governed through limit-order books. There are a number of reasons
why consumers may purchase cryptocurrencies. Cryptocurrencies may be used as a store of
value or medium of exchange, in countries with high inflation or weak financial institutions;1

market participants also buy cryptocurrencies to speculate, or participate in “decentralized
finance” applications.

Traditional financial assets are basically legal constructs: US stocks are generally recorded
as electronic entries at the DTCC, and US stocks are generally held by entities with a legal
and/or infrastructural presence in the US. Cryptocurrencies differ in that their ownership is
instead enforced through cryptographic consensus algorithms. Bitcoin ownership is recorded
on the Bitcoin blockchain; digital signature algorithms ensure that only wallet “owners” can

1See CNBC and Rest Of World for a discussion of the use of cryptocurrencies as a store of value in
Lebanon.
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transfer funds that belong to them. Thus, Bitcoin can be held anywhere individuals can
access the internet. There is a single global Bitcoin ledger, implying that Bitcoin in one wallet
is fungible with Bitcoin in any other wallet, regardless of where the wallet owners reside.

Cryptocurrency exchanges can be thought of as “on/off-ramps” between global cryp-
tocurrency ledgers and jurisdiction-specific fiat payment systems. Users generally trade on
crypto exchanges using exchange-custodied fiat and cryptocurrencies;2 however, users can also
“withdraw” custodied cryptocurrency into private wallet addresses, or “deposit” crypto by
sending cryptocurrency into an exchange to increase their custodied crypto balances. There
are a large number of crypto exchanges: according to Blockspot.io, as of 2023 there are over
1,000 active exchanges. This is somewhat puzzling in a very concentrated asset class: the top
2-3 cryptocurrencies account for well over 50% of the entire sector’s market cap, according to
sources such as Coinmarketcap.

Crypto exchanges differ from the well-studied setting of equity exchanges in several key
ways. In traditional equity markets, retail investors almost never interact directly with
exchanges; instead, they place orders through brokerages, which may execute internally, route
to market makers, or send orders to exchanges. Equity exchanges in many jurisdictions must
compete on price due to regulatory requirements: for example, under the SEC’s Regulation
NMS, brokers must execute trades at the best available price, prohibiting “trade-throughs”
where orders are filled at worse prices than publicly available quotes.

In contrast, most crypto exchanges allow retail and institutional investors to trade directly,
with minimal intermediation. Services such as fiat transfers, custody, and leverage tend to
be handled in-house. Retail investors do not have simple tools to compare prices across
exchanges, and there is no regulatory requirement to ensure best execution. Crypto exchanges
are also differentiated based on many factors, such as the regulatory jurisdictions they serve,
the fiat onramps they support, the extent to which they implement know-your-customer
and anti-money-laundering policies, and the extent to which they offer features such as
leverage and derivatives trading. These factors suggest that crypto traders may exhibit much
higher “exchange stickiness” than equity traders, who (in the US) benefit from forced price
competition even if they are indirectly interacting with exchanges.

Yet customers on worldwide crypto exchanges ultimately trade the same few cryptoassets.
Price differences across exchanges thus create arbitrage opportunities: if a coin’s price on
exchange A is lower than its price on exchange B, at current fiat exchange rates, an arbitrageur
can buy the coin on A, send the coin to B and sell, and profit after withdrawing fiat balances
from B. The literature has documented various costs to inter-exchange arbitrage, such as

2An exception is that some exchanges primarily focus on trading stablecoins for cryptocurrencies.
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price risk due to settlement delays (Hautsch, Scheuch and Voigt, 2024); trading, deposit,
and withdrawal fees imposed by exchanges; capital controls and FX costs (Makarov and
Schoar, 2020; Choi, Lehar and Stauffer, 2022; Dyhrberg, 2020; Borri and Shakhnov, 2023);
and exchange-level credit risk. Building on the literature, we give a stylized description of
how the inter-exchange arbitrage process incurs these costs in Appendix A. Many of these
costs plausibly have large fixed components, implying that specialized arbitrageurs have
a comparative advantage over regular investors in exploiting cross-exchange crypto price
differences.

We proceed to build a model based on the idea that regulatory and fiat barriers create
effective “transportation costs” between groups of traders in different jurisdictions, even when
they trade identical assets. As in classical commodity spot markets, we conjecture that this
naturally leads to a market structure characterized by small local exchanges within each
jurisdiction, connected by specialized arbitrageurs who move inventory across exchanges in
response to price differences caused by supply and demand imbalances.

3 Model

We construct a model with a number of ex-ante identical crypto exchanges, with captive
customers who receive “inventory shocks” that influence exchange prices for a single risky
asset. Arbitrageurs choose pairs of exchanges to link, profiting from price gaps induced
by these inventory shocks. We show that, under certain parameter settings, arbitrageurs
endogenously coordinate on linking exchanges to a single central exchange, which emerges as
a “liquidity hub” in equilibrium.

3.1 Setup

There are N identical exchanges, indexed by i, each populated by a unit measure of fully
captive customers. There are N − 1 arbitrageurs, who profit from exploiting price differences
across exchanges generated by inventory shocks.3 All agents are risk-neutral.

The model has two stages. In the first stage, each arbitrageur a chooses a pair of exchanges
{i, j} to connect; arbitrageurs’ decisions are simultaneous. In the second stage, inventory

3The assumption that there are exactly N − 1 arbitrageurs is artificial but convenient, since this is exactly
the number of arbitrageurs needed to form a star network equilibrium. In Appendix E, we construct a simple
extension of our model incorporating costly arbitrageur entry, and show that there are entry costs which
sustain equilibria where exactly N − 1 arbitrageurs enter, and the Nth arbitrageur perceives lower expected
profits and thus chooses not to enter.
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shocks x1 . . . xN are drawn, and exchange markets clear in a simultaneous uniform-price
auction.

Customers. Customers on exchange i have utility:

u (qi) = ψ (qi + xi) − γ

2 (qi + xi)2 (1)

for purchasing qi units of the asset. ψ is a constant that represents customers’ average value
for the cryptoasset; all model outcomes will shift linearly in ψ, so the model’s predictions
are identical if we simply set ψ = 0. xi is an aggregate inventory shock, common to all
customers of exchange i; xi can be thought of as capturing changes in speculative demand,
or increases in economic policy uncertainty (Yu and Zhang, 2022), or other forces which
shift average demand across an exchange’s customer base. We assume each xi has mean 0,
variance σ, bounded support, and that the xi are i.i.d. across exchanges. Customers also
bear a quadratic inventory cost whose magnitude is increasing in γ.

Customers are atomistic and ignore their price impact. Thus, if the price on exchange i is
pi, we derive customer demand by setting the derivative of (1) equal to pi and solving:

qi = −xi − 1
γ

(pi − ψ) (2)

Intuitively, at price pi = ψ, customers set qi = −xi, selling exactly as much as they receive in
inventory shocks. Net demand is decreasing in prices, and demand is more elastic when γ is
lower. Inverting (2), we can express the price on exchange i as a function of customers’ net
purchase quantity:

pi − ψ = −γ (qi + xi) (3)

We assume exchange i’s customers are identical for modelling simplicity; within-exchange
trade could be microfounded by assuming the inventory shock xi has some variance across
exchange i’s customers.

Arbitrageurs. In the first stage of the model, each arbitrageur a chooses a pair of
exchanges {i, j} to connect; multiple arbitrageurs are allowed to choose the same pair. In
the second stage, an {i, j} arbitrageur buys a total amount zij of coins on exchange i to sell
on j. We do not allow arbitrageurs to hold net positions, so the purchase and sale amounts
must be equal. Letting pi and pj be the relative prices on i and j, arbitrageurs’ utility is:

Va

(
za

ij

)
= za

ij (pj − pi) − ζ

2
(
za

ij

)2
(4)
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That is, arbitrageurs incur a “transportation” cost ζ
2

(
za

ij

)2
for moving za

ij units of the asset,
where ζ > 0. This cost captures many frictions to inter-exchange arbitrage documented in
the literature, including delays, price risk, and fiat transfer costs (Makarov and Schoar, 2020;
Choi, Lehar and Stauffer, 2022; Augustin, Rubtsov and Shin, 2023); we describe some of these
costs in Appendix A. In the main text, we assume arbitrageurs behave competitively, ignoring
their price impact.4 Thus, arbitrageurs increase za

ij until their marginal transportation cost is
equal to the price difference pj − pi. Setting the derivative of (4) with respect to za

ij to zero,
assuming pj − pi is constant, we derive arbitrageurs’ supply as a function of the i, j price gap:

ζza
ij = pj − pi (5)

That is, za
ij increases linearly in the price gap (pj − pi), with a greater slope when arbitrageurs’

transportation costs ζ are lower. Plugging (5) into (4), arbitrageur profits are proportional
to the squared final price difference between exchanges:

Va (zij) = 1
ζ

(pj − pi)2 − 1
2ζ (pj − pi)2 = 1

2ζ (pj − pi)2 (6)

Market Clearing. In the second stage, all exchanges clear in a simultaneous uniform-
price double auction. Arbitrageurs’ and customers’ demand must sum to zero for each
exchange, implying:

qi =
∑

a∈Ai

za
ji (7)

where Ai is the set of all arbitrageurs a who connect to exchange i. Using (7) to replace qi

in customers’ optimality condition (3), we can define equilibrium in our model as a set of
exchange prices pi and arbitrage flows za

ij which satisfy customers’ and arbitrageurs’ demand
equations respectively.

Definition 1. An equilibrium, given inventory shocks xi, is described by a set of prices pi for
all i, and arbitrage flows za

ij for each arbitrageur a, satisfying customer optimality for each
exchange i:

pi − ψ = −γ

∑
a∈Ai

za
ji + xi

 (8)

and arbitrage optimality for each arbitrageur a:

ζza
ij = pj − pi (9)

4The competitive-bidding assumption is strong, but substantially simplifies the model. In Appendix D,
we extend the model to include strategic bidding, and show that star-network equilibria continue to exist,
though under a slightly stricter cutoff on the parameters ζ, γ.
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We can rearrange (8) and (9) slightly to:

−pi − ψ

γ
−
∑

a∈Ai

za
ji = xi (10)

ζza
ij − (pj − pi) = 0 (11)

The equilibrium conditions can then be written as the matrix equation:

M



p1 − ψ
...

pN − ψ

z1

...
zN−1


=



x1
...
xN

0
...
0


(12)

with M representing the LHS of the set of equations (10) and (11). The system (12) is
explicitly solvable by inverting M . The resultant outputs za and pi − ψ are linear in the
inventory shocks x1 . . . xN ; this immediately implies they have mean 0, and variance and
covariances which are a function of M and σ. The expectations of any quadratic function
of the outputs, such as expected squared trade volumes (za)2, or expected squared price
differences (pi − pj)2 – which determines arbitrageur profits from (6) – are similarly simple
functions of M and σ.

Figure 1 illustrates equilibrium outcomes for two example networks: we derive analytical
solutions for both cases in Appendix B.1 and B.2. The top panel illustrates two connected
exchanges, with x1 = 2 and x2 = −1. With frictionless flows, final inventories and prices
should be equalized: we should have z12 = 1.5, so inventory is 0.5 and prices are −1 on each
exchange. With frictions, arbitrage flows move partially in this direction: we have z12 = 1,
so exchange 1 is left with slightly higher inventory and lower prices than exchange 2. Our
model thus captures the empirically documented fact that crypto market arbitrageurs trade
in the direction of price gaps (Dyhrberg, 2020; Makarov and Schoar, 2021; Hautsch, Scheuch
and Voigt, 2024), but do not fully close these gaps (Kroeger and Sarkar, 2017; Makarov and
Schoar, 2020; Yu and Zhang, 2022; Choi, Lehar and Stauffer, 2022; Borri and Shakhnov,
2023).

The bottom panel shows a star network: four exchanges 1 . . . 4 are connected to a center
C. Analogous to the two-exchange case, arbitrageurs move inventory from exchanges 1 and 2
towards 3 and 4, but arbitrage flows imperfectly equalize initial price differences. In this case,
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the central exchange – despite being fundamentally identical to other exchanges – behaves
as a trading hub: net trade quantity is low, since the initial and final inventory positions
are similar, but gross trade quantity is high, since peripheral exchanges trade through their
arbitrage links to the central exchange.

Our model has a convenient analogy to a spring system, where exchanges are nodes and
arbitrageurs are springs. Spring rigidity ζ controls price dispersion. As ζ → 0, springs are
fully rigid and prices align perfectly across exchanges; for ζ > 0, shocks propagate imperfectly,
and nodes further from the initial shock are influenced less. As in spring systems, the effects
of inventory shocks to different nodes combine linearly.

3.2 Results

Proposition 1. When
ζ

γ
< 2.21432 . . . (13)

when N is sufficiently large, there exists a star-network equilibrium, in which each arbitrageur
connects an exchange to a common central exchange.

Proof. Appendix C contains the full proof; we present a sketch here. The conditions for star
equilibria to exist are depicted in Figure 2. Suppose N − 2 arbitrageurs form a star, leaving
one isolated exchange unconnected to the center. The last arbitrageur has four choices: she
can join another arbitrageur on a central-peripheral link (red), link the isolated exchange to
another peripheral exchange (green), link two peripheral exchanges (orange); or complete the
star by linking the isolated exchange to the central exchange (blue). Star-shaped equilibria
exist if blue is optimal: that is, if N − 2 arbitrageurs are expected to form a star, the final
arbitrageur optimally completes the star.

The case for finite N is in principle solvable but complex, so we instead analyze the limit
as N → ∞. In the limit, the center node of the (N − 2)-node star converges to having fixed
price ψ, and infinite market depth, since it is connected to increasingly many peripheral
nodes. It is thus straightforward to characterize the limiting payoffs of the four strategies.
We find that blue dominates red, green dominates orange, and blue is preferred to green in
the limit depending on (13). This implies that blue will be optimal for sufficiently high N

whenever (13) holds, proving the proposition.

The intuition behind Proposition 1 is that arbitrageurs face a tradeoff between initial price
differences and price impact: two peripheral exchanges (green) will tend to have larger initial
price differences than a peripheral exchange and the central exchange (blue), but the central
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exchange is deeper than peripheral exchanges. When ζ is high relative to γ, arbitrageurs are
capacity-constrained due to their own transportation costs; they thus care less about price
impact, and prefer connecting peripheral exchanges with large price differences. When ζ is
low, arbitrageurs trade larger amounts and care more about price impact, leading them to
prefer connecting to the deep liquidity available at the central exchange.

Proposition 1 parallels the classic result that liquidity drives traders to concentrate on a
single trading venue in equilibrium (Admati and Pfleiderer, 1988; Pagano, 1989). However,
whereas classic models analyze traders’ decisions, we analyze arbitrageurs’ centralization
incentives. Our conclusion is nuanced: there exist parameter settings under which arbitrageurs
prefer connecting less liquid exchanges, so no centralized equilibrium exists.

We note that Proposition 1 demonstrates existence, but not uniqueness, of star-network
equilibria; even when (13) holds, we have not found a way to rule out the existence of
non-star-shaped equilibria.

3.3 Implications

Prediction 1. Price correlations follow a star structure: peripheral exchange prices are more
highly correlated with central exchange prices than with those of other peripheral exchanges.

Prediction 2. Arbitrage flows across exchanges have a core-periphery structure: flows tend
to link “peripheral” exchanges to one or a few “central” exchanges.

These two predictions show that the star structure of equilibria should be visible in both
prices and quantities. Formally, Prediction 1 can be seen clearly in the limit as N → ∞:
central exchange prices are ψ, and peripheral exchange prices are ψ + ϵi, so peripheral prices
are equal to the central exchange price plus i.i.d. noise. Intuitively, central exchange prices
are insensitive to its own inventory shocks, as well as shocks to any particular peripheral
exchange, because inventory can efficiently flow from the central exchange to all peripheral
exchanges. Peripheral exchange prices are “noisier”, because each peripheral exchange only
has a singular link to the center. Prediction 2 is immediate in our model: arbitrageurs move
inventory across ex-ante identical exchanges by coordinating on one exchange as a “hub”, so
arbitrage flows should be larger at the central exchange.

3.4 Listing Decisions

Next, we analyze the effects of central exchange listings on market outcomes. Suppose
arbitrageurs have formed a star-shaped network, and consider peripheral exchanges’ incentives
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to list a second risky coin, which has inventory shocks on exchanges identical to the baseline
model. Assume total trade volume for the new coin on exchange i consists of arbitrage
volume qi, plus some exogeneous trade volume Vi. Peripheral exchanges have some volume
threshold Mi above which they are willing to list the coin.5 We suppose N is large, and that
some large number of peripheral exchanges have already listed the coin.

Prediction 3. Coin price dispersion across peripheral exchanges decreases when central
exchanges list.

Formally, the dispersion of prices across peripheral exchanges, V ar (p), is γ2σ2 when
peripheral exchanges are in autarky; using (62) from Appendix C.3.1, dispersion decreases to
γ2
(

ζ
γ+ζ

)2
σ2 when peripheral exchanges are connected to the infinitely deep central exchange.

Intuitively, in our model, peripheral exchanges are connected through the central exchange:
only after the central exchange lists the coin can arbitrageurs trade to smooth out the effects
of inventory shocks.

A large empirical literature has documented that crypto prices vary substantially across
peripheral exchanges, in a way that appears to be associated with various measures of
arbitrage frictions, such as currency and geographical boundaries (Makarov and Schoar, 2020;
Dyhrberg, 2020; Choi, Lehar and Stauffer, 2022; Borri and Shakhnov, 2023), settlement delays
(Hautsch, Scheuch and Voigt, 2024), and the availability of derivatives (Augustin, Rubtsov
and Shin, 2023). Our model suggests another factor that should influence price dispersion: if
large exchanges indeed behave as arbitrage “hubs”, then coin price dispersion across small
exchanges should decrease after large exchanges list a coin. If, instead, large exchanges simply
have large customer bases, and small exchanges are mostly arbitraged against each other,
large exchange listings should not substantially impact small exchange price dispersion.

Prediction 4. When the central exchange lists a coin, peripheral exchange arbitrage flow
volumes tend to increase.

In our model, price dispersion decreases after central exchange listings because inventory
shocks result in quantity flows to the central exchange, alleviating the effects of inventory
shocks on prices; we should thus also observe increases in gross on-chain arbitrage flows from
peripheral exchanges after central exchanges list.

Prediction 5. When the central exchange lists a coin, peripheral exchange total trade volumes
tend to increase.

5This can be microfounded, for example, by assuming peripheral exchanges have some fixed cost of listing,
and charge some trading fee τi per unit volume, where τi is small enough that we can ignore its effect on
market outcomes.
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Prediction 6. Peripheral exchanges are more likely to list a given coin after the central
exchange lists the coin.

In our model, total trade volume is simply exogeneous volume Vi plus customer-to-
arbitrageur trade volume qi. When central exchanges list, we should thus observe increases
in total trade volume. Anticipating increased volumes, peripheral exchanges which had not
already listed the coin may then decide to list.

These predictions are straightforward within our model. However, they contrast with
the predictions of an alternative theory where large exchanges emerge because of customers’
tendency to seek liquidity rather than arbitrageurs. In such a model, large exchange listings
would decrease small exchanges’ trade volumes and listing probabilities, as customers flock to
trade in the more liquid large exchanges.

3.5 Discussion of Model Assumptions

Our model can be thought of as a demand-schedule submission game (Rostek and Yoon, 2020),
with a few key simplifications relative to the literature. First, we fully separate the roles of
customers, who can hold inventory, and arbitrageurs, who can transport inventory across
exchanges but cannot hold net positions. Second, the baseline model assumes competitive
bidding; Appendix D analyzes the case with price impact. Third, we impose strict participation
constraints: customers are captive to exchanges, and each arbitrageur trades on a single pair
of exchanges. These assumptions are stylized, but lead to a very simple model of frictional
arbitrage between exchanges. The assumption that there are exactly N − 1 arbitrageurs is
similarly artificial; we discuss relaxing it in a simple costly-entry model in Appendix E.

The assumption that each arbitrageur must commit to a single pair of exchanges captures
the idea that integrating with an exchange’s trading infrastructure, regulatory restrictions,
and fiat on- and off-ramps is costly. In practice, arbitrageurs may trade on more than two
exchanges at once. A model where arbitrageurs choose sets of exchanges to participate on
would be much more complex – transportation costs and trading quantities would be more
complicated, and it is not even clear what a core-periphery network would look like in this
setting – so we assume arbitrageurs can only choose pairs of exchanges for simplicity.

Strategic complementarities in the model imply that, even if one exchange were slightly
larger (xi ↑) or deeper (γi ↓) than others, it may not emerge as central, if arbitrageurs
coordinate on a smaller exchange as a hub. This introduces unhelpful indeterminacy in
the model, so we assume exchanges are homogeneous for simplicity. We similarly assume
homogeneous ζ for simplicity, though in practice arbitrage costs likely vary for different pairs
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of exchanges, as shown by Dyhrberg (2020).

We assume captive customers; our primary motivation for this is fiat and regulatory
boundaries facing customers, but exchanges could also be differentiated based on factors such
as search frictions and advertising; differentiation in exchanges’ product offerings, such as the
availability of leverage and derivatives trading; or the degree to which exchanges implement
know-your-customer and anti-money-laundering policies, in an attempt to avoid interacting
with sanctioned individuals or funds. It is not important for the model what the drivers
of exchange differentiation are, so long as they imply that each exchange’s customers have
difficulty switching to other exchanges.

Exchange customers are of course not perfectly captive in practice. If all customers could
frictionlessly move across exchanges, classic results suggest that trade will concentrate on a
single exchange (Pagano, 1989), counter to what we observe in crypto markets empirically.
If instead we assumed that some fraction of customers can switch exchanges, Predictions 5
and 6 could change sign: central exchanges could cannibalize peripheral exchange volumes.
Incorporating partially elastic customers complicates the model, and we think it is unlikely
to produce other nonobvious predictions, so we assume full captivity for simplicity.

Our model does not feature the “listing pump” effect, that central exchange listings tend
to associate with increased coin prices (Ante, 2019; van Kampen, 2022; Talamas, 2021). This
could be microfounded either through a “liquidity premium” effect, or through a number of
other channels we discuss in Section 7.

We assume there is a single central exchange for tractability; in our empirical analysis, we
treat Binance and Coinbase as central exchanges, and the long tail of smaller exchanges as
peripheral.

4 Data

4.1 Cryptotick Data

The primary dataset used in this paper is from cryptotick.com, which collects coin trade
price and quantity data from a broad set of cryptocurrency exchanges. Cryptotick obtains
this data by querying APIs provided by the exchanges and timestamps the data using a
synchronized clock (UTC time) for all exchanges. The dataset contains hourly OHLCV
data—that is, open, high, low, and close prices—as well as total trade volume for each hour
on each exchange. Each data series in the Cryptotick dataset represents a trading pair on a
given exchange. A trading pair consists of one cryptocurrency traded against either a fiat
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currency, a stablecoin (a cryptocurrency designed to maintain a fixed value relative to a
fiat currency), or another major cryptocurrency such as BTC or ETH. For our analysis, we
aggregate the data to a daily frequency for each trading pair-exchange ID. Specifically, we
compute the daily average price as a volume-weighted mean of hourly open prices and sum
the trade volumes across all hours within a day.

Our dataset spans from January 2017 to December 2023 and includes 267 exchanges
and over 10,000 coins in the raw dataset. We restrict our sample in two ways: by the
cryptocurrency in the trading pair, and by the denominator that the cryptocurrency is traded
against. Since many coins are not actively traded, we first limit our sample to trading
pairs that involve the top 200 cryptocurrencies ranked by coinmarketcap.com on June 1
in any year from 2017 to 2023. We further restrict our sample to three types of trading
pairs: pairs involving one of 27 major fiat currencies;6 pairs involving BTC or ETH, the two
largest cryptocurrencies by market capitalization; and pairs involving one of the three major
stablecoins (USDT, USDC, and BUSD).

For all trading pairs, we convert coin prices and volumes to USD terms. For fiat pairs,
we use same-day USD-to-fiat exchange rates, and for crypto pairs, we use daily prices of
cryptocurrencies and stablecoins from Yahoo Finance. We aggregate data to coin-level by
taking the average of the prices for each trading pair involving same coin within a day
weighted by its USD trade volume, and adding volumes across all trading pairs of the same
coin within a day. After dropping stablecoins and fiat currencies in the final step, the final
sample consists of 770 coins across 254 exchanges. Appendix F.1 contains more details about
the data cleaning process.

We identify the listing date of a coin on an exchange by observing the first date it appears
on an exchange in our price and volume data. We round to the nearest day: if the first trade
we observe occurs before 12:00PM, we identify the listing date as the previous day, and if the
first trade occurs after 12:00PM, we identify the listing date as the current day. Summary
statistics of the data are shown in Panels A to C of Table 1.

4.2 On-Chain Data

We collect data on token deposits and withdrawals from exchanges on the Ethereum blockchain,
as most coins in our sample are ERC-20 tokens, and the majority of stablecoin transactions
occur on Ethereum. Using Etherscan, we manually identify exchange-owned wallet addresses.
Etherscan labels wallets associated with exchanges and other entities, allowing us to search

6These 27 major fiat currencies are: NZD USD KRW JPY CNY IDR SGD VND TWD AUD PKR ZAR
TRY MXN BRL CHF ILS PLN GBP RUB EUR CAD HKD INR SAR AED SEK.
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for exchange names in our dataset and apply filters detailed in Appendix F.2.1. We then
collect all transactions associated with these wallet addresses. For comparability across coins,
we dollarize all arbitrage flows, multiplying by a daily average price for each coin, calculated
as the volume-weighted average of USD prices in the Cryptotick data.

We attempt to identify sequences of Ethereum transactions that likely represent “arbitrage
trades” across exchanges. Mechanically, on Ethereum, exchanges typically maintain “main”
wallets holding most balances and trader-specific “deposit addresses”, whose private keys are
controlled by the exchange, which allow them to distinguish deposits sent by different traders.
Traders can then “deposit” into the exchange simply by sending crypto to their deposit
address; the exchange then credits the trader’s custodial balance of the token, generally
maintained in an internal non-blockchain database at the exchange, with the deposited tokens,
and over time generally “sweeps” the deposited crypto into a “main” exchange wallet. A
trader “withdraws” by sending a request to the exchange to send custodied crypto to a
specified wallet address; the exchange then decreases the trader’s custodial balance, and
sends crypto from the “main” exchange wallet to the specified wallet.

We define arbitrage transactions as withdrawals at one exchange, paired with deposits
at another exchange. We found that this generally occurs through traders directly ordering
withdrawals from one exchange into an unlabelled wallet that we infer to be a deposit address
at another exchange; these tokens are later “swept” into a labelled exchange wallet address.
We thus define arbitrage transactions somewhat restrictively, as withdrawals from a given
exchange wallet, whose balances are entirely converted into deposits within 48 hours and
with transaction amounts ranging from 99% to 101% of the withdrawal amount. Appendix
F.2.2 describes further details of this process.

Although restrictive, our criteria classify approximately 8% of all deposits and withdrawals
from exchanges as arbitrage transactions. Overall, our procedure identifies around 21 million
transactions across 239 coins and 93 exchanges. Summary statistics of the data are shown in
Panel D of Table 1.
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5 Core-Periphery Structure in Prices and Arbitrage
Flows

5.1 Core-Periphery Structure of Price Correlations

Figure 3 plots the CDF of Bitcoin return correlations, separately for peripheral exchange
pairs, peripheral-Binance pairs, and peripheral-Coinbase pairs. Consistent with Prediction 1,
the red line lies above the blue and green lines: peripheral-central return correlations tend
to be higher than peripheral-peripheral correlations. Quantitatively, the 25th, 50th, and
75th percentiles of return correlations among all exchanges are 0.59, 0.78, and 0.91. The
percentiles are 0.76, 0.86, and 0.94 for pairs involving Binance, and 0.65, 0.83, and 0.94 for
pairs involving Coinbase.7

While our model is static, a simple dynamic interpretation comes from assuming that
arbitrage occurs with a lag, so exchange prices initially reflect inventory shocks xi, and move
towards reflecting the net quantity xi + qi over time as arbitrageurs trade. The example in the
bottom panel of Figure 1 then suggests that peripheral-central price gaps should close mainly
through peripheral exchange prices adjusting: arbitrage quantity flowing into the central
exchange has lower price impact, since it is spread out over all other peripheral exchanges.

To test these hypotheses, we define the log price gap between peripheral exchange e and
a central exchange, for coin c at time t, as:

PriceGapc,e,t ≡ pc,e,t − pcen
c,t

That is, PriceGapc,e,t is the difference in log prices between e and the central exchange
for coin c at time t. A number of papers show that cross-exchange price deviations are
mean-reverting (Kroeger and Sarkar, 2017; Makarov and Schoar, 2020; Dyhrberg, 2020; Borri
and Shakhnov, 2023); we show this holds also in our sample, by estimating the specification:

∆PriceGapc,e,t = βP riceGap
c,e PriceGapc,e,t−1 + ϵP riceGap

c,e,t (14)

7The average return correlation across all exchanges at day level in our dataset is 0.7. However, the low
cross-correlation is largely driven by low ranking exchanges in our representative dataset. Our data produces
price correlations very close to those in the literature, once we subset to the same set of exchanges. Makarov
and Schoar (2020) use data from Kaiko, and restrict their sample to 17 large exchanges; they measure an
average hourly cross-correlation of USD BTC returns of 0.83. After restricting our sample to the same set of
exchanges, we find a very similar average cross-correlation of 0.83. Return correlations are sensitive to the
time horizon at which prices are measured: at the daily level, Makarov and Schoar report a higher average
cross-correlation of 0.95.

19



We estimate βP riceGap
c,e for each coin-exchange pair. The distribution of estimated βP riceGap

c,e

coefficients is shown in the top row of Figure 4. The estimated coefficients concentrate at -1.
The median coefficient is -0.82 (-0.89), implying that a 10% price gap on average decays to
1.8% (1.1%) on average within a day treating Binance (Coinbase) as the central exchange; in
other words, it takes roughly 1.35 (1.05) days for a price gap to tenth. The 75th percentile
βP riceGap

c,e coefficient implies a price gap tenth-life of 2.81 (2.03) days, and the 25th percentile
implies a tenth-life of 0.78 (0.57) days, again for Binance (Coinbase) as the central exchange.
In other words, these figures show that price gaps revert towards 0 fairly quickly, rarely
lasting more than a few days.

We then analyze the direction of price convergence, by regressing peripheral and central
exchange log returns on lagged price gaps:

∆pc,e,t = βp
c,ePriceGapc,e,t−1 + ϵp

c,e,t (15)

∆pcen
c,t = βpcen

c,e PriceGapc,e,t−1 + ϵpcen

c,e,t (16)

The coefficient estimates are respectively shown in the middle and bottom rows of Figure 4.
The results strongly support the prediction. The middle row shows that the distribution of
coefficients from Specification (15) is concentrated at negative values: when PriceGapc,e,t−1

is positive, peripheral exchange prices tend to decrease towards central exchange prices.
Quantitatively, taking the median coefficient, a 10% price gap predicts a 6% (9.9%) decrease
in return on peripheral exchanges on the following day, treating Binance (Coinbase) as the
central exchange, respectively.

In contrast, the distribution of estimated βpcen

c,e ’s is roughly symmetric around 0 with
median value of 0.01 (-0.13) when treating Binance (Coinbase) as the central exchange; thus,
PriceGapc,e,t−1 does not positively or negatively predict returns on central exchanges.

We also estimate a single coefficient for βP riceGap, βp, and βpcen and show the results
in Appendix Table A.1. Given dynamic and cross-sectionally dependent panel data, the
OLS estimator is biased and inconsistent. Following Pesaran (2006), we use a mean group
estimator, which is consistent when both N and T are large—valid in our data. We reach a
similar conclusion.

5.2 Core-Periphery Structure of Arbitrage Flows

The literature has documented that Bitcoin flows tend to have a core-periphery structure,
clustering around a few central exchanges (Makarov and Schoar, 2021); we find analogous
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results using our data on Ethereum coin flows, supporting Prediction 2 of our model.

We first aggregate dollarized on-chain arbitrage transactions, at the exchange-pair and
exchange levels, across our entire sample period; we call these aggregates respectively ArbV ole,ẽ

and ArbV ole. In Table 2, we show the market shares of total dollarized arbitrage and trade
volumes, for the top 10 exchanges in terms of arbitrage volume. Consistent with Makarov
and Schoar (2021)’s findings on Bitcoin on-chain flows, Binance and Coinbase emerge as large
exchanges in our data, in terms of both arbitrage and trade volume.8

In our model, the central exchange is large because of the coordination of arbitrageurs.
This contrasts with two other hypotheses. First, large exchanges may just have fundamentally
larger customer bases than small exchanges. Second, customers could coordinate on large
exchanges, due to their greater liquidity. If indeed arbitrage is an important contributor to
centrality, we would expect arbitrage volumes on central exchanges to be large relative to
trade volumes.9 This seems to hold empirically: Binance’s share of total arbitrage volume is
slightly larger than its share of trade volume, and Coinbase’s share of arbitrage volume is
more than four times its share of trade volume. This provides some support for our model’s
view that central exchanges serve as arbitrage hubs, not just centers of trading liquidity.

We then convert the exchange-pair arbitrage flow data into an unweighted graph of
“arbitrage links” between exchanges, in order to visualize the arbitrage network, as well as to
construct network centrality measures for different exchanges. We assume two exchanges e
and ẽ are “connected” whenever the arbitrage flows between e and ẽ are a large fraction of
total arbitrage flows involving either exchange: formally, if ArbV ole,ẽ, is at least 10% of the
smaller of ArbV ole and ArbV olẽ. Using the resultant network of links between exchanges,
we calculate three measures of the “network centrality” of each exchange: degree centrality,
betweenness centrality, and eigenvector centrality; we define these measures formally in
Appendix G.

Appendix Figure A.1 visualizes the resultant network of exchanges; the size of each node
is linked to the number of edges connected to the node. Coinbase and Binance emerge visually
as large exchanges; other exchanges that are fairly large include Huobi, Bitfinex, FTX, and
Kraken. Our stylized model makes the sharp prediction that arbitrage networks should have
a star structure, with peripheral exchanges linked only to a single central hub: while the true
network is obviously more complex, we do observe a number of small exchanges that have a

8FTX has slightly higher total arbitrage volume than Coinbase in our data. We do not treat FTX as a
central exchange in our analysis because it failed during our sample period; we are thus not fully confident in
its data around the time of its failure, and we are also not fully confident that on-chain flows to and from
FTX reflect legitimate arbitrage flows, versus for example proprietary withdrawals.

9This holds formally in our model: as N → ∞, arbitrage volume through central exchanges becomes
infinite, so trade volume becomes dominated by arbitrage flows in the limit.
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single link to either Binance or Coinbase. Table 2 shows our three centrality measures for
each large exchange: Binance emerges as central under all centrality measures, and Coinbase
tends to rank highly among exchanges under most measures.

6 Central Exchange Listings and Peripheral Exchange
Outcomes

Next, we test Predictions 3 to 6 of the model, regarding the effects of central exchange listings
on price dispersion, arbitrage and trade volumes, and peripheral exchange listing propensities.
We test these predictions by running coin and coin-exchange level difference-in-differences
specifications around central exchange listing events:

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+

β3PreThreedayListingc,t + δc + ηt + ϵc,t

(17)

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+

β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

(18)

where the variables Listing(0-30 days)c,t and Listing(> 30 days)c,t are indicators for whether
a coin was listed within the past 30 days or more than 30 days ago, respectively. PreThreedayListingc,t

is an indicator equal to 1 for the three days prior to listing; we include this because Binance
and Coinbase typically announce listings 1-2 days in advance, so this indicator throws out any
pre-listing announcement effects. δc and ηt in (17) are coin and time fixed effects, and δc,e, ηt,
and γe,t in (18) are coin-exchange, time, and exchange-time fixed effects. Standard errors are
clustered at the coin and time levels for coin level regressions, and at the coin-exchange pair
and time levels for coin-exchange level regressions.

We show the results from flexible event-study specifications in appendix figures:

Yc,t =
31∑

k=−31
βk × treatc,k,t + δc + ηt + ϵc,t (19)

Yc,e,t =
31∑

k=−31
βk × treatc,k,t + δc,e + ηt + γe,t + ϵc,e,t (20)

where treatc,k,t is a series of dummies indicating days relative to the listing event, and
treatc,−31,t and treatc,31,t are dummy variables that equal 1 when time t is more than 30 days
before and after the central exchange listing date, respectively. We normalize β−30 to 0, so
observations 30 days before listing serve as the reference group. We plot estimated coefficients
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of treatk with k from -30 to 30.

6.1 Price Dispersion

Figure 5 plots coin price dispersion around central exchange listing dates. For each listed
coin, we calculate price dispersion within a group of “incumbent” exchanges which list the
coin at least 30 days before the central exchange lists; thus, we ignore entrants which list
shortly before or after central exchange listings. Price dispersion across small exchanges
in our sample is substantial: the one month average pre-listing p75-p25 spread is 600bps
for Binance listed coins and 400bps for Coinbase listed coins. Consistent with Prediction 3,
dispersion declines substantially after listings: in the 30 days after listing, the p75-p25 spread
declines by 130bps and 130bps for coins listed by Binance and Coinbase respectively.

We then estimate coin level DID specifications using (17). The dependent variable is
coin-day level price dispersion, calculated as the standard deviation of log prices across
exchanges. For treated coins, we continue to calculate dispersion using only incumbent
exchanges. We also include “never-treated” coins in our sample as is common practice in
the DID literature, and for never-treated coins we simply calculate price dispersion using all
exchanges in our sample. The DID estimates are shown in Columns (1) and (2) of Table 3.
Central exchange listings appear to have a statistically and economically significant effect on
price dispersion. Short-run effects for Binance are approximately -0.039, or 32% of initial
dispersion, and -0.04 (33%) for Coinbase. Long-run effects are slightly larger, at -0.086 (72%)
for Binance and -0.064 (54%) for Coinbase. Appendix Figure A.2 shows results from the
flexible event-study specification; pre-listing coefficients are statistically insignificant, so there
is no evidence that the parallel trends assumption is violated.

A large literature has analyzed determinants of cross-exchange cryptocurrency price
dispersion (Kroeger and Sarkar, 2017; Makarov and Schoar, 2019, 2020; Dyhrberg, 2020;
Tsang and Yang, 2020; Borri and Shakhnov, 2022; Yu and Zhang, 2022; Choi, Lehar and
Stauffer, 2022; Borri and Shakhnov, 2023; Hautsch, Scheuch and Voigt, 2024). We believe
we are the first to show that central exchange listings tend to decrease price dispersion;
this finding is possible due to our large panel of exchanges, and focus on a large number of
comparatively small coins.

6.2 Arbitrage Volumes

We construct a coin-day level total dollarized arbitrage flow dataset as follows. For coins
listed by Binance or Coinbase, we consider arbitrage flows that involve the central exchange,
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and “incumbent” exchanges which list the coin at least 30 days before the central exchange
lists. We do this to avoid incorporating mechanically increased arbitrage flows from exchanges
that list the coin after, or shortly before, Binance and Coinbase list. For “never-treated”
coins, which are never listed by a central exchange, we simply add all arbitrage flows we
observe. Intuitively, the coin-level DID specification is identified through unusual trends in
arbitrage volumes involving a fixed set of “incumbent” exchanges and the central exchange,
after the central exchange lists, where time fixed effects are identified by coins listed at other
dates, as well as “never-treated” coins.

In the resultant data, 40% of coin-day level arbitrage flows are equal to 0, so any
effects we estimate will combine “extensive margin” effects of changing the probability of
nonzero arbitrage flows, and “intensive margin” effects of changing the size of arbitrage flows
conditional on being positive. Chen and Roth (2024) argue that it is difficult to estimate
percentage effects in settings where zeros are prevalent, and that the common approach
of using log (1 + Y ) as a dependent variable has problematic properties. Following their
suggestions, we separately estimate the extensive and intensive margins. Specifically, we use a
dummy variable indicating whether arbitrage flows are positive as the dependent variable for
the extensive margin and the log of arbitrage flows for the unbalanced panel of coin-day pairs
with positive arbitrage flows for the intensive margin. In Appendix H.2, we show that our
results are robust to using the log (a+ Y ) for various choices of the constant a, and running
regressions on a subsample that includes only coins where the dependent variables are all
greater than zero during the two-month window around central exchange listings.

Columns (3) and (4) in Table 3 present the extensive margin results. We find that central
exchange listings significantly increase the probability that arbitrage volumes are nonzero, by
41pp and 25pp for Binance and Coinbase listings respectively. Columns (5) and (6) present
the intensive margin results, where we take the logarithm of dollarized arbitrage volumes,
and exclude zero-observation days. On-chain arbitrage volume conditional on being positive
increases by 220% and 200% for Binance and Coinbase listings in the short term, and by
190% and 170% in the long term, respectively. Appendix Figure A.3 and A.4 show estimates
from the flexible event-study specifications; we find no evidence that the parallel trends
assumption is violated in any case.

6.3 Trade Volumes

Coin-exchange-day level trade volumes are equal to 0 for 20% of observations: this is somewhat
lower than the case of coin-day arbitrage volumes, but still high, so we continue to estimate
intensive and extensive margins separately. Similarly, we only keep “incumbent” exchanges for
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coins listed by central exchanges, but we keep all exchanges for “never-treated” coins. Table
4 presents estimates from Specification (18). The eight columns vary by intensive/extensive
margin, fixed effects, and central exchange listings. The first four columns analyze extensive
margin, while the last four focus on intensive margin. Columns (1), (2), (5), and (6) include
day and coin-exchange fixed effects, while Columns (3), (4), (7), and (8) add exchange-time
interactions to account for unobserved heterogeneity at the exchange level.

We find that Listing(0-30 days) coefficients are positive and significant across all specifi-
cations. Columns (1) to (4) shows that Binance and Coinbase listings are associated with
significantly higher probabilities that trade volumes are nonzero. Columns (5) to (8) show
that Binance listings are associated with trade volume increases, conditional on trade volumes
being positive, within 30 days by 74% to 81%, while Coinbase listings increase volumes by
77% to 78%. These effects appear to persist beyond 30 days.

Appendix Figures A.5 and A.6 present the results from the flexible event-study specification.
The difference between the treated and control groups is small in magnitude prior to listings,
though there is a slight pre-trend prior to 3 days before listings, and a significant increase in
volumes for Coinbase in the 3 days before listings. Log trade volumes on peripheral exchanges
rise sharply following central exchange listings, then gradually decline but remain positive
and significant for up to 30 days post-listing.

6.4 Listing Following

Figure 6 plots a simple histogram of peripheral exchange listing times relative to central
exchange listings, including only coins that were listed on any exchange for at least 30 days
before being listed on central exchanges. Consistent with Prediction 6, there is clear clustering:
a large number of peripheral exchanges list just after the central exchange listing.

We then run coin-day DIDs, using the net number of new listings of the coin on each
day as the dependent variable. We keep coins that were listed on any exchange for at least
30 days before being listed on central exchanges, or were not listed by central exchanges,
eliminating the mechanical effects associated with coins initially listed on central exchanges.
Estimates are shown in Columns (7) and (8) of Table 3. Daily peripheral exchange listing rates
increase by 0.079 and 0.077 after Binance and Coinbase listings, respectively, translating to an
increase of 2.4 and 2.3 exchanges listing the coin in the first 30 days. The long-run effects are
economically small, though positive for Binance and negative for Coinbase. Appendix Figure
A.7 shows that there is no evidence for pre-trends. These results are intuitively consistent
with our model, which suggests that central exchange listings should be quickly followed by
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listings on peripheral exchanges, but should not lead to a sustained increase in peripheral
exchange listing rates in the long run.

6.5 Interaction between Price Correlations, Volume Increases, and
Listing Following

Our model takes the stance that the effects of central exchange listings on price correlations,
volumes, and listing increases are all driven by peripheral-central arbitrage. If this is the
case, then peripheral exchanges that rely more on central exchanges for arbitrage should
tend to have larger volume increases after central exchange listings, and greater tendencies to
follow central exchange listings. Our model suggests that a simple measure of the importance
of the arbitrage links between a peripheral and central exchanges is price correlations: if a
peripheral exchange’s price is more correlated with the central exchange, arbitrage forces are
likely to be stronger. Thus, we now show that the “volume pump” and “listing following”
effects are stronger for peripheral exchanges which have higher price correlations with the
central exchange.

6.5.1 Correlation Structure and Volume Increases

To examine the relationship between peripheral-central price correlations and “volume pump”
effects, we estimate the following DID specification:

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(0-30 days)c,t × Correlatione+

β3Listing(> 30 days)c,t + β4Listing(> 30 days)c,t × Correlatione+

β5PreThreedayListingc,t + β6PreThreedayListingc,t × Correlatione+

δc,e + ηt + γe,t + ϵc,e,t

(21)

where Correlatione measures the BTC return correlation between exchange e and a central
exchange over the full sample period. The results in Table 5 show that the coefficients β2

and β4 for the intensive margin are mostly positive and significant, confirming that high-
correlation exchanges experience larger volume increases. In our preferred specifications for
trade volume (Columns (7) and (8)), a 0.01 increase in BTC return correlation with Binance
(Coinbase) is associated with an additional 1.9% (0.43%) volume increase in the short term,
and a 3.4% increase (0.52% decrease) in the long term. The coefficients β2 and β4 for the
extensive margin are generally negative, suggesting that the effect is mostly on the intensive
margin.
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6.5.2 Correlation Structure and Listing Following

We then test whether peripheral exchanges with higher price correlations to central exchanges
are also more likely to follow central exchange listing decisions. To do so, we construct a
measure of a peripheral exchange’s tendency to follow a central exchange:

Listing Following Probabilitye = # Listings within [0,30] days windowe

# Listingse

(22)

Listing Following Probabilitye simply takes the fraction of a peripheral exchange’s coin listings
which occured in a 30-day window after the central exchange listed the same coin. When
Listing Following Probabilitye is 1, in all cases where e lists a coin, the listing occurs from 0
to 30 days after the central exchange’s listing. In implementing (22), we drop coins initially
listed by central exchanges, and we drop peripheral exchanges with less than five listings in
the sample period.

We then estimate a simple OLS specification:

ListingFollowingProbabilitye = α + βCorrelatione + ϵe (23)

If price correlations are associated with peripheral exchanges’ listing following propensity, we
expect β to be positive. We plot Correlatione and ListingFollowingProbabilitye and the
slope of the estimated regression line, for Coinbase and Binance separately, in Figure 7. Both
panels show a strong positive relationship, and the estimated β is positive and significant in
both cases. Quantitatively, an exchange with an 0.01 higher BTC return correlation with a
central exchange has a 0.11pp (0.09pp) higher probability of following the central exchange’s
listing decisions, respectively, for Binance (Coinbase).

6.6 Volume Decomposition

Our results imply that central exchange listings have three separate effects on total trade
volumes: a direct effect from volume on the central exchange, and two indirect effects through
increasing incumbents’ volumes, and inducing new exchanges to list the coin. To estimate
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the relative sizes of these effects, we estimate three coin-level DID regressions:10

log (TradeV olc,t[inc]) =
31∑

k=−31

(
βinc

k

)
× treatc,k,t + δc + ηt + ϵc,t (24)

log (TradeV olc,t[inc + ent]) =
31∑

k=−31

(
βinc

k + βent
k

)
× treatc,k,t + δc + ηt + ϵc,t (25)

log (TradeV olc,t[inc + ent + cen]) =
31∑

k=−31

(
βinc

k + βent
k + βcen

k

)
× treatc,k,t + δc + ηt + ϵc,t (26)

The three dependent variables reflect increasingly broad definitions of total volume. In
Specification (24), we use only volume on incumbent exchanges which listed the coin at least
30 days before the central exchange lists; in (25) we add entrant exchanges, which list after
the central exchange; and in (26) we add the central exchange itself.

The top row of Figure 8 illustrates the estimated DID coefficients, which respectively
reflect βinc

k , βinc
k + βent

k , and βinc
k + βent

k + βcen
k . As expected, the estimated coefficients are

larger the broader the definition of volume that we use. Taking differences, we estimate βinc
k ,

βent
k , and βcen

k , which we plot in the second row; these have an intuitive interpretation as the
percentage volume increases attributable to incumbents, entrants, and the central exchange
respectively.

Quantitatively, we can calculate the percentage volume increase implied by the blue
line in the top row of Figure 8, for any k by taking exp (βinc

k + βcen
k + βent

k ) − 1. Averaging
over 0 ≤ k < 30, we estimate that Binance listings are associated with an average 1606pp
increase in total volume. The second row shows that this multiplicatively decomposes into a
94pp increase in incumbent volume, a 132pp increase associated with entrants, and a 292pp
increase on Binance itself. Coinbase listings are associated with an average 331pp increase in
total volumes within the first 30 days after listing. This multiplicatively decomposes into a
75pp increase in incumbent volumes increase, 78pp increase attributed to entrants, and 42pp
on Coinbase itself.

We can then calculate a simple “external volume ratio”:

EV Rk = exp (βinc
k + βent

k ) − 1
exp (βcen

k ) − 1 (27)

which measures how much “external” volume central exchange listings generate, on incumbent
and entrant peripheral exchanges, for each dollar of volume directly generated on the central

10Here, we simply ignore observations with zero volumes, estimating only intensive margin effects; coin-day
volumes are zero in around 15% of observations – this is slightly lower than the 20% of coin-exchange-day
volumes that are missing, but the caveats in Chen and Roth (2024) apply.
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exchange. We estimate the post-listing 30-day average of EV Rk to be 1.3 for Binance and
5.1 for Coinbase. EV Rk is smaller for Binance primarily because the estimated direct effect
is larger; however, in both cases, our estimates of EV Rk imply that a large fraction of the
effects of central exchanges listings on trade volumes arises through spillovers on peripheral
exchanges.

7 Robustness Checks

7.1 Delistings

Our main analysis focuses only on new listings of coins. Delistings of coins from central
exchanges are rarer; however, our model implies that delistings should have the opposite effect
of new listings, decreasing volumes and listing propensity, and increasing price dispersion.
We analyze delistings in Appendix H.1, verifying that these predictions mostly hold. The
estimated effects are mostly statistically significant for Binance; for Coinbase, the estimated
effects are sometimes insignificant, possibly because we only observe 17 delistings from
Coinbase in our sample period.

7.2 Zero-Volume Observations

Trade and arbitrage volumes are frequently zero in our dataset; our baseline specifications
handle this by separately estimating “intensive” and “extensive” margin effects for both
variables, as suggested by Chen and Roth (2024). We show in Appendix H.2 that our
results are also robust to other ways of handling zeros: in Appendix Tables A.4, A.5, and
A.6, we repeat the specifications of Tables 3, 4, and 5 using the commonly used log (a+ x)
transformation for volume, for different choices of a; results mostly remain significant with
unchanged sign, with the exception of some coefficient estimates in Table 5. Another approach
is to subset the data to a balanced panel of coin-exchanges pairs which do not have zeros in
dependent variables around listing events; we show estimates from this approach in Appendix
Table A.7, finding that the arbitrage volume and trade volume results remain significant,
though the correlation tests of Table 5 lose significance.

7.3 Other Economic Channels

Attention. An important alternative explanation for our results is that, instead of our
arbitrage hypothesis, investors’ attention to coins is a confounding variable which may influence
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(or be influenced by) listings and trade volumes. We analyze the possible confounding effects
of attention in Appendix H.3. Following studies such as Da, Engelberg and Gao (2011), we
construct a coin-level measure of attention by collecting daily Google search volumes for the
ticker symbols of coins in our sample.

We then analyze two ways in which investor attention could confound the interpretation of
our results. First, we test what we call the “attention drives everything” hypothesis: variation
in investor attention to coins is the core causal variable, driving central exchange listings,
peripheral exchange listings, and trade volumes. In its strongest version, this hypothesis
implies that central exchange listings have no causal effect on outcomes, in the sense that a
central exchange exogeneously choosing to list a coin would not have any effect on outcomes:
all changes are driven by gradual shifts in investors’ attention driving all outcomes.

To test this, we build a matched sample in which treated and control coins have similar
pre-listing attention characteristics. We find that coins listed on central exchanges experience
increases in volume and listing propensity, and decreases in price dispersion, even relative to
control coins with similar pre-listing volume level and attention trends, as shown in Appendix
Table A.9 and A.10. This is difficult to reconcile with the strict “attention drives everything”
hypothesis, in which central exchange listings have no causal effect on outcomes.

Second, attention may serve as a channel through which central exchange listings influence
outcomes. We cannot fully rule out this channel – in fact, we find evidence suggesting it
likely plays a role in the results. However, we provide evidence showing that it seems unlikely
that the attention channel quantitatively explains the majority of the effect of listings on
trade volumes.

Endorsement Effects. Another related channel is that central exchange listings may
serve as “endorsements” of coins, enhancing their reputation. This omitted variable could
contribute to explaining our trade volume increase and listing following results, though it is
more difficult to explain how this channel could explain our arbitrage flow and price dispersion
results. In principle, large-cap coins with greater existing market adoption should be less
affected by the endorsement channel. Thus, we conduct a robustness check in which we
restrict our sample to treated coins with a market capitalization of more than $100 million
one month prior to their central exchange listing date; this approximately corresponds to
selecting the top tertile of treated coins. Results are shown in Appendix Tables A.15 and
A.16; the estimated effects are significant, and quantitatively similar to our baseline estimates.

Illegal Activities. Another concern is that some exchanges may primarily serve as
marketplaces for money laundering, drug trade, and other illegal activities. To check whether
our trade volume results are driven mainly by these exchanges, we follow Amiram, Lyandres
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and Rabetti (2022) and collect data on exchanges’ Anti-Money Laundering/Know Your
Customer (AML/KYC) requirements from coinintelligence.com. We then estimate our trade
volume specifications on a subsample of 59 exchanges that impose both AML and KYC
requirements. We show results in Appendix Table A.17: results remain statistically significant,
with unchanged signs and similar magnitudes to our baseline specifications.

Fake Volume. Trade volumes reported by exchanges are known to be subject to
manipulation and wash trading (Cong et al., 2023b). One particular concern is if, in response
to a central exchange’s entry decision, smaller exchanges increasingly engage in wash trading,
as suggested by Amiram, Lyandres and Rabetti (2022). While this hypothesis can partly
account for our trading volume results, it is unlikely to affect the on-chain arbitrage volume
results, which are costly to manipulate, as well as our other results.

To provide further evidence that volume falsification is not the main driver of our results,
we restrict to 29 exchanges analyzed in Cong et al. (2023b) and analyze the responses of
volumes in their three groups of exchanges.11 The classification reflects the intensity, to
what extent the exchanges are regulated and thus falsely report their trading volume. The
regulated exchanges are supervised by New York State Department of Financial Services
(NYSDFS), and they are classified into regulated exchanges. The unregulated exchanges
are further classified into two different tiers based on their web traffic. Cong et al. (2023b)
argue that wash trading should be most prevalent in tier-2 exchanges, less prevalent in tier-1
exchanges, and least prevalent in regulated exchanges.

The intensive margin effects are shown in Appendix Table A.18. The estimates are
statistically significant, and similar in magnitude, for both tier-2 exchanges, for which “fake
volume” issues are comparatively severe, and tier-1 exchanges, for which they are less severe.
The intensive margin effects for regulated exchanges are statistically insignificant; however,
this group consists of only two exchanges besides Coinbase – Bitstamp and Gemini – hence
our standard errors are quite large for this group. The extensive margin effects are shown in
Appendix Table A.19. We find positive and significant effects on the extensive margin for
tier-1 exchanges, but insignificant effects for regulated and tier-2 exchanges. Note that the
extensive margin is much less relevant for regulated exchanges, since only 4% of regulated
coin-exchange-days have zero volumes, relative to 20% in the full sample.

11These exchanges are: (1) regulated exchanges: Bitstamp, Coinbase, Gemini; (2) tier-1 unregulated
exchanges: Binance, Bittrex, Bitfinex, Hitbtc, Huobi, Kucoin, Liquid, Okex, Poloniex, Zb; (3) tier-2
unregulated exchanges: Bgogo, Biki, Bitz, Coinbene, Dragonex, Lbank, Mxc, Fcoin, Exmo, Coinmex, Bibox,
Bitmart, Bitmax, Coinegg, Digifinex, and Gateio.
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7.4 Subsample Analysis

Another concern is whether our findings are specific to a particular time period. We separately
estimate our effects for two subsamples: (1) January 2017 to July 2022, representing an early
boom-bust cycle, and (2) August 2022 to December 2023, a period of market growth and
increasing crypto institutionalization. The results for price dispersion, arbitrage volumes, and
listing following tendency are presented in Appendix Tables A.20 and A.21, and the trade
volume results are shown in Appendix Tables A.22 and A.23. Results are qualitatively and
quantitatively similar, though the estimated effects on price dispersion are insignificant in
the latter part of our sample, potentially because we have lower power in the latter part of
the sample.

8 Conclusion

The global market for cryptocurrency exchanges is fragmented. This fragmentation does not
appear to be a simple story of competition over customer trade volumes. Instead, our results
suggest that small peripheral exchanges play a role akin to brokers or dealers in traditional
financial markets, giving their customers access to global crypto market liquidity through
their connections to a few large exchanges, which play a role similar to inter-dealer markets
for traditional assets.

This market structure implies that the listing decisions of large exchanges play an outsized
role in shaping trade volumes and prices in the global cryptocurrency market. Exchange
listings are a point of potential regulatory oversight: large exchange listings decisions are
unregulated or lightly regulated in many jurisdictions, and it is not clear that large exchanges’
listing incentives are aligned with the interests of market participants.

Our results imply that arbitrageurs are a second potential target for regulation. Mar-
ket participants playing similar roles in traditional financial markets are subject to strict
reporting and compliance requirements: for instance, authorized participants in ETF markets
must comply with reporting requirements,12 and designated market makers (DMMs) face
performance standards and trading restrictions.13 To better monitor market conditions in
crypto markets, regulators could require crypto exchanges to report on their arbitrageurs’
trading activity and sources of liquidity. Arbitrageur regulation is also a potential policy
lever for modulating crypto market efficiency: regulators who wish to lower frictions in local
crypto markets could decrease arbitrageurs’ barriers to entry, whereas regulators who wish

12See 17 CFR § 270.6c-11
13Rules and restrictions applied to DMMs can be found in the NYSE Rules; see for example Rule 98.
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to curtail access to global crypto markets could do so by imposing costs and restrictions on
arbitrageurs in addition to exchanges.

To conclude, we tentatively ask: why is the “networks of linked exchanges” market
structure we analyze here so rare in markets for traditional financial assets?

A narrative answer to this question, extrapolating from our results, is that this difference
in market structures is driven by primitive technical differences between cryptocurrencies and
traditional financial assets. Traditional assets are legal constructs, which mostly exist within
singular jurisdictional and fiat ecosystems. The role of a US equity exchange is to match
buy and sell orders from customers with some form of US presence; the equity exchange
can largely assume cash settlement will occur through the US banking system and equity
settlement through the DTCC. Traditional financial markets are not always fully centralized:
there are many competing equity exchanges in the US; markets for bonds and derivatives
have a core-periphery OTC structure. But the relative unification of infrastructure may be
a reason why customer bases are not naturally segmented enough for a “network of local
exchanges” market structure to emerge.14

Cryptocurrencies are not legal constructs: they are entries in consensus-based ledgers,
which can be “held” and “sent” wherever users can access the internet, and fungible regardless
of where in the world a wallet owner resides. But customers in different countries use
different fiat payment systems, and face different regulatory constraints on financial market
participation. As in commodity markets, the anachronistic “network of exchanges” market
structure emerges naturally in response to these primitives: local crypto exchanges match
orders within jurisdictions, and the “transportation costs” of bridging customer groups are
borne by specialized arbitrageurs.

Even more tentatively, what implications do our results have for the future evolution of
cryptocurrency exchange market structure? Our narrative suggests that full cryptocurrency
exchange consolidation in the near future is unlikely: some degree of fragmentation is likely
to persist as long as regulatory and fiat segmentation across customers persists. To the extent
that fiat rails are replaced with cryptocurrency or stablecoin-based systems in the longer
run, though, some of the boundaries which separate customer groups at present may loosen
in some parts of the world, leading to potentially greater consolidation of cryptocurrency

14One possible exception is a small number of dual-listed companies, which trade on more than one exchange
at once, analyzed in Rosenthal and Young (1990), Froot and Dabora (1999), De Jong, Rosenthal and Van Dijk
(2009), and Vandeweyer, Yang and Yannelis (2024). However, dual-listed companies are rare, and trade on a
small number of exchanges relative to cryptocurrencies, making it essentially impossible for core-periphery
network structure to emerge. Another possible exception is ADRs, analyzed in Gagnon and Karolyi (2010);
however, ADRs are not fungible with their underlying stocks in the same way cryptocurrencies are across
exchanges, and ADRs also trade on relatively few exchanges at once.
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exchanges in the long run.
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Figure 1: Equilibrium Outcomes in Example Networks

Equilibrium prices and arbitrage flows for two example networks in our model. Panel A shows
two exchanges connecting by a single arbitrageur. Panel B shows four “peripheral” exchanges
1, 2, 3, 4 arranged around a central exchange C. In both cases, we set γ = 2, ζ = 2, ψ = 0.
Analytical solutions are derived in Appendices B.1 and B.2 respectively.

(a) Two Nodes
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z3C = −0.583z4C = −1.083

40



Figure 2: Equilibrium Connection Strategies

This figure shows the actions available to an arbitrageur in our model, assuming other
arbitrageurs coordinate on a star-network equilibrium. The black lines denote links formed
by the other arbitrageurs, connecting all but one of the peripheral exchanges to a single
central exchange: the gray dot represents the isolated exchange. The red, blue, orange,
and green strategies denote strategies that the last remaining arbitrageur can take: she can
compete with an existing arbitrageur over a peripheral exchange (red), link the isolated
exchange to a peripheral exchange (green), link two connected peripheral exchanges (orange),
or complete the star network by linking the isolated exchange to the central exchange (blue).
A star-network equilibrium exists for any parameter settings such that, conditional on all
other arbritrageurs forming a star network, the final arbitrageur finds it optimal to complete
the star, so the blue strategy has higher expected profit than the other three strategies.
Letters correspond to the node labels used in the proof of Proposition 1 in Appendix C.
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Figure 3: Star Structure of BTC Return Correlations

This figure shows the distribution of the pairwise correlations of BTC returns, for all exchange
pairs excluding pairs involving Binance or Coinbase, and exchange pairs between peripheral
exchanges and either Binance or Coinbase. For each exchange pair, we calculate return
correlations using the entire time period where we have coverage for both exchanges in the
pair. Data source: Cryptotick.
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Figure 4: Price Gap Reversion

This figure shows, from the top to bottom row, the distribution of estimates from Specifications
(14), (15), and (16) for all coin-exchange pairs:

∆PriceGapc,e,t = βP riceGap
c,e PriceGapc,e,t−1 + ϵP riceGap

c,e,t

∆pc,e,t = βp
c,ePriceGapc,e,t−1 + ϵp

c,e,t

∆pcen
c,t = βpcen

c,e PriceGapc,e,t−1 + ϵpcen

c,e,t

In all cases, one data point is one peripheral exchange-coin pair. The top row shows the
distribution of estimated βP riceGap

c,e , where the dependent variable is the change in price gap
of coin c between peripheral exchange e and central exchange (either Binance or Coinbase)
at day t. The red vertical line shows βP riceGap = −1, the zero-persistence benchmark, where
price gaps on a given day fully revert on the following day. The middle row shows the
distribution of estimated βp

c,e, where the dependent variable is the price change in coin c on
peripheral exchange e at day t. The bottom row shows the distribution of estimated βpcen

c,e ,
and the dependent variable is the price change in coin c on central exchange (either Binance
or Coinbase) at day t. The red vertical lines in the middle and bottom row denote βp

c,e = 0
and βpcen

c,e = 0, respectively. Data source: Cryptotick.
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Figure 5: Central Exchange Listings and Price Dispersion

This figure shows how the interquartile range of coin prices changes around listing events. For
each coin affected by a listing, we measure the median, 25th, and 75th percentile prices across
incumbent exchanges, and normalize all percentiles by the median. Incumbent exchanges are
defined as exchanges that list coin c at least 30 days before its listing on a central exchange.
The blue, green, and red lines represent the average normalized prices at the 75th, median,
and 25th percentiles across coins, respectively. The x-axis represents the time interval from
the central exchange’s listing date, with the red vertical line indicating the listing time. For
central exchanges, we focus on Binance and Coinbase. Data source: Cryptotick.
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Figure 6: Listing Times of Peripheral Exchanges Relative to Central Exchanges

This figure shows the histogram of peripheral exchange listing times relative to central
exchange listings, including only coins that were listed on any exchange for at least 30 days
before being listed on central exchanges. The x-axis represents the time interval from the
central exchange’s listing date, with the red vertical line indicating the listing time. The
y-axis shows the mass of each time interval bar. For central exchanges, we focus on Binance
and Coinbase. Data source: Cryptotick.

BINANCE COINBASE

−9
0

−8
0

−7
0

−6
0

−5
0

−4
0

−3
0

−2
0

−1
0 0 10 20 30 40 50 60 70 80 90 10

0
−9

0
−8

0
−7

0
−6

0
−5

0
−4

0
−3

0
−2

0
−1

0 0 10 20 30 40 50 60 70 80 90 10
0

0.00

0.05

0.10

0.15

0.20

Day Distance to Top Exchange's Listing

M
as

s

45



Figure 7: Price Correlations and Listing Following Tendency

This figure shows the relationship between BTC return correlation and listing following
probability for all exchanges relative to central exchanges. Each data point represents an
exchange. The x-axis denotes the return correlation of Bitcoin between an exchange and a
central exchange using the entire time period where we have coverage for both exchanges
in the pair. The y-axis denotes the listing following probability between an exchange and a
central exchange, defined in Equation (22). The red line indicates the fitted linear regression
curve. The correlation coefficient and its p-value are reported. For central exchanges, we
focus on Binance and Coinbase. Data source: Cryptotick.
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Figure 8: Volume Increase Decomposition

The top row of the figure shows estimates from Specification (24) to (26):

log(V olumec,t[inc]) =
31∑

k=−31

(
βinc

k

)
× treatc,k,t + δc + ηt + ϵc,t

log(V olumec,t[inc + ent]) =
31∑

k=−31

(
βinc

k + βent
k

)
× treatc,k,t + δc + ηt + ϵc,t

log(V olumec,t[inc + ent + cen]) =
31∑

k=−31

(
βinc

k + βent
k + βcen

k

)
× treatc,k,t + δc + ηt + ϵc,t

along with 95% confidence intervals. We categorize exchange-coin pairs into three groups according to their
listing time and central status: incumbent (exchanges that list at least 30 days before central exchange listings
or coins that are not listed by central exchanges), central (central exchange), and entrant (all remaining
exchanges). The dependent variable is coin-day level log dollarized trade volume, computed by filtering
the relevant exchange-coin pairs, adding up the dollarized volume, and taking the log. In the top row, the
red line shows estimates of βinc

k , using only incumbent volume as the dependent variable. The green line
shows estimates of (βinc

k +βent
k ), using incumbent plus entrant volume as the dependent variable. The blue

line shows estimates of (βinc
k + βent

k + βcen
k ), using incumbent, entrant, and central exchange volume as the

dependent variable. δc represents coin fixed effects, and ηt represents day fixed effects. Observations exactly
30 days before central exchange listings are set as the reference group. Standard errors are clustered at the
coin and time level. We then recover βinc

k , βent
k , and βcen

k simply by taking differences between the estimated
coefficients. In the bottom row, the red line shows estimates of βinc

k , the green line shows estimates of βent
k ,

and the blue line shows estimates of βcen
k . Data source: Cryptotick.
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Table 1: Summary Statistics

This table shows summary statistics for variables related to our Cryptotick and Ethereum on-chain
flow data. Panel A presents descriptive statistics for the exchange level BTC return correlation
and the listing-following probability with respect to Binance and Coinbase. Panel B summarizes
the coin-day level variables, Panel C presents the coin-exchange-day level variables, and Panel D
displays the arbitrage flow amounts at different levels. For each variable, we show the number of
non-missing observations, the mean, the standard deviation and the 25th, 50th and 75th percentile
values. Data source: Cryptotick, Etherscan.

Panel A: Exchange Level

with Binance with Coinbase
Obs. Mean SD p25 p50 p75 Obs. Mean SD p25 p50 p75

BTC Return Correlation 241 0.81 0.2 0.76 0.86 0.94 242 0.76 0.24 0.65 0.83 0.94
Listing Following Prob 164 0.09 0.1 0 0.059 0.15 158 0.075 0.081 0 0.061 0.12

Panel B: Coin-day Level
Obs. Mean SD p25 p50 p75

Price Dispersion 868132 0.12 0.2 0.011 0.03 0.14
I(ArbVol > 0) 272574 0.63 0.48 0 1 1
Log(ArbVol) 171601 11 3 8.8 11 13
Net Listings 1353455 0.0048 0.16 0 0 0

Panel C: Coin-exchange-day Level

Obs. Mean SD p25 p50 p75

I(TradeVol > 0) 12034327 0.81 0.39 1 1 1
Log(TradeVol) 9747409 11 4.2 8.9 12 14

Panel D: Arbitrage Transactions

Obs. Mean SD p25 p50 p75

ArbVol (Transaction Level, $) 21222854 40078 539773 485 2002 10164
ArbVol (Coin Level, $Millions) 239 3559 25755 5.7 80 493
ArbVol (Exchange Level, $Millions) 93 9146 30428 11 261 1719
ArbVol (Exchange-pair Level, $Millions) 2360 180 1820 0.0083 0.12 2.1
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Table 2: Core-Periphery Structure of Arbitrage Flows

This table shows the arbitrage volume market share, trade volume market share, degree centrality,
betweenness centrality, and eigenvector centrality, for the 10 exchanges with the highest arbitrage
volume. Exchanges’ market share is calculated from their arbitrage volume ArbV ole and trade
volume TradeV ole. TradeV ole is the total trade volume for all coins, fiat, and stablecoins in our
Cryptotick data. We assume two exchanges e and ẽ are “connected” whenever the arbitrage flows
between e and ẽ are a large fraction of total arbitrage flows involving either exchange: formally,
if ArbV ole,ẽ, is at least 10% of the smaller of ArbV ole and ArbV olẽ. Degree centrality for each
exchange is defined as the number of edges it has with other exchanges. Betweenness centrality
counts the fraction of shortest paths between two randomly chosen exchanges that pass through a
given exchange. Eigenvector centrality captures global importance in contrast to degree centrality.
All three centrality measures are normalized so that the total centrality across all exchanges sums
to one. Data source: Cryptotick, Etherscan.

Exchange ArbVol Share TradeVol Share Degree Betweenness Eigenvector
Binance 0.25 0.21 0.2 0.68 0.08
FTX 0.15 0.01 0.04 0.03 0.02
Coinbase 0.13 0.03 0.05 0.06 0.03
Huobi 0.1 0.05 0.06 0.06 0.03
Kraken 0.1 0.01 0.04 0.06 0.02
Bitfinex 0.07 0.01 0.04 0.04 0.02
OKEX 0.06 0.05 0.04 0.02 0.02
Kucoin 0.02 0.01 0.01 0 0.01
BinanceUS 0.01 0.01 0.01 0 0.01
Bithumb 0.01 0.02 0.01 0 0.01
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Table 3: Central Exchange Listings: Coin Level

This table shows estimates from Specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation of
log prices across exchanges. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins
listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for the
pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2 days
in advance. For price dispersion and arbitrage volume, we exclude newly entered exchanges. For
coin listings, we include only coins that were listed on any exchange for at least 30 days before
being listed on central exchanges or were never listed by central exchanges. Odd and even columns
are results based on listings on Binance and Coinbase, respectively. Standard errors are clustered
at the coin and time level. Standard errors are in parentheses. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick, Etherscan.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.04∗∗∗ -0.04∗∗∗ 0.41∗∗∗ 0.25∗∗∗ 2.2∗∗∗ 2.0∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.01) (0.008) (0.05) (0.03) (0.28) (0.23) (0.01) (0.01)
Listing (> 30 days) -0.09∗∗∗ -0.06∗∗∗ 0.42∗∗∗ 0.25∗∗∗ 1.9∗∗∗ 1.7∗∗∗ 0.005∗ -0.009∗∗∗

(0.01) (0.01) (0.05) (0.04) (0.23) (0.28) (0.002) (0.003)
Pre Three-day Listing -0.02 -0.02∗∗ 0.15∗∗ 0.19∗∗∗ 1.1∗∗∗ 1.4∗∗∗ 0.02∗ 0.04∗

(0.01) (0.009) (0.06) (0.04) (0.29) (0.25) (0.01) (0.02)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.50 0.47 0.42 0.40 0.54 0.52 0.06 0.07
Observations 645,346 847,421 200,044 256,331 116,734 156,578 1,224,478 1,341,152
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Table 4: Central Exchange Listings: Coin-Exchange Level

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. Listing(0-30 days)c,t

and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30
days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given that Binance
and Coinbase typically announce listings 1-2 days in advance. We keep only those incumbent
coin-exchange pairs that were listed at least 30 days before their listing on central exchanges, or
pairs with coins that have not been listed by central exchanges, in order to identify the listing
effect on incumbent exchanges. Odd and even columns are results based on listings on Binance
and Coinbase, respectively. Standard errors are clustered at the coin-exchange pair and time level.
Standard errors are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.02∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.74∗∗∗ 0.78∗∗∗ 0.81∗∗∗ 0.77∗∗∗

(0.008) (0.006) (0.006) (0.004) (0.07) (0.05) (0.06) (0.04)
Listing (> 30 days) 0.06∗∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.03∗∗∗ 0.72∗∗∗ 0.86∗∗∗ 0.82∗∗∗ 0.85∗∗∗

(0.01) (0.006) (0.007) (0.004) (0.10) (0.06) (0.08) (0.05)
Pre Three-day Listing 0.01 0.03∗∗∗ 0.01∗ 0.02∗∗∗ 0.62∗∗∗ 1.0∗∗∗ 0.69∗∗∗ 1.0∗∗∗

(0.009) (0.006) (0.006) (0.004) (0.09) (0.08) (0.08) (0.07)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.47 0.48 0.64 0.70 0.79 0.78 0.84 0.84
Observations 4,895,893 9,004,676 4,895,893 9,004,676 3,790,310 7,220,758 3,790,310 7,220,758
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Table 5: Trade Volume, Exchange Correlations, and Listings

This table shows estimates of Specification (21):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(0-30 days)c,t × Correlatione+
β3Listing(> 30 days)c,t + β4Listing(> 30 days)c,t × Correlatione+
β5PreThreedayListingc,t + β6PreThreedayListingc,t × Correlatione+
δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. Listing(0-30 days)c,t and
Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30 days ago.
PreThreedayListingc,t accounts for the pre-announcement effect, given that Binance and Coinbase
typically announce listings 1-2 days in advance. Correlatione is the return correlation of Bitcoin
between the central exchange and the peripheral exchange e using the entire time period where we
have coverage for both exchanges in the pair. We keep only those incumbent coin-exchange pairs that
were listed at least 30 days before their listing on central exchanges, or pairs with coins that have
not been listed by central exchanges, in order to identify the listing effect on incumbent exchanges.
Odd and even columns are results based on listings on Binance and Coinbase, respectively. Standard
errors are clustered at the coin-exchange pair and time level. Standard errors are in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data
source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.01 -0.06 0.10 0.09∗∗∗ -3.2∗∗∗ -1.2∗∗∗ -0.93 0.39

(0.08) (0.04) (0.06) (0.03) (0.90) (0.38) (0.80) (0.34)
Listing (0-30 days) × Correlation 0.04 0.11∗∗ -0.09 -0.09∗∗ 4.3∗∗∗ 2.3∗∗∗ 1.9∗∗ 0.43

(0.09) (0.05) (0.07) (0.04) (0.97) (0.43) (0.87) (0.39)
Listing (> 30 days) -0.13 -0.37∗∗∗ 0.21∗∗∗ 0.12∗∗∗ -6.4∗∗∗ -2.3∗∗∗ -2.3∗∗ 1.3∗∗∗

(0.10) (0.05) (0.08) (0.04) (1.1) (0.49) (0.91) (0.45)
Listing (> 30 days) × Correlation 0.21∗ 0.49∗∗∗ -0.17∗∗ -0.11∗∗ 7.8∗∗∗ 3.7∗∗∗ 3.4∗∗∗ -0.52

(0.11) (0.06) (0.08) (0.04) (1.2) (0.55) (1.0) (0.50)
Pre Three-day Listing -0.06 -0.007 0.009 0.13∗∗∗ -3.6∗∗∗ -0.86∗∗ -1.1 0.67∗

(0.10) (0.05) (0.08) (0.04) (0.99) (0.40) (0.85) (0.37)
Pre Three-day Listing × Correlation 0.08 0.05 0.003 -0.13∗∗∗ 4.6∗∗∗ 2.2∗∗∗ 1.9∗∗ 0.39

(0.10) (0.05) (0.08) (0.04) (1.1) (0.46) (0.92) (0.42)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.47 0.48 0.64 0.70 0.79 0.78 0.84 0.84
Observations 4,864,077 8,975,799 4,864,077 8,975,799 3,771,526 7,211,809 3,771,526 7,211,809
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Internet Appendix

A Logistics of Transferring Cryptocurrencies Across
Exchanges

In this appendix, we describe the process of arbitrage across crypto exchanges, illustrating
some of the costs, delays, and risks involved. This builds on similar discussions in papers such
as Makarov and Schoar (2020), Dyhrberg (2020), Choi, Lehar and Stauffer (2022), Augustin,
Rubtsov and Shin (2023), and Hautsch, Scheuch and Voigt (2024).

Suppose a price gap emerges between ETH on a U.S. exchange (denominated in USD)
and a Korean exchange (denominated in KRW), with the U.S. price being lower. Exploiting
this arbitrage requires accounts on both exchanges, access to U.S. and Korean fiat, and the
ability to exchange USD for KRW. The arbitrage process follows these steps:

1. Fiat USD is deposited at the US exchange, using a bank transfer or other means. The
fiat is used to purchase ETH at the lower US price.

2. The purchased ETH is withdrawn from the US exchange and deposited in the Korean
exchange.

3. The ETH is sold in Korean won at the higher Korean exchange price.

4. To convert the profits back to fiat USD, the Korean won is then withdrawn from the
Korean exchange and exchanged for USD.

Several fees, restrictions, and delays affect the viability of this trade.

Fees. The total fees charged in the course of this transaction include fees charged by
exchanges for depositing, trading, and withdrawing in steps 1, 2, and 3, as well as transaction
fees charged for the blockchain transfer in step 2. Exchange fees vary widely. For large
exchanges like Binance, deposits and withdrawals are typically free, while trades incur a fee
of approximately 0.1% (with discounts for high-volume traders). Smaller exchanges may
charge more, but discounts for large traders and market makers are common. Step 4 incurs
FX conversion fees, often exceeding 1% for retail customers. Blockchain transfers also incur
“gas” fees, which typically range from $1–$10 USD for ETH transactions (varies by network
congestion and blockchain used). Since gas fees are fixed per transaction, transferring larger
amounts is more cost-efficient.
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Delays. Arbitrage transactions incur price risk, due to the time required for fund
movements. For a regular customer, the entire process of moving funds across crypto
exchanges may take days. Bank transfers, such as ACH transfers in the U.S., can take 1–3
business days. Blockchain transactions are much faster—ETH transfers typically settle within
a minute. However, some exchanges impose a withdrawal hold on recently purchased crypto
as a security measure. Selling ETH for KRW, withdrawing KRW, and converting it to USD
may involve bank transfer delays similar to step 1.

Frequent arbitrageurs can mitigate price risk by simultaneously selling ETH on the Korean
exchange at the time of purchase in the U.S. This effectively locks in profits before transfers
settle. However, if short-selling is unavailable, this requires maintaining ETH and fiat balances
on both exchanges.

Restrictions. In general, there are various restrictions and difficulties imposed by
regulators on crypto firms attempting to use fiat infrastructure. Crypto firms face difficulty
securing banking relationships in many jurisdictions.15 A report by the Alternative Investment
Management Association states that 75% of surveyed crypto hedge funds had issues accessing
or growing banking services for their funds, and an article by Bits about Money surveys
various difficulties that crypto-related firms face accessing banking services in the US.

Inter-exchange arbitrage in particular faces additional restrictions. Regulators also impose
KYC/AML requirements on entities interacting with crypto exchanges. For example, in the
U.S., crypto exchanges are classified as money services businesses under the Bank Secrecy Act
(1970) and must enforce strict KYC/AML policies.16 Capital controls also restrict arbitrage
in some jurisdictions. For example, strict capital controls in South Korea limit the ability
to withdraw KRW profits, making cross-border arbitrage difficult.17 Similarly, in India,
crypto traders have received Foreign Exchange Management Act (FEMA) notices for offshore
transfers, complicating arbitrage.18

15For example, Axios reports on "Operation Choke Point" in the U.S., which has made it harder for crypto
firms to access banking services. Similarly, Forbes highlights the challenges blockchain companies face in
securing banking relationships in the UK.

16See, for example, the 2019 joint statement by the CFTC, FinCEN, and the SEC.
17See Reuters.
18See MNP Law.
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B Analytical Solutions for Example Networks

B.1 Two-Node Network

Consider an economy with two exchanges, indexed by 1 and 2, and a single arbitrageur. From
Definition (1), the equilibrium equations are:

p1 − ψ = −γ (x1 − z12)

p2 − ψ = −γ (x2 + z12)

ζz12 = p2 − p1

The unique solution is:

p1 − ψ = −γ
[

(ζ + γ)x1 + γx2

2γ + ζ

]

p2 − ψ = −γ
[
γx1 + (ζ + γ)x2

2γ + ζ

]

z12 = γ

2γ + ζ
(x1 − x2)

B.2 Star Network

Consider a setting with N + 1 exchanges arranged in a star configuration. Let C denote the
“central” exchange, and let i = 1 . . . N index the remaining exchanges. From Definition (1),
the equilibrium equations are:

pC − ψ = −γ
(
xC −

N∑
i=1

zC→i

)
(28)

pi − ψ = −γ (xi + zC→i) (29)

ζziC = pC − pi (30)

The unique equilibrium equations are:

pC − ψ = −γ
[

(γ + ζ)xC + γ
∑N

i=1 xi

γ (N + 1) + ζ

]
(31)

pi − ψ = −γ
[

(γ2 + (1 +N) γζ + ζ2)xi + (γ2 + γζ)xC +∑
j ̸=i γ

2xj

(γ + ζ) (γ (N + 1) + ζ)

]
(32)

ziC =
(Nγ2 + γζ)xi − (γ2 + γζ)xC −∑

j ̸=i γ
2xj

(γ + ζ) (γ (N + 1) + ζ) (33)
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There are many ways to arrive at (31) to (33); we briefly illustrate one method. First, consider
a shock to the central node, so xC ̸= 0 and all xi = 0. We can then easily solve (28) to (30),
finding:

pC − ψ = −γ γ + ζ

(ζ + γ (N + 1))xC

pi − ψ = −γ γ

(ζ + γ (N + 1))xC

zCi = γ

ζ + γ (N + 1)xC

Now, suppose x1 ̸= 0, and suppose xC = 0 and xj = 0 for all j ̸= 1. While slightly more
involved, we can solve (28) to (30), finding:

p1 − ψ = −γ
[

(γ2 + (1 +N) γζ + ζ2)x1

γ2 +Nγ2 + 2γζ +Nγζ + ζ2

]

pC − ψ = −γ
[

(γ2 + γζ)x1

γ2 +Nγ2 + 2γζ +Nγζ + ζ2

]

pi − ψ = −γ
[

γ2x1

γ2 +Nγ2 + 2γζ +Nγζ + ζ2

]
∀j ̸= i

z1C = (Nγ2 + γζ)x1

γ2 +Nγ2 + 2γζ +Nγζ + ζ2

zCj = γ2x1

γ2 +Nγ2 + 2γζ +Nγζ + ζ2 ∀j ̸= i

Now, by symmetry, the effect of x1 is identical to the effects of x2 . . . xN . Moreover, the
structure of the equilibrium equations, (12), implies that solutions are linear in xC , x1 . . . xN ;
thus, the effect of a combination of xC , x1 . . . xN is simply the sum of the effects of each
individual shock. We can thus use the coefficients from the solutions to xC ≠ 0 and x1 ̸= 0
to fill in all coefficients in the equations (31) to (33).
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C Proof of Proposition 1

Note that the variable ψ in Definition 1 simply shifts all equilibrium prices upwards and
downwards; thus, for notational convenience, we will set ψ = 0 throughout this appendix; the
expressions for ψ ̸= 0 can be derived simply by replacing all price expressions with pi − ψ.

C.1 Equilibrium Equations

The four strategies in Figure 2 represent a “cluster” of either one or two nodes, connected to
the center of a star network, where there are many peripheral nodes not involved in the four
colored strategies depicted in the bottom left of the figure. With slight abuse of notation, let
N represent the number of peripheral exchanges in the star network: note that this N differs
from the number of peripheral exchanges in the main text, since we have not counted the
center node and the connected cluster of 1 or 2 nodes. As Figure 2 shows, we use C to refer
to the network center; B is a node connected to C; and A is a node connected either to B in
the green strategy, or to B and C in the orange strategy.

From Definition 1, the equilibrium equations for this system are first the equilibrium
equations for the star network:

pC = −γ
(
xC + zBC −

N∑
i=1

zCi

)
(34)

pi = −γ (xi + zCi) (35)

ζzCi = pi − pC (36)

together with the equilibrium equations for the connected cluster. In the “blue” case of a
single connected node B, we have:

pB = −γ (xB − zBC) (37)

ζzBC = pC − pB (38)

In the “red” case of two arbitrageurs a ∈ {1, 2} and a single peripheral exchange B, we have:

pB = −γ
(
xB − z1

BC − z2
BC

)
(39)

ζz1
BC = pC − pB (40)

ζz2
BC = pC − pB (41)

57



In the “green” case of two peripheral nodes, where A is connected to B and B to the center
C, these are:

pB = −γ (xB + zAB − zBC) (42)

pA = −γ (xA − zAB) (43)

ζzBC = pC − pB (44)

ζzAB = pB − pA (45)

In the “orange” case of two peripheral nodes A,B both connected to each other and the
center C, we have:

pB = −γ (xB + zAB − zBC) (46)

pA = −γ (xA − zAB − zAC) (47)

ζzBC = pC − pB (48)

ζzAB = pB − pA (49)

ζzAC = pC − pA (50)

C.2 Convergence to the N = ∞ Limit

We will now characterize the limit as the number of peripheral exchanges N → ∞ for the
“green” strategy; arguments for the other strategies are analogous. First, note that the
equations (34) to (36) are exactly the equilibrium conditions for the star network in Appendix
B.2, except replacing xC with xC + zBC . From Appendix B.2, the unique solution for pC is
thus:

pC = −γ
[

(γ + ζ) (xC + zBC) + γ
∑N

i=1 xi

γ (N + 1) + ζ

]
(51)

We can thus write (51) as:
pC = yN

C + ξzN
BC (52)

where,
ξN ≡ −γ γ + ζ

γ (N + 1) + ζ
(53)

yN
C ≡ −γ (γ + ζ)xC + γ

∑N
i=1 xi

γ (N + 1) + ζ
(54)

Intuitively, yN
C is a random variable, which is a function of x1 . . . xN and xC ; it behaves like an

“intercept” or “constant” term for pC , in the sense that we have pC = yC when zBC = 0. The
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constant ξN is a slope term, capturing the effect of zBC on pC . A set of prices pA, pB, pC and
transfers zAB, zBC thus forms an equilibrium under shocks x1 . . . xN , xC , xB, xA if and only if
the prices and transfers satisfy (52), in addition to the A,B cluster equilibrium equations
(42) to (45); for such a system, peripheral prices pi and flows ziC within the star network can
be solved for using expressions (32) and (33).

An intuition behind (52) is that, when the A,B cluster is connected to the star network
via node C, node C in fact behaves like a single node, with a different “inventory shock”
yN

C , which is an aggregate of all the star network inventory shocks, and a different inventory
responsiveness ξ, reflecting the fact that inventory sold in node C will be redistributed via
arbitrage to all peripheral nodes.

We can thus write the solution of the A,B cluster system, for any N , as the 5-equation
system:

pB + γzAB − γzBC = −γxB (55)

pA − γzAB = −γxA (56)

ζzBC − pC + pB = 0 (57)

ζzAB − pB + pA = 0 (58)

pC − ξNzBC = yN
C (59)

Letting MN denote the matrix representation of the system on the left, we have:

pB

pA

ζzBC

ζzAB

pC


=
(
MN

)−1



−γxB

−γxA

0
0
yN

C


(60)

where MN is a series of constant matrices – with dependence on N because ξN is an element
of MN – and yN

C is a series of random variables, both indexed by the number of peripheral
exchanges N .

Now, we take the limit as N → ∞. Notice that we can write (54) as:

yN
C ≡ −γ

(
(γ + ζ)xC

γ (N + 1) + ζ
+ γ

∑N
i=1 xi

γ (N + 1) + ζ

)
(61)

We assumed that x1 . . . xN , xC are i.i.d. and bounded; hence, the weak law of large numbers
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(WLLN) implies that the sequence yN
C converges to the constant 0 in probability as N → ∞,

and moreover yN
C is uniformly integrable. Similarly, (53) shows that the constant ξN converges

to 0 as N → ∞.

We then apply the continuous mapping theorem to (60). We will show in Appendix C.3
below that (60) is solvable at yN

C = 0, ξN = 0 , by explicitly solving the system. This implies
that the solution of (60) is a continuous and differentiable function jointly of yN

C , which
is an element of the vector on the RHS, and ξN , which is an element of the MN matrix;
formally, this is because the function MN →

(
MN

)−1
is continuously differentiable wherever

MN is invertible, and the matrix-vector multiplication on the RHS of (60) is also a smooth
operation.

The continuous mapping theorem immediately implies that, as N → ∞, all outcomes
pB, pA, zBC , zAB, pC converge in probability to their values in the limiting case, which we can
write as:

y∞
C = 0, ξ∞ = 0

We additionally require convergence of second moments of outcome variables, in order to
calculate arbitrageur surplus. To show this, first note that

(
yN

C

)2
is uniformly integrable

(U.I.) by the WLLN for bounded random variables xi, and
(
ξN
)2

is trivially U.I. since it is a
constant. Second, the mapping in (60) is differentiable at the limit point. Thus, since the
LHS of (60) is an asymptotically linear function of the U.I. sequences of random variables(
yN

C

)2
and

(
ξN
)2

, the second moments of all outcomes on the LHS of (60) also converge to
their limit values as N → ∞.

The limit of the sequence of outcomes has a particularly simple representation because (59)
simply reduces to the condition that pC = 0. Intuitively, this limit case describes equilibrium
in a scenario where the A,B cluster is connected to an infinitely deep market, where an
arbitrary amount can be bought and sold at price 0. We next characterize equilibrium
outcomes in this limit case.

C.3 Characterizing Equilibria in the N → ∞ Limit

Now, we characterize outcomes for the four colored strategies in the limit case of pC = 0
(recall that we normalized ψ = 0, so in general in the limit pC = ψ).
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C.3.1 Blue: One Node

First, we consider the blue strategy in Figure 2: consider a single peripheral exchange B
connected to the central exchange C by a single arbitrageur. The equilibrium equations are
(37) and (38), setting pC = 0. The solutions are:

pB = −γ
(

ζ

γ + ζ

)
xB (62)

zBC = γ

ζ + γ
xB (63)

From (6), expected arbitrageur profits are proportional to the expectation of (pB − ψ)2; from
(62), this is just

γ2
(

ζ

γ + ζ

)2

σ2 (64)

where σ2 is the variance of xB. Multiplying by 1
2ζ

, we get the expected profit of the blue
strategy.

C.3.2 Red: One Node, Two Arbitrageurs

Now we consider the red strategy, characterized by equations (39) to (41): suppose there
are two arbitrageurs, a ∈ {1, 2}, connecting a single peripheral exchange B to the central
exchange C. Solving the system, equilibrium prices are:

pB = −γ
(

ζ

2γ + ζ

)
xB (65)

Arbitrageurs’ profits are again proportional to the expectation of (pB − ψ)2, which is:

γ2
(

ζ

2γ + ζ

)2

σ2 (66)

Multiplying by 1
2ζ

, we get the expected profit of the red strategy. Now, (66) is strictly lower
than (64); thus, the red strategy in Figure 2 is always dominated by the blue strategy in the
limit as N → ∞, and we need not consider equilibria in which the red strategy is played.

C.3.3 Green: Two Nodes, One Central Link

Next, we consider the green strategy, characterized by (42) to (45), setting pC = 0: suppose
there are two peripheral exchanges A,B, such that A is connected to B, and B is connected
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to the central exchange C. The solutions are:

pA = −γ
[

(2γζ + ζ2)xA + γζxB

γ2 + 3γζ + ζ2

]

pB = −γ
[
γζxA + (γζ + ζ2)xB

γ2 + 3γζ + ζ2

]

zBC = γ2xA + (γ2 + γζ)xB

γ2 + 3γζ + ζ2

zAB = (γ2 + γζ)xA − γζxB

γ2 + 3γζ + ζ2

To characterize the green strategy’s profits, we are interested in the profit of the A,B

arbitrageur. This is:
pA − pB = γζ (ζxB − (ζ + γ)xA)

γ2 + 3γζ + ζ2

In expectation, with xB, xA independent with variance σ2, this is:

E
[
(pA − pB)2

]
= γ2ζ2 (γ2 + 2γζ + 2ζ2)

(γ2 + 3γζ + ζ2)2 σ2 (67)

Multiplying by 1
2ζ

, we get the expected profit of the green strategy in Figure 2.

C.3.4 Orange: Two Nodes, Two Central Links

Finally, we consider the orange strategy, characterized by equations (46) to (50), setting
pC = 0. The solutions are:

pA = −γ
[

(2γζ + ζ2)xA + γζxB

3γ2 + 4γζ + ζ2

]

pB = −γ
[
γζxA + (2γζ + ζ2)xB

3γ2 + 4γζ + ζ2

]

zBC = γ2xA + (2γ2 + γζ)xB

3γ2 + 4γζ + ζ2

zAB = γ (xA − xB)
3γ + ζ

zAC = (2γ2 + γζ)xA + γ2xB

3γ2 + 4γζ + ζ2

The A,B price gap is then:
pA − pB = (xB − xA) γζ

3γ + ζ
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Arbitrageurs’ payoffs are 1
2ζ

times the variance of this price gap, which is:

E
[
(pA − pB)2

]
= 2γ2ζ2

(3γ + ζ)2σ
2 (68)

The difference between the price gap under the green strategy, (67), and the price gap under
the orange strategy, (68), rearranges to:

γ3ζ2 (7γ3 + 12γ2ζ + 9γζ2 + 2ζ3)
(3γ + ζ)2 (γ2 + 3γζ + ζ2)2 σ2

Since γ > 0 and ζ > 0, this difference is always positive. Thus, regardless of ζ and γ, the green
strategy always induces a larger variance in the pA, pB price gap, and thus is more profitable
for the A,B arbitrageur in expectation, than the orange strategy. This demonstrates the
economically intuitive fact that the orange strategy of linking two connected peripheral nodes
is always dominated by the green strategy of linking an isolated node to a peripheral node.

C.3.5 Comparing Blue and Green Strategies

Since we have shown that the red strategy is dominated by the blue strategy, and the
orange strategy is dominated by the green strategy, a star-network equilibrium exists for any
parameters such that the blue strategy pays higher than the green strategy. Taking the ratio
of (67) and (64), we require:

(γ + ζ)2 (γ2 + 2γζ + 2ζ2)
(γ2 + 3γζ + ζ2)2 < 1

Rearranging, this is:

(γ + ζ)2
(
γ2 + 2γζ + 2ζ2

)
−
(
γ2 + 3γζ + ζ2

)2
< 0

Expanding and simplifying, we have:

ζ3 − 2γ3 − 4γ2ζ < 0

Letting θ ≡ ζ
γ
, this is:

θ3 − 4θ − 2 < 0

Since ζ > 0, γ > 0, we have θ > 0. It can be verified that θ is negative on the interval
[0, 2.21432 . . .], and positive otherwise. Thus, the blue strategy delivers higher expected
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utility than the green strategy whenever ζ
γ
< 2.21432.

C.4 Completing the Proof

Together, Appendix C.2 showed that, up to at least second moments, all equilibrium quantities
in B or A,B modules converge to their values derived in Appendix C.3 as N → ∞.19 Hence,
it is possible to find N sufficiently large that expected arbitrageur profits – which depend
only on second moments of equilibrium prices – in the red, green, orange, and blue strategies
are arbitrarily close to these limit values. Appendix C.3 then showed that, in the limit, the
red strategy is dominated by the blue strategy, the orange strategy is dominated by the
green strategy, and the blue strategy has higher payoffs than the green strategy if and only
if ζ

γ
< 2.21432. We have thus proved Proposition 1: whenever ζ

γ
< 2.21432, for sufficiently

large N , the blue strategy’s payoffs will be strictly higher than all other strategies’ payoffs,
so a star-shaped equilibrium exists.

19As a minor aside, note that with slight abuse of notation we used N in this appendix to represent the
number of peripheral exchanges, excluding the central exchanges and the A, B cluster. This is either two or
three exchanges less than the total number of exchanges, which we refer to as N in the main text. This does
not affect our limit arguments.
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D Price Impact

In the baseline model, we assumed for simplicity that arbitrageurs bid competitively, ignoring
the impact of their behavior on market prices. A more natural assumption is that arbitrageurs
bid strategically, optimally accounting for their own impact on prices. This appendix solves
the model assuming strategic bidding. We prove the following proposition:

Proposition 2. In the model with strategic bidding, a star network equilibrium exists when-
ever:

ζ

γ
< 1.07395

Proposition 2 is qualitatively similar to Proposition 1 in the main text: star-network
equilibria exist when the ratio ζ

γ
is sufficiently low. However, the cutoff on ζ

γ
is slightly

lower under strategic bidding than the cutoff in (13) in the main text. While the result is
qualitatively similar, the derivations are substantially more complex; we thus focus on the
competitive case in the main text for simplicity.

As in Appendix C, for notational simplicity we assume ψ = 0 throughout.

Suppose an arbitrageur a links nodes i, j within some network. The arbitrageur can be
thought of facing a random inverse residual supply function, specifying how the price gap

∆pji = pj − pi

depends on her trade quantity zij. In general, this inverse residual supply function has the
form:

∆pji = −Kzij + ηij

where K > 0 is a slope parameter, and ηij is a random intercept term. In our setting, since
randomness results from zero-mean inventory shocks xij, ηij will also have mean 0 in our
setting.

Following the literature on demand-function submission games (Klemperer and Meyer,
1989; Rostek and Yoon, 2020), we require the arbitrageur to submit a demand schedule,
specifying zij (∆pji), the amount she is willing to transport between i and j as a function of the
price gap ∆pji. We require the demand schedule to be an ex-post best response, implementing
the arbitrageur’s optimal point on her residual supply curve for every realization of ηij. We
prove the following proposition, characterizing the arbitrageur’s best response, in Appendix
D.6 below.
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Proposition 3. Suppose an arbitrageur faces an inverse residual supply schedule of the form:

∆pji = −Kzij + ηij (69)

where ηij has mean 0. The arbitrageur’s best response is to submit the demand schedule:

zij (∆pji) = ∆pji

K + ζ
(70)

The arbitrageur’s expected utility is:
V ar [ηij]
4K + 2ζ (71)

Note that, if the arbitrageur bids competitively, setting price equal to marginal cost and
ignoring her price impact, from (5), her demand schedule satisfies:

zij (∆pji) = ∆pji

ζ
(72)

Hence, as is known in the literature, strategic arbitrageurs shade bids: the slope of (70) with
respect to ∆pji is lower than the slope of (72). Arbitrageurs shade bids more the larger K,
the slope of inverse residual supply, is; that is, arbitrageurs shade more when withholding
supply has a greater impact on market prices. The arbitrageur’s final expected utility, (71), is
a function of the variance in the intercept parameter η2

ij, the slope of inverse residual supply
K, and the arbitrageur’s transportation cost parameter ζ.

We will demonstrate conditions under which star network equilibria exist under strategic
bidding, in the limit as N → ∞, analogously to the proof of Proposition 1. We will
characterize the asymptotic expected payoffs of the red, green, orange, and blue strategies in
Figure 2, in the limit as the central node becomes an infinitely elastic source at a fixed price
pC = 0. We will then find conditions on ζ, γ under which the blue strategy of completing the
star pays higher than the red and green strategies.

D.1 Blue: One Node

As in appendix C.3.1, we consider the “blue” strategy, where an arbitrageur links an isolated
node B to the center C. From (37), customers’ demand is:

pB = −γ (xB − zBC)
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Now the price at the center is pC = 0, so we immediately have:

∆pC,B = −pB = γxB − γzBC (73)

We can then apply Proposition 3 with K = γ, to find that the arbitrageur’s optimal bid is:

zBC = ∆pCB

γ + ζ
(74)

Now, in (73), the intercept term is ηBC = γxB, so:

V ar [ηBC ] = V ar (γxB) = γ2σ2

Hence, from (71), arbitrageur expected utility is:

γ2

4γ + 2ζ σ
2 (75)

D.2 Red: One Node, Two Arbitrageurs

Next, we consider the payoffs of the “red” strategy, where two arbitrageurs link a single
exchange to the center. Analogous to (39), customers’ demand is:

pB = −γ
(
xB − z1

BC − z2
BC

)
(76)

The difficulty in directly applying Proposition 3 is that the residual supply curve one
arbitrageur faces depends on the other arbitrageurs’ bid slope. Thus, we need to find a
symmetric equilibrium in bid slopes, in which each arbitrageur’s chosen bid slope is a best
response to the residual supply induced by the other arbitrageur’s bid slope. Conjecture a
symmetric equilibrium bid curve:

zBC = z1
BC = z2

BC = bBC (−pB) (77)

Substituting (77) into (76) for z1
BC , we have from arbitrageur 2’s perspective:

pB = −γ (xB + bBCpB − zBC)

Solving for pB, we have:
pB = −γxB

1 + bBCγ
+ γzBC

1 + bBCγ
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Now since the price at the center is pC = 0, we immediately have:

∆pC,B = −pB = γxB

1 + bBCγ
− γzBC

1 + bBCγ
(78)

We can then apply (70) of Proposition 3, taking the zBC coefficient in (78):

KBC = γ

1 + bBCγ
(79)

Plugging into (70), if one arbitrageur’s bid slope is bBC , the other arbitrageur’s optimal bid
curve is:

zBC = ∆pCB
γ

1+bBCγ
+ ζ

(80)

Now, bBC in (77) was defined as the coefficient on price in the submitted demand curve.
Thus, in equilibrium we must have that (80) is consistent with (77):

bBC = 1
γ

1+bBCγ
+ ζ

(81)

Note that bBC in (81) is always greater than 1
γ+ζ

, the bid slope in the case with one arbitrageur
and one node, in (74). This is because the arbitrageur faces an elastic demand curve from
the other arbitrageur, thus increasing the elasticity of residual supply, causing her to also bid
more steeply. (81) defines a quadratic equation, whose unique positive solution is:

bBC =
√
ζ
√

4γ + ζ − ζ

2γζ (82)

This is thus the unique equilibrium bid slope. To evaluate expected profits, note that from
(78), we have:

ηBC = γ

1 + bBCγ
xB

Hence,

V ar [ηBC ] =
(

γ

1 + bBCγ

)2

σ2 (83)

We can then plug in bBC from (82) into (83), and we can use the value of KBC from (79), to
get expected profits:

γ2(√
ζ
√

4γ+ζ−ζ

2ζ
+ 1

)2 (
4γ√

ζ
√

4γ+ζ−ζ

2ζ
+1

+ 2ζ
)σ2
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Rearranging somewhat, we have:

γ2(
4γ
(√

ζ
√

4γ+ζ−ζ

2ζ
+ 1

)
+ 2ζ

(√
ζ
√

4γ+ζ−ζ

2ζ
+ 1

)2)σ2 (84)

Now, √
ζ
√

4γ + ζ − ζ

2ζ + 1 ≥ 1

which implies that the red strategy’s expected profits, (84), are always less then or equal to
the blue strategy’s expected profits, (75). Thus, as in the baseline model, the red strategy of
competing with an arbitrageur over a peripheral exchange remains dominated by the blue
strategy of connecting to a new peripheral exchange, under strategic bidding.

D.3 Green: Two Nodes, One Central Link

Next, we consider the payoff to the green strategy, of linking one peripheral node to another
peripheral node. Here, once again, the difficulty in applying Proposition 3 is that the residual
supply curve facing one arbitrageur depends on the other arbitrageur’s bid slope; thus, again,
we need to find an equilibrium in bid slopes. In such an equilibrium, bids will take the form:

zBC = bBC (−pB) (85)

zAB = bAB (pB − pA) (86)

for some coefficients bBC , bAB, which must be equal to the RHS of (70) in equilibrium. Note
that these two equations resemble (44) and (45), but with different coefficients on prices. The
customer demand functions remain unchanged from (42) and (43):

pB = −γ (xB + zAB − zBC) (87)

pA = −γ (xA − zAB) (88)

We now consider the best-responses of the B,C and A,B arbitrageurs respectively.

D.3.1 B,C Arbitrageur

The B,C arbitrageur faces a residual supply curve which results from the combined behavior
of customers at both links and the A,B arbitrageur. To solve for this, take equations (86),
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(88), (87) and note that we can solve for pB, eliminating pA and zAB. This gives:

pB = 1
2bABγ + 1

(
−bABγ

2xA −
(
γ + bABγ

2
)
xB +

(
bABγ

2 + γ
)
zBC

)
Thus, using that pC = 0, we have:

∆pCB = pC − pB = −pB = − 1
2bABγ + 1

(
−bABγ

2xA −
(
γ + bABγ

2
)
xB +

(
bABγ

2 + γ
)
zBC

)
(89)

We can then apply (70) of Proposition 3, taking the zBC coefficient in (89):

KBC = bABγ
2 + γ

2bABγ + 1

to calculate the B,C arbitrageur’s optimal bid curve:

zBC (∆pCB) = ∆pCB

K + ζ
= ∆pCB

bABγ2+γ
2bABγ+1 + ζ

Since we defined bBC as the price coefficient in B,C’s optimal demand schedule, we can then
write B,C’s best response bid slope, as a function of bAB, as simply:

bBC = 1
bABγ2+γ
2bABγ+1 + ζ

(90)

Note that we can write:
bBC = 1

bABγ+1
2bABγ+1γ + ζ

Thus, we will always have:
bBC >

1
γ + ζ

which is the bid slope of the one-node arbitrageur, from (74) of Subsection D.1. Intuitively, the
B,C arbitrageur in this setting faces slightly more elastic demand compared to Subsection D.1,
due to the fact that node B is connected to node A; she thus bids slightly more aggressively.

D.3.2 A,B Arbitrageur

Similarly, the A,B arbitrageur faces a residual supply curve which results from the behavior
of customers and the B,C arbitrageur. To solve for this, we can first solve (85) and (87) to
find:

pB = −γxB − γzAB

1 + bBCγ
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Thus, using (88),

∆pBA = pB − pA = −γxB − γzAB

1 + bBCγ
− [−γ (xA − zAB)]

∆pBA = γxA − γ

1 + bBCγ
xB − zAB

(
γ + γ

1 + bBCγ

)
(91)

We can thus apply (70) of Proposition 3, taking the zAB coefficient in (91):

KAB = γ + γ

1 + bBCγ
(92)

Hence, the A,B arbitrageur’s best response condition is:

bAB = 1(
γ + γ

1+bBCγ

)
+ ζ

(93)

Notice that (93) will always be slightly lower than 1
γ+ζ

, the bid slope of the one-node
arbitrageur in Subsection D.1. Intuitively, the A,B arbitrageur connects an isolated node to
an imperfectly elastic peripheral node; she always faces slightly more price impact than an
arbitrageur connecting to a perfectly elastic center, and thus shades bids more. As bBC → ∞,
so the peripheral node’s demand slope becomes perfectly elastic, the AB arbitrageur’s
best-response bid slope converges to 1

γ+ζ
.

D.3.3 Solving for Equilibrium

An equilibrium in the two-node setting requires expressions (90) and (93) to be satisfied
simultaneously. These two equations are quadratic, and have two pairs of solutions, in which
only one pair is positive; the positive solutions are:

bAB =
√

32γ4 + 72γ3ζ + 48γ2ζ2 + 12γζ3 + ζ4 − 2γζ − ζ2

2 (4γ3 + 7γ2ζ + 2γζ2) (94)
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bBC = 1
2γ2 + 4γζ + ζ2

− 9γ2ζ2

4γ3 + 7γ2ζ + 2γζ2 − 4γ3ζ

4γ3 + 7γ2ζ + 2γζ2 − ζ4

4γ3 + 7γ2ζ + 2γζ2

− 11γζ3

2 (4γ3 + 7γ2ζ + 2γζ2) + ζ2√32γ4 + 72γ3ζ + 48γ2ζ2 + 12γζ3 + ζ4

4γ3 + 7γ2ζ + 2γζ2 +

7γζ
√

32γ4 + 72γ3ζ + 48γ2ζ2 + 12γζ3 + ζ4

2 (4γ3 + 7γ2ζ + 2γζ2) +

2γ2√32γ4 + 72γ3ζ + 48γ2ζ2 + 12γζ3 + ζ4

4γ3 + 7γ2ζ + 2γζ2 − ζ

 (95)

To evaluate the payoff to the green strategy, we wish to to evaluate the expected profit
of the A,B arbitrageur in equilibrium. We can calculate the equilibrium value of KAB by
plugging the expression for bBC from (95) into (92). Moreover, from (91), we have:

ηAB = γxA − γ

1 + bBCγ
xB

Hence, using that we assumed inventory shocks are independent,

V ar [ηAB] =
γ2 +

(
γ

1 + bBCγ

)2
σ2

where we can once again plug in the equilibrium bBC value from (95). We can then use
expression (71) of Proposition 3 to calculate the A,B arbitrageur’s expected profits. These ex-
pressions are too convoluted to usefully display; we include them in a companion Mathematica
notebook to the paper.

D.4 Orange: Two Nodes, Two Central Links

We now consider the orange strategy. Equilibrium bids are:

zBC = bC (−pB) (96)

zAC = bC (−pA) (97)

zAB = bAB (pB − pA) (98)

where we used the symmetry-imposed restriction that bC is common to the B,C and A,C

arbitrageurs. The customer demand functions are:

pB = −γ (xB + zAB − zBC) (99)
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pA = −γ (xA − zAB − zAC) (100)

We now consider the best responses of the B,C arbitrageur (thus also the A,C arbitrageur
by symmetry) and the A,B arbitrageur.

D.4.1 B,C arbitrageur

The B,C arbitrageur faces a residual supply curve which results from the combined behavior
of customers at both links and the A,B arbitrageur. To solve for this, take equations (97),
(98), (99), (100) and note that we can solve for pB, eliminating pA, zAB, and zAC . This gives:

pB = −bABγ
2xA − (γ + bABγ

2 + bCγ
2)xB + (γ + bABγ

2 + bCγ
2) zBC

1 + 2bABγ + bCγ + bABbCγ2

Thus, using that pC = 0, we have:

∆pCB = pC − pB = −pB = −−bABγ
2xA − (γ + bABγ

2 + bCγ
2xB) + (γ + bABγ

2 + bCγ
2) zBC

1 + 2bABγ + bCγ + bABbCγ2

(101)
We can then apply (70) of Proposition 3, taking the zBC coefficient in (101):

KBC = γ + bABγ
2 + bCγ

2

1 + 2bABγ + bCγ + bABbCγ2

Hence, the B,C arbitrageur’s best response condition is:

bC = 1(
γ+bABγ2+bCγ2

1+2bABγ+bCγ+bABbCγ2

)
+ ζ

(102)

Note that we can write:
bC = 1(

1+bABγ+bCγ
1+2bABγ+bCγ+bABbCγ2

)
γ + ζ

so once again, we always have:
bC >

1
γ + ζ

by a similar argument to Appendix D.3.1.
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D.4.2 A,B arbitrageur

We solve the system defined by (96), (97), (99), and (100), finding that:

∆pBA = pB − pA = 1
1 + bCγ

(γxA − γxB − 2γzAB) (103)

We can thus apply (70) of Proposition 3, taking the zAB coefficient in (103):

KAB = 2γ
1 + bCγ

(104)

Hence, the A,B arbitrageur’s best response condition is:

bAB = 1(
2γ

1+bCγ

)
+ ζ

(105)

Unlike Appendix D.3.2, (105) is not guaranteed to be lower than 1
γ+ζ

.

D.4.3 Solving for Equilibrium

An equilibrium in the two-node setting requires expressions (102) and (105) to be satisfied
simultaneously. These two equations are quadratic, and have two pairs of solutions, in which
only one pair is both positive; the positive solutions are:

bC = −2γ2 +
√

4γ4 + 48γ3ζ + 44γ2ζ2 + 12γζ3 + ζ4 − 4γζ − ζ2

2 (2γ2ζ + γζ2) (106)

bAB = 1
−4γ2 + 2γζ + ζ2

 6γ2ζ2

2γ2ζ + γζ2 + γζ3

2γ2ζ + γζ2 + 4γ4

2γ2ζ + γζ2 +

10γ3ζ

2γ2ζ + γζ2 − 2γ2√4γ4 + 48γ3ζ + 44γ2ζ2 + 12γζ3 + ζ4

2γ2ζ + γζ2 −

γζ
√

4γ4 + 48γ3ζ + 44γ2ζ2 + 12γζ3 + ζ4

2γ2ζ + γζ2 + 2γ + ζ

 (107)

To evaluate the payoff to the orange strategy, we wish to evaluate the expected profit of the
A,B arbitrageur in equilibrium. We can calculate the equilibrium value of KAB by plugging
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the expressions for bC from (106) into (104). Moreover, from (103), we have:

ηAB =
(

γ

1 + bCγ

)
(xA − xB)

Hence,

V ar [ηAB] = 2
(

γ

1 + bCγ

)2

σ2

Plugging in bC from (106), we can then use expression (71) of Proposition 3 to calculate the
A,B arbitrageur’s expected profits. As with the case in Appendix D.3, the expressions are
too convoluted to usefully display, so we keep them in a companion Mathematica notebook.
Numerically, we found that, as in the case without price impact, the profits of the “orange”
strategy of connecting two connected are always less than the “green” strategy in Appendix
D.3 of connecting an isolated peripheral node to a connected peripheral node.

D.5 Star Network Equilibrium

As in the proof of Proposition 1, we have shown that the red strategy is dominated by the
blue strategy, and the orange strategy is dominated by the green strategy. Thus, a star
network equilibrium exists whenever the blue strategy pays higher than the green strategy;
that is, conditional on N − 1 arbitrageurs forming a star, the final arbitrageur finds it optimal
to complete the star. Since we showed that the red strategy is dominated by the blue
strategy, we need only to show that the payoff to the A,B arbitrageur in the green strategy,
characterized in Subsection D.3, is lower than (75), the payoff to an arbitrageur connecting a
single isolated node to the center.

While the outcomes are complex, expected profits in both cases are homogeneous of
degree 1 in the pair (ζ, γ); that is, if we scale up both ζ and γ by a constant, all profits scale
up by the same factor. Thus, as in the main text, the sole determinant of whether the blue
strategy’s payoff dominates the green strategy’s payoff, as N becomes large, is the ratio ζ

γ
.

Using Mathematica, we verified that the ratio of profits between the two strategies is a simple
monotone decreasing function of ζ

γ
, and the blue strategy has higher payoff whenever:

ζ

γ
<

1
3

(
−4 + 3

√
80 − 30

√
6 + 3

√
10
(
8 + 3

√
6
))

Where the RHS is approximately equal to 1.07395. This proves Proposition 2.
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D.6 Proof of Proposition 3

In general, as in (4) in the main text, arbitrageurs’ profit is:

V (zij) = zij∆pji − ζ

2 (zij)2 (108)

Consider ∆pji as a function of zij , and differentiate with respect to zij ; a necessary condition
for optimality is:

zij
∂∆pji

∂zij

+ ∆pji − ζzij = 0

From (69) we have that ∂∆pji

∂zij
= −K. Thus, rearranging, for any pair (zij,∆pji) to satisfy

arbitrageurs’ first-order condition, it must satisfy:

−Kzij − ζzij + ∆pji = 0

Solving for zij, we get (70).

To calculate profits, we then express zij and ∆pji as functions of ηij. We have:

zi,j = ∆pj,i

K + ζ
= −Kzi,j + ηi,j

K + ζ

=⇒ zij = ηij

2K + ζ

Using (70), we then have:
∆pji = K + ζ

2K + ζ
ηij

Thus, we can plug in to (108) to evaluate arbitrageur profits as a function of ηij:

V (ηij) =
(

1
2K + ζ

ηi,j

)(
K + ζ

2K + ζ
ηi,j

)
− ζ

2

(
1

2K + ζ
ηi,j

)2

This simplifies to:
= 1

4K + 2ζ η
2
ij

Taking expectations over ηij, and using that E [ηij] = 0, we have:

E [V (ηij)] =
E
[
η2

ij

]
4K + 2ζ = V ar [ηij]

4K + 2ζ
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E Entry

In the main text, we assumed there are exactly N − 1 arbitrageurs. In this appendix, we
construct an entry game in which, for some entry costs, exactly N − 1 arbitrageurs choose to
enter in equilibrium.

We assume there is an infinite number of potential arbitrageurs a = 1, 2, . . .. Arbitrageurs
sequentially decide whether to pay entry cost C and enter the market. Once one arbitrageur
decides not to enter, the entry phase concludes, and arbitrageurs play the network game
in the main text, simultaneously selecting a pair of exchanges to link. An equilibrium in
this game specifies a set of beliefs under which arbitrageurs’ entry decisions maximize their
expected utility.

Our main result is that there exist entry costs and beliefs that sustain equilibria in which
exactly N − 1 arbitrageurs enter. In particular, for sufficiently small values of ϵ, suppose the
entry cost C satisfies:

C <
γ2

2ζ

(
ζ

γ + ζ

)2

σ2 − ϵ (109)

that is, C is lower than the expected arbitrageur payoff in the “blue” strategy characterized in
Appendix C.3.1 by some small ϵ. Then we can construct beliefs which sustain an equilibrium
in which exactly N − 1 arbitrageurs enter.

The beliefs we will consider are simple. Arbitrageurs 1 . . . N − 1 believe that exactly N − 1
arbitrageurs will enter, and they will form a star network; under these beliefs, it is rational
for all N − 1 arbitrageurs to enter, since their payoff (for sufficiently large N) is greater than
the cost of entry, by the construction of C in (109). The Nth arbitrageur believes that, if she
enters, the other N − 1 arbitrageurs will still form a star network. This implies that the Nth
arbitrageur has only two possible strategies: she can compete with an existing arbitrageurs,
playing the “red” strategy characterized in Appendix C.3.2; or she can play the “orange”
strategy, linking two peripheral nodes. The key is then to show that, for small ϵ, neither
strategy available to the Nth arbitrageur has expected payoff higher than the entry cost C.

This is true, since we showed in the proof of Proposition 1 in Appendix C that the payoffs
of the “red” and “orange” are both lower than the payoff of the blue strategy in the large-N
limit. Thus, there exists some ϵ such that the blue strategy has positive payoffs net of entry
cost, but no other strategies do, in the large-N limit. Under this choice of ϵ, and the belief
that N − 1 arbitrageurs will form a star network, the Nth arbitrageur expects negative profits
net of entry cost from entry, and thus chooses not to enter.

Intuitively, what is driving this equilibrium construction is that a star network with N
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exchanges has N − 1 “spokes”, implying that there is a discrete decrease in expected payoffs
when going from N − 1 to N arbitrageurs. It is thus possible to pick an entry cost where
N − 1 arbitrageurs are willing to enter, but not an Nth. Analogously, for lower entry costs,
we can construct equilibria in which for example 2 (N − 1) arbitrageurs enter, by setting the
entry cost such that the “red” strategy of two arbitrageurs has positive expected payoffs, but
further crowding is unprofitable; equilibria involving various multiples of (N − 1) are thus
possible.

Note also that the network formation game may have non-star-shaped equilibria; our
equilibrium construction in the entry game relies on the assumption that arbitrageurs believe
the star network equilibrium will be played. In other words, we have constructed an entry
game equilibrium which supports the entry of exactly N − 1 arbitrageurs, but there may
be other entry equilibria supported by other beliefs about what arbitrageurs will do after
entering.
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F Data Cleaning

F.1 Cryptotick Data

This section introduces our Cryptotick data cleaning process. The raw dataset contains
hourly data for each trading pair on each exchange, including price and volume variables.
Our main goal is to create a daily dataset at the coin-exchange pair level, incorporating price
and volume variables for each coin on each exchange for each day. We follow five steps:

1. Aggregating data at the daily level. For each trading pair on each exchange within
a given day, we aggregate the hourly data by computing the volume-weighted average
price of each open hour and summing the total trade volume across all hours.

2. Focusing on top coins and common trading pair. We restrict our sample in
two ways: by the cryptocurrency in the trading pair, and by the denominator that the
cryptocurrency is traded against. Since many coins are not actively traded, we first
limit our sample to trading pairs that involve the top 200 cryptocurrencies ranked by
coinmarketcap.com on June 1 in any year from 2017 to 2023. We further restrict our
sample to three types of trading pairs: pairs involving one of 27 major fiat currencies;20

pairs involving BTC or ETH, the two largest cryptocurrencies by market capitalization;
and pairs involving one of the three major stablecoins (USDT, USDC, and BUSD).

3. Converting prices and volumes to USD terms. For fiat-denominated trading pairs,
we convert prices using same-day USD-fiat exchange rates. For crypto-denominated
pairs, we convert prices using daily cryptocurrency and stablecoin prices from Yahoo
Finance.

4. Aggregating data at the coin level. For each of the top cryptocurrencies on each
exchange and each day, we aggregate data across all trading pairs. We compute the
volume-weighted average price across all relevant trading pairs and sum the total trade
volume. We exclude stablecoins and fiat currencies from the final dataset.

5. Winsorizing and imputating data. We winsorize prices at 2 times the median price
on the upper bound and 0.5 times the median price on the lower bound for each coin
on each day. This ensures proper measurement of dispersion and prevents extreme
values from inflating standard deviations of log prices. Additionally, we impute missing

20These 27 major fiat currencies are: NZD USD KRW JPY CNY IDR SGD VND TWD AUD PKR ZAR
TRY MXN BRL CHF ILS PLN GBP RUB EUR CAD HKD INR SAR AED SEK.
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data for coins that are listed on an exchange but have no recorded trading activity for
certain days.21 We assign missing prices as "NA" and set trade volumes to zero.

Finally, we obtain daily prices and volumes in USD terms for each coin listed on exchanges.
The coin-exchange level dataset from step 5 serves as the primary dataset for most of our
analyses. For some analyses, we further aggregate data to the coin level or exchange level by
computing the volume-weighted average price and total trade volume.

F.2 Cross-Exchange Flow Data

F.2.1 Gathering Exchange Wallet Addresses

We first manually collect all available exchange wallet addresses from Etherscan, identifying
addresses affiliated with specific exchanges. Specifically, we search for the exchange’s name on
Etherscan, which returns all addresses with labels associated with that exchange. The labels
affiliated with exchanges mostly have the following formats: Exchange #index, Exchange:
Hot Wallet #index, Exchange: Cold Wallet #index, Exchange: Deposit Funder #index,
Exchange: Deployer #index, and Exchange: Withdrawals #index, where #index is a numeric
value. If the labels do not match any of these categories, we use our discretion and collect
only addresses that are highly likely to belong to exchanges. For example, some exchange
addresses that have been hacked are labeled as Exchange Hacked #index, and we include
these addresses as well.

F.2.2 Collecting Cross-Exchange Token Flows

As we discussed in the main text, sending tokens between exchanges generally involves a
trader-specific “deposit” address, controlled by exchange B, which is later “swept” into B’s
main wallet. The process of an arbitrage can be depicted as follows:

Exchange A wallet address txn X−→ Trader’s deposit address on Exchange Btxn Y−→ Exchange B wallet address
(110)

The first transaction in (110), “txn X”, cannot be immediately identified as an arbitrage
transaction because deposit addresses are not labelled on etherscan, and thus we cannot
distinguish them from private wallets that do not belong to exchanges. However, we can

21Specifically, if a coin appears on an exchange but has missing data for some days between its first and
last observed trading date, we impute these observations. As a result, the number of observations increased
by 19%, from 9,747,409 to 12,034,327.
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infer that the recipient address was likely an exchange deposit address – and thus transaction
X was likely an arbitrage transaction – if we later observe the address sending the received
tokens into exchange B’s labelled wallet address, which we label as “txn Y” in (110).

We first gather all send and receive transactions from all identified exchange wallets, using
the Etherscan API. We then identify pairs of such transactions that are likely to be arbitrage
transactions as follows.

1. We first find all withdrawal transactions for all identified exchange wallets – that is,
transactions in which tokens are sent out of the exchange wallet address to any other
address.

2. For each withdrawal with receipient address Z, we attempt to find a deposit transaction
in which Z sends the same coin to another exchange’s labelled wallet address.

We additionally impose the restrictions that transaction amounts range from 99% to 101%,
and the deposit transactions occur no later than 48 hours after the withdrawal transactions.
By following this procedure, we identify all withdrawals where the recipient later initiates a
deposit transaction to another exchange wallet. As a result, approximately 8% of deposits
and withdrawals are classified as arbitrage trades.
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G Calculation of Network Centrality Measures

The section formally defines our three centrality definitions used in Table 2 – degree, be-
tweenness, and eigenvector centrality. As we discussed in Subsection 5.2, we construct an
unweighted network among exchanges, defining two exchanges as being connected if bilateral
arbitrage flows between two exchanges are large relative to the total arbitrage flows in and
out of each exchange: formally, if ArbV ole,ẽ is at least 10% of the smaller of ArbV ole and
ArbV olẽ. We can then represent the resultant network of exchanges using the adjacency
matrix, which is an N ×N matrix where N denotes the number of exchanges. The element
M ij is equal to 1 if exchanges are linked, and 0 otherwise. Diagonal elements of M ij are all
set to 0.

The centrality measures we use are then defined as follows. The degree centrality of an
exchange i is defined simply as the number of edges the exchange has with other exchanges.
Formally, the degree centrality of exchange i is:

CDeg
i =

∑
j ̸=i

M ij

As is standard in the literature, we normalize CDeg
i to sum to one across exchanges.

The betweenness centrality of an exchange counts the fraction of shortest paths between
two randomly chosen exchanges that pass through a given exchange. Let sjk denote the
number of shortest paths between exchange j and k, and let sjk (i) denote the number of
these shortest paths that go through exchange i. The betweenness centrality of exchange i is
then:

CBet
i =

∑
j,k,

j ̸=k ̸=i

sjk (i)
sjk

Again, we normalize CBet
i to sum to one across exchanges.

The eigenvector centrality of an exchange is defined based on finding the exchange’s
component of the eigenvector of the adjacency matrix M with the largest eigenvalue. In
contrast to degree centrality, which simply counts edges, eigenvector centrality also depends
on the quality of a node’s connections (Newman, 2008). Again, we normalize the eigenvector
values to sum to one across exchanges.
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H Robustness Checks

H.1 Delistings

In the main text, we conduct difference-in-differences tests using listing events. This appendix
analyzes delistings, where central exchanges stop trading a coin. Delistings are significantly
rarer than listings: during our sample period, we only observe 69 and 17 delistings on Binance
and Coinbase, respectively. Our model implies that delistings should have the opposite effects
of listings on market outcomes: after delistings, price dispersion should increase; arbitrage
volume and trade volume should decrease; and peripheral exchanges should be less likely to
list coins for trade, or may follow central exchanges’ delisting decisions.

Columns (1) and (2) in Appendix Table A.2 show the effects of delistings on price dispersion.
To avoid compositional effects from exchanges entering or exiting the market on measured
price dispersion, we use a balanced panel for coins delisted by central exchanges. Specifically,
we keep only exchanges that remain active for at least 30 days after a central exchange
delisting. For never-treated coins, we include all exchanges. Results remain similar when
all peripheral exchanges are included in the sample. Price dispersion increases significantly
following Binance delistings, while the effect is less pronounced for Coinbase delistings.

Columns (3) to (6) show the arbitrage volume results. Similarly, arbitrage volume mostly
decreases on both intensive and extensive margins significantly following both Binance and
Coinbase delistings.

Columns (7) to (8) show the listing following results. We find that coin delistings from
Binance lead to a statistically significant decrease in the number of peripheral exchanges
listing the coin, whereas the effect is less significant for Coinbase delistings.

Appendix Table A.3 shows the effects of delistings on trade volumes. We include all
peripheral exchanges, regardless of whether they delist the coin; however, results remain
similar when restricting the sample to exchanges that remain active for at least 30 days after
a central exchange delisting. Due to the limited number of delistings, estimating clustered
standard errors is infeasible, so we use robust standard errors instead. We find that Binance
delistings lead to statistically significant decreases in trade volumes on peripheral exchanges.
For Coinbase, the point estimates generally indicate a decline in volumes, though the effects
are not statistically significant.
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H.2 “Logs with Zeros”

When we test the effects of central exchange listings on arbitrage and trade volume in the
main text, we separately estimate the extensive and intensive margin effects. Here we show
the robustness of our results to two different ways of handling zeros.

Log-plus-a Transformation. First, we test the robustness of our results using the
commonly applied log (a+ x) transformation. We do not do this in the main text since Chen
and Roth (2024) recommend against using this transformation, as it combines intensive and
extensive margins in unintuitive ways. However, given that we find statistically significant
effects on both margins, our results should remain robust to using log (a+ x). This is
confirmed in Appendix Tables A.4, A.5, and A.6, where we repeat the specifications of Tables
3, 4, and 5 for various choices of a. In all cases in Appendix Tables A.4 and A.5, as well as in
the majority of cases in Appendix Table A.6, our effects remain significant with unchanged
signs.

Balanced Panel. Another approach to handling zeros is to run regressions using balanced
panels, keeping only coin-exchange pairs that have positive arbitrage or trade volume each
day within a 60-day window around the central exchange’s listing date. This subset of the
data naturally forms a balanced panel. In contrast, our baseline specification estimates
intensive margin effects using an unbalanced panel of coin-exchange pairs, where zero-volume
observations around treatment dates are dropped. Appendix Table A.7 shows the results.
Columns (1) and (2) report the arbitrage volume results, Columns (3) and (4) report the
trade volume results, and Columns (5) and (6) report the trade volume results with exchange
correlation heterogeneity. The results in Columns (1) to (4) remain significant with unchanged
sign. The correlation tests in Columns (5) and (6) are mostly statistically insignificant, though
they have signs consistent with our baseline estimates.

H.3 Attention

An important alternative explanation for our results is that, instead of the arbitrage hypothesis
we propose and test, investors’ attention to coins is a confounding variable which may influence
(or be influenced by) listings and trade volumes. In this subsection, we measure investor
attention, and evaluate two ways in which attention could confound our results.

Following studies such as Da, Engelberg and Gao (2011), we collect the daily Google
search volumes for the ticker symbols of coins in our sample. This data provides an index
ranging from 0 to 100, based on the search volumes for the keywords during the query period.
When the query period is too long, Google only provides weekly or monthly data. Therefore,
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we follow the literature and obtain a consistent daily Google search volume index by stitching
each semiannual’s daily data (Hoopes, Reck and Slemrod, 2015; Li et al., 2023). The detailed
data collection process is described in Appendix H.3.3 below.

We use the log of 1 plus the search volume index to create a coin-day level measure of
attention, which we refer to as Attentionc,t.22 Note that Attentionc,t is a relative measure,
indexed at the coin level, so cannot be compared across coins; we will thus use coin fixed
effects in all specifications.

We first conduct a simple DID regression to illustrate how treated coin’s attention changes
around central exchange listings:

Attentionc,t =β1PreListing(33-93 days)c,t + β2PreListing(3-33 days)c,t + β3PreThreedayListingc,t

+ β4Listing(0-30 days)c,t + β5Listing(> 30 days)c,t + δc + ηt + ϵc,t

(111)
The results are shown in Appendix Table A.8. There are two main findings. First, the
coefficient on PreListing(3-33 days)c,t is positive and significant for Coinbase: coin level
attention tends to increase in the run-up to central exchange listings. This is intuitive: central
exchanges are likely to list coins that are increasing in popularity. Second, the coefficient
on Listing(0-30 days)c,t is also positive and significant. This is consistent with the idea that
central exchange listings may increase attention to treated coins.

We now discuss two ways in which investor attention could influence the interpretation of
our results.

H.3.1 Attention Drives Everything

First, we test the strong hypothesis that investor attention may be the core variable driving
all outcomes we observe: variation in investor attention to coins may drive central exchange
listings, peripheral exchange listings, and trade volumes. We call this the “attention drives
everything” hypothesis. This hypothesis would be problematic for our core results, since it
would imply that the effects we attribute to central exchange listings are in fact not causal:
rather, they simply reflect the effects of increased investor attention driving changes in all
outcome variables.

This hypothesis is comparatively easy to provide evidence against. Appendix Figures A.2
to A.7 show that the relationship between central exchange listings and outcomes is very
sharp; this is difficult to reconcile with a hypothesis in which gradual increases in attention

22The existing literature uses either the level of log of 1 plus the search volume, or the abnormal change in
log of 1 plus the search volume as a measure of attention. We use log of 1 plus the search volume since it is
naturally analogous to log trade volume, which is the dependent variable in our main specifications.

85



smoothly increase central exchange listing probabilities, arbitrage volume, trade volumes,
and peripheral exchange listing probabilities, but central exchange listings do not directly
impact either outcome.

However, it could be possible that pre-listing attention partially accounts for the listing
effect that we have found. Attention may influence central exchanges’ listing decisions: that
is, central exchanges may have a higher propensity to list coins which have rising investor
attention. This is both intuitively plausible, and consistent with evidence in Appendix Table
A.8. To alleviate this concern, we perform a “matched controls” test.

For each “treated” coin listed by a central exchange, we find a control coin, that is not
listed by a central exchange, but has similar level and time series patterns in attention to
the treated coin over the quarter prior to the central exchange’s listing. Since treated and
control coins do not differ in attention prior to listing, under the “attention drives everything”
hypothesis, we would not expect treated and control coins to differ substantially in outcomes
after central exchange listings.

We search for matched coins based on two criteria: average log of 1 plus trade volume;
and correlations in moving average of attention. The precise matching criteria and process
are described in Appendix H.3.4. In the end, we construct balanced coin-day and coin-
exchange-day panels for Binance and Coinbase listings, respectively. For each treated coin
(coin-exchange pair), we have a control coin (coin-exchange pair) with similar pre-listing
attention patterns. Treated and control groups are comparable before listings. The matching
rate is around 60% at coin-exchange level and 90% at coin level.

We use the balanced panel and run the same regressions as in Specifications (17) and
(18), further adding matched-pair×day fixed effects to compare treated with control coins
(coin-exchange pairs) in each matched pair. For (17), we use the coin-day panel, and for
(18), we use the coin-exchange-day panel. These matched pairs of coins (coin-exchange pairs)
share similar ex-ante attention characteristics, with the difference being that one experiences
a central exchange listing while the other does not.

Appendix Tables A.9 and A.10 show the results. The results show that, when two coins
(coin-exchange pairs) A and B have very similar characteristics in pre-listing attention, but
coin A is listed while coin B is not, coin A experiences a relative dispersion decrease, arbitrage
volume increase, number of exchanges listing the coin increase, and trade volume increase.
This would not be expected under the hypothesis that attention is the primary driver of
volume, and that listings have no direct effect on volumes after controlling for prelisting
attention.
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H.3.2 The “Attention Channel”

Relative to the strong hypothesis that “attention drives everything”, a weaker hypothesis
is that central exchange listings may causally affect outcomes, but attention may serve as
a channel through which central exchange listings influence outcomes, distinct from our
arbitrage channel. That is, when Binance or Coinbase lists a coin, market participants pay
increased attention to the coin, leading them to trade these coins more actively on peripheral
exchanges, also giving other peripheral exchanges greater incentives to list these coins. This
is consistent with the finding in Appendix Table A.8, that attention increases after central
exchange listings. We cannot fully rule out the “attention channel” hypothesis. We will show
evidence suggesting that the attention channel may exist, but it has difficulty fully explaining
the magnitudes of the effects we observe.

First, notice that this would not explain all of our stylized facts: it does not explain why
price dispersion falls after centralized exchange listings, why the volume increase and listing
following effects are larger for peripheral exchanges with stronger price correlations with
central exchanges, and why cross-exchange flows on the blockchain increase following coin
listings.

Second, we can directly control for the attention channel by adding Attentionc,t in the
regression. Notice in this subsection, we still use the balanced matching panel and add
matched-pair×day FE to compare coin (coin-exchange pair) with similar pre-listing attention.

If the entirety of the effect of central exchange listings were explained by the induced post-
listing increase in coin attention, we would expect that controlling for the mediating variable
of attention would cause our DID estimates to become insignificant. In Appendix Tables
A.11 and A.12, we add attention as a control to the attention-matched sample regressions of
Appendix Tables A.9 and A.10; results do not change much, suggesting that the “attention
channel” quantitatively does not seem to explain the entirety of our results.

What fraction of the results we observe might be attributable to the attention channel?
We do a simple back-of-envelope exercise to approximately quantify this effect on trade
volume. We first estimate the effect of attention on trade volumes using a simple panel
regression, as shown in Appendix Table A.13. We then estimate the effects of central exchange
listings on coin level attention, as shown in Appendix Figure A.8, with attention as the
dependent variable. Under the (admittedly strong) assumption that the panel regression
coefficient captures the causal effect of coin attention increases on trade volume, we can then
quantify the magnitude of the attention channel, by multiplying our estimated effects of
central exchange listings on attention, by our estimates of the effect of attention on trade
volumes and other outcomes.
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In Appendix Figure A.9, the blue line plots the results of this back-of-envelope exercise.
We find that the attention channel accounts for only about 15% of the total volume effect
(red line). Intuitively, central exchange listings increase attention by around 41% and 33% at
the peak, and we estimate that a 1% increase in attention increases trade volume by around
0.44% and 0.59%, for Binance and Coinbase listings, respectively. The results are similar if
we further allow these effects vary by coin-exchange pairs, as shown in the green line.23

To summarize, we think that attention is likely to be one of the channels through which
listings increase trade volumes: listings have a statistically and economically significant
effect on coin attention, and the idea that attention causally impacts trade volumes is both
intuitively plausible, and consistent with the panel-regression attention coefficient in Appendix
Table A.13. However, based on our control test and back-of-envelope accounting exercise,
we think it is unlikely that the attention channel quantitatively explains the majority of the
effect of listings on trade volumes.

H.3.3 Attention Measurement

In this section, we describe the process of collecting the daily Google Search Volume Index
(SVI). The SVI is defined as:

SV Ii,t,W =
(

Keyword_Searchi,t/Global_Searcht

maxt∈W {Keyword_Searchi,t/Global_Searcht}

)
× 100

where i, t, and W denote keyword, time, and query window, respectively. The numerator,
Keyword_Searchi,t/Global_Searcht, is the keyword’s search volume normalized by the
global total search volume at the corresponding time. This measure has been widely used in
the existing literature to quantify attention. The denominator,

max
t∈W

{Keyword_Searchi,t/Global_Searcht}

is the keyword’s maximum relative search volume during the query window. Consequently,
the index ranges from 0 to 100.

One challenge is that Google does not provide daily SVI when the query window is too
long. Moreover, we cannot directly use daily SVI from consecutive shorter query windows
because the denominator in each period differs. To address this, we follow the literature and

23Specifically, we estimate the volume-attention coefficient for each matched pair and then estimate the
listing effects on attention using the treated and control coin-exchange pairs within that matched pair. The
attention channel for each matched pair is quantified by multiplying the estimated effects of central exchange
listings on attention with the estimates of the effect of attention on trade volumes. The heterogeneous
attention channel is then calculated by averaging these effects across all matched pairs.
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apply a stitching approach to recover the daily numerator values (Hoopes, Reck and Slemrod,
2015; Li et al., 2023). We then normalize these values in the same way as Google, treating
the maximum as 100, to construct a consistent daily SVI for the entire period.

Specifically, we recursively collect the daily SVI for each two-quarter window Wj , separated
by a one-quarter gap (e.g., 2017 Q1–Q2, 2017 Q2–Q3, etc.). Each pair of consecutive
periods has one quarter of overlapping data. Using this overlap, we recover the ratio of the
denominators

maxt∈Wj
{Keyword_Searchi,t/Global_Searcht}

maxt∈Wj−1 {Keyword_Searchi,t/Global_Searcht}
by averaging the daily SVI

ratios in the overlapping quarter:

maxt∈Wj
{Keyword_Searchi,t/Global_Searcht}

maxt∈Wj−1 {Keyword_Searchi,t/Global_Searcht}
= 1

#overlapping_days

#overlapping_days∑
t=1

SV Ii,t,Wj−1

SV Ii,t,Wj

Using this ratio, we recover numerator values for Wj by multiplying SV Ii,t,Wj
in the non-

overlapping quarter by the above ratio:

˜Keyword_Searchi,t/Global_Searcht

= SV Ii,t,Wj
×

maxt∈Wj {Keyword_Searchi,t/Global_Searcht}
maxt∈Wj−1 {Keyword_Searchi,t/Global_Searcht}

t ∈ Wj and t /∈ Wj−1

By recursively applying this procedure, we obtain the daily ˜Keyword_Searchi,t/Global_Searcht

for the entire period, which is Keyword_Searchi,t/Global_Searcht divided by the max-
imum index in the first quarter. Finally, to derive a daily SVI, SV Ic,t, we normalize

˜Keyword_Searchi,t/Global_Searcht by treating the maximum value as 100.

Finally, our attention measure, Attentionc,t, is defined as the log of 1 plus the search
volume index:

Attentionc,t = log (1 + SV Ic,t)

H.3.4 Matched Controls Construction

This appendix describes how we construct our attention-matched sample of coins listed by
central exchanges. For each “treated” coin listed by a central exchange, we attempt to find a
“matched control” coin with similar attention patterns to the treated coin prior to central
exchange listing; we then compare treated and control coins in a variety of specifications.

Ideally, we attempt to find control coins which match our treated coins in terms of levels,
and time-series patterns in attention. Our attention measure is indexed at the coin level, so
it cannot be meaningfully compared across coins. Instead, we match control coins based on
average log of one plus trade volume, over the one quarter prior to the treated coin’s listing.
To mitigate announcement effects, we use data from the period between T − 93 and T − 3,
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where T represents the central exchange listing date. We expect that two coins with similar
average trade volume should have similar attention level.

The second criterion is the correlation between the one-week moving average of Attentionc,t

in the quarter (T − 93 to T − 3) prior to the central exchange listing for the treated coin and
the control coin. This attention correlation aims to capture low-frequency trends in attention
prior to listing. For example, if a treated coin shows an upward attention trend prior to
listing, we try to match it with a control coin exhibiting a similar upward trend in the same
time window.

We use these two criteria to construct a balanced panel dataset at both the coin-day and
coin-exchange-day levels. For the coin-day level balanced panel, treated and control coins
must have a trade volume difference of less than 2, and an attention correlation greater than
0.5. If multiple candidates meet these criteria, we select the control coin with the highest
attention correlation. For the coin-exchange-day level balanced panel, treated and control
coin-exchange pairs must be on the same exchange and also meet the preceding conditions.

The matching rate and the full summary statistics are shown in Appendix Table A.14.
The matching rate is around 60% at the coin-exchange level, and 90% at coin level. Treated
and control coins (coin-exchange pairs) are quite comparable. Another way to test our
matching procedure is to run the same DID specification for Attentionc,t using our balanced
sample. Appendix Figure A.8 shows the results, and there are no pre-trends: attention in
the control and treatment groups appears to trend identically prior to listing, suggesting our
attention-matched control group is constructed fairly well.
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I Appendix Figures and Tables

Figure A.1: Arbitrage Flow Network

The figure shows the arbitrage volume network of crypto exchanges. We assume two exchanges
e and ẽ are “connected” whenever the arbitrage flows between e and ẽ are a large fraction
of total arbitrage flows involving either exchange: formally, if ArbV ole,ẽ, is at least 10% of
the smaller of ArbV ole and ArbV olẽ. The size of each node is proportional to the number of
edges connected to the node. Data sources: Cryptotick, Etherscan.
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Figure A.2: Central Exchange Listings and Price Dispersion: Event-study Estimation

The figure shows estimates from Specification (19):

Dispersionc,t =
31∑

k=−31
βk × treatc,k,t + δc + ηt + ϵc,t

along with 95% confidence intervals. The dependent variable is coin-day level price dispersion,
calculated as the standard deviation of log prices across exchanges. For treated coins, we
only use incumbent exchanges that list coin c at least 30 days before its listing on a central
exchange. For never-treated coins, we use all exchanges. δc represents coin fixed effects, and
ηt represents day fixed effects. Observations exactly 30 days before central exchange listings
are set as the reference group. Standard errors are clustered at the coin and time level. Data
source: Cryptotick.
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Figure A.3: Central Exchange Listings and Arbitrage Volume Dummy: Event-study Estima-
tion

The figure shows estimates from Specification (19):

I (ArbV olc,t > 0) =
31∑

k=−31
βk × treatc,k,t + δc + ηt + ϵc,t

along with 95% confidence intervals. The dependent variable is a coin-day level dummy for
arbitrage volume being greater than 0. For treated coins, we consider arbitrage flows that
involve the central exchange, and incumbent exchanges which list the coin at least 30 days
before the central exchange lists. For never-treated coins, we add all arbitrage flows. δc

represents coin fixed effects, and ηt represents day fixed effects. Observations exactly 30 days
before central exchange listings are set as the reference group. Standard errors are clustered
at the coin and time level. Data source: Cryptotick, Etherscan.
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Figure A.4: Central Exchange Listings and Log Arbitrage Volume: Event-study Estimation

The figure shows estimates from Specification (19):

log (ArbV olc,t) =
31∑

k=−31
βk × treatc,k,t + δc + ηt + ϵc,t

along with 95% confidence intervals. The dependent variable is coin-day level log arbitrage
volume. For treated coins, we consider arbitrage flows that involve the central exchange, and
incumbent exchanges which list the coin at least 30 days before the central exchange lists.
For never-treated coins, we add all arbitrage flows. δc represents coin fixed effects, and ηt

represents day fixed effects. Observations exactly 30 days before central exchange listings are
set as the reference group. Standard errors are clustered at the coin and time level. Data
source: Cryptotick, Etherscan.
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Figure A.5: Central Exchange Listings and Trade Volume Dummy: Event-study Estimation

The figure shows estimates from Specification (20):

I (TradeV olc,e,t > 0) =
31∑

k=−31
βk × treatc,k,t + δc,e + ηt + γe,t + ϵc,e,t

along with 95% confidence intervals. The dependent variable is a coin-exchange-day level
dummy for trade volume being greater than 0. We keep only those incumbent coin-exchange
pairs that were listed at least 30 days before their listing on central exchanges, or pairs with
coins that have not been listed by central exchanges, in order to identify the listing effect
on incumbent exchanges. δc,e represents coin-exchange fixed effects, ηt represents day fixed
effects, and γe,t represents exchange-time fixed effects. Observations exactly 30 days before
central exchange listings are set as the reference group. Standard errors are clustered at the
coin-exchange pair and time level. Data source: Cryptotick.
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Figure A.6: Central Exchange Listings and Log Trade Volume: Event-study Estimation

The figure shows estimates from Specification (20):

log(TradeV olc,e,t) =
31∑

k=−31
βk × treatc,k,t + δc,e + ηt + γe,t + ϵc,e,t

along with 95% confidence intervals. The dependent variable is coin-exchange-day level log
trade volume. We keep only those incumbent coin-exchange pairs that were listed at least
30 days before their listing on central exchanges, or pairs with coins that have not been
listed by central exchanges, in order to identify the listing effect on incumbent exchanges.
δc,e represents coin-exchange fixed effects, ηt represents day fixed effects, and γe,t represents
exchange-time fixed effects. Observations exactly 30 days before central exchange listings are
set as the reference group. Standard errors are clustered at the coin-exchange pair and time
level. Data source: Cryptotick.
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Figure A.7: Central Exchange Listings and Peripheral Exchange Listings: Event-study
Estimation

The figure shows estimates from Specification (19):

∆#Exchangesc,t =
31∑

k=−31
βk × treatc,k,t + δc + ηt + ϵc,t

along with 95% confidence intervals. The dependent variable is the number of exchanges that
list coin c between day t− 1 and t. We filter the sample to include only coins that were listed
on any exchange for at least 30 days before being listed on central exchanges or were not
listed by central exchanges, eliminating the mechanical effects associated with coins initially
listed on central exchanges. δc represents coin fixed effects, and ηt represents day fixed effects.
Observations exactly 30 days before central exchange listings are set as the reference group.
Standard errors are clustered at the coin and time level. Data source: Cryptotick.
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Figure A.8: Central Exchange Listings and Coin Attention: Event-study Estimation (Matched
Sample)

This figure shows estimates from the following specification:

Attentionc,t =
31∑

k=−31
βk × treatc,k,t + δc + ηt + κmatchid,t + ϵc,e,t

along with 95% confidence intervals. The dependent variable is the log of 1 plus the Google
search volume index. δc represents coin fixed effects, ηt represents day fixed effects, and
κmatchid,t represents matched pair×time fixed effects. Each treated coin is matched with
a control coin based on pre-listing volume levels and attention patterns, as described in
Appendix H.3.4. Observations exactly 30 days before central exchange listings are set as
the reference group. Standard errors are clustered at the coin and time level. Data source:
Cryptotick, Google Search.
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Figure A.9: Central Exchange Listings, Trade Volumes, and Attention: Back-of-Envelope
Quantification

This figure shows the listing effects on trade volume by highlighting the attention channel
and comparing the effects with the aggregate listing effects. The dependent variable is
coin-exchange-day level log trade volume. The red line represents the aggregate effects
estimated from Specification (20):

log(V olumec,e,t) =
31∑

k=−31
βk × treatc,k,t + δc,e + ηt + γe,t + κmatchid,t + ϵc,e,t

The blue line shows the effects driven by the attention channel, calculated by multiplying
the volume-attention relationship with the dynamic attention effect. The green line further
relaxes by estimating the effect for each coin-exchange pair individually and then show the
average effects across all pairs. δc,e represents coin-exchange fixed effects, ηt represents day
fixed effects, γe,t represents exchange-time fixed effects, and κmatchid,t represents matched
pair-time fixed effects. Each treated coin-exchange pair is matched with a control pair based
on pre-listing volume levels and attention patterns, as described in Appendix H.3.4. Data
source: Cryptotick, Google Search.
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Table A.1: Price Gap Reversion

This table shows estimates of Specification (14), (15), and (16) for all coin-exchange pairs:

∆PriceGapc,e,t = βP riceGapPriceGapc,e,t−1 + ϵP riceGap
c,e,t

∆pc,e,t = βpPriceGapc,e,t−1 + ϵp
c,e,t

∆pcen
c,t = βpcen

PriceGapc,e,t−1 + ϵpcen

c,e,t

We follow the suggestion of (Pesaran, 2006) and estimate a consistent mean group estimator
for βP riceGap, βp, and βpcen . It follows a two-stage estimation. In the first stage, we similarly
estimate the individual equation for each coin-exchange pair, but we also include three lagged
cross-sectional averages of dependent variables

∑
c,e ∆PriceGapc,e,t−1,

∑
c,e ∆PriceGapc,e,t−2, and∑

c,e ∆PriceGapc,e,t−3. In the second stage, we use the mean of individual estimators as the estimate
for β and the variance of individual estimators as the estimate for V ar(β). Columns (1) to (2) are
results with change in price gap as the dependent variable. Columns (3) to (4) are results with
peripheral exchange price change as the dependent variable. Columns (5) to (6) are results with
central exchange price change as the dependent variable. Odd (even) number columns are results
treating Binance (Coinbase) as the central exchange. Standard errors in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: ∆PriceGap ∆p ∆pcen

Binance Coinbase Binance Coinbase Binance Coinbase
Model: (1) (2) (3) (4) (5) (6)
PriceGapc,e,t−1 -0.72∗∗∗ -0.74∗∗∗ -0.67∗∗∗ -0.97∗∗∗ 0.05 -0.22

(0.02) (0.03) (0.04) (0.19) (0.04) (0.2)
R2 0.3 0.68 0.13 0.57 0.07 0.5
Observations 6287565 3522046 6287565 3522046 6287565 3522046
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Table A.2: Central Exchange Delistings: Coin Level

This table shows estimates from the following specification:

Yc,t =β1Delisting(0-30 days)c,t + β2Delisting(> 30 days)c,t+
β3PreThreedayDelistingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation of
log prices across exchanges. Delisting(0-30 days)c,t and Delisting(> 30 days)c,t are dummies for
coins delisted within the past 30 days or more than 30 days ago. PreThreedayDelistingc,t accounts
for the pre-announcement effect. For price dispersion, we exclude newly exited exchanges. Odd
and even columns are results based on listings on Binance and Coinbase, respectively. Standard
errors are clustered at the coin and time level. Standard errors are in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick,
Etherscan.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Delisting (0-30 days) 0.04∗ 0.05 0.04 -0.24∗∗ -1.7∗∗∗ -1.3∗ -0.09∗∗∗ -0.05

(0.02) (0.06) (0.06) (0.10) (0.45) (0.70) (0.02) (0.03)
Delisting (> 30 days) 0.08∗∗ 0.14 -0.42∗∗∗ -0.33∗∗∗ -3.9∗∗∗ -2.0∗∗∗ -0.0010 -0.006

(0.03) (0.12) (0.05) (0.13) (1.1) (0.36) (0.002) (0.004)
Pre Three-day Delisting -0.003 0.05 0.17∗ -0.22∗∗ 1.3∗∗∗ 0.10 -0.15∗∗∗ -0.04

(0.02) (0.05) (0.09) (0.11) (0.30) (0.56) (0.03) (0.03)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.47 0.46 0.42 0.41 0.59 0.57 0.07 0.07
Observations 827,203 863,173 272,574 272,574 171,601 171,601 1,352,156 1,352,156
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Table A.3: Central Exchange Delistings: Coin-Exchange Level

This table shows estimates from the following specification:

Yc,e,t =β1Delisting(0-30 days)c,t + β2Delisting(> 30 days)c,t+
β3PreThreedayDelistingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. Delisting(0-30 days)c,t

and Delisting(> 30 days)c,t are dummies for coins delisted within the past 30 days or more than
30 days ago. PreThreedayDelistingc,t accounts for the pre-announcement effect. Odd and even
columns are results based on listings on Binance and Coinbase, respectively. We use robust standard
errors. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Delisting (0-30 days) -0.04∗∗∗ -0.02 -0.04∗∗∗ -0.02∗ -0.38∗∗∗ 0.06 -0.36∗∗∗ 0.05

(0.01) (0.02) (0.01) (0.009) (0.12) (0.11) (0.10) (0.09)
Delisting (> 30 days) -0.10∗∗∗ 0.002 -0.07∗∗∗ -0.007 -1.1∗∗∗ -0.13 -1.0∗∗∗ -0.12

(0.02) (0.02) (0.01) (0.01) (0.16) (0.16) (0.13) (0.13)
Pre Three-day Delisting 0.03∗∗∗ -0.01 0.005 -0.02 0.47∗∗∗ 0.32∗ 0.45∗∗∗ 0.32∗∗

(0.01) (0.02) (0.008) (0.01) (0.11) (0.17) (0.10) (0.16)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE-Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.48 0.48 0.72 0.72 0.79 0.79 0.85 0.85
Observations 12,034,327 12,034,327 12,034,327 12,034,327 9,747,409 9,747,409 9,747,409 9,747,409
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Table A.4: Central Exchange Listings and Log-like Arbitrage Volume

This table shows estimates from Specification (17):

log (a + ArbV olc,t) =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variable is log of a plus arbitrage volume, where we use a range of parameter a.
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days
or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given
that Binance and Coinbase typically announce listings 1-2 days in advance. For treated coins, we
consider arbitrage flows that involve the central exchange, and incumbent exchanges which list the
coin at least 30 days before the central exchange lists. For never-treated coins, we add all arbitrage
flows. Odd and even columns are results based on listings on Binance and Coinbase, respectively.
Standard errors are clustered at the coin and time level. Standard errors are in parentheses. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data source:
Cryptotick, Etherscan.

Dependent Variables: Log(1+ArbVol) Log(10+ArbVol) Log(100+ArbVol) Log(1000+ArbVol) Log(10000+ArbVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Listing (0-30 days) 5.4∗∗∗ 4.0∗∗∗ 4.4∗∗∗ 3.5∗∗∗ 3.4∗∗∗ 2.9∗∗∗ 2.4∗∗∗ 2.2∗∗∗ 1.4∗∗∗ 1.5∗∗∗

(0.64) (0.44) (0.53) (0.37) (0.42) (0.30) (0.32) (0.24) (0.21) (0.17)
Listing (> 30 days) 5.1∗∗∗ 3.6∗∗∗ 4.2∗∗∗ 3.0∗∗∗ 3.2∗∗∗ 2.5∗∗∗ 2.2∗∗∗ 1.8∗∗∗ 1.3∗∗∗ 1.2∗∗∗

(0.55) (0.46) (0.45) (0.39) (0.36) (0.31) (0.27) (0.24) (0.18) (0.17)
Pre Three-day Listing 1.8∗∗ 2.9∗∗∗ 1.4∗∗ 2.5∗∗∗ 1.1∗∗ 2.0∗∗∗ 0.75∗∗ 1.5∗∗∗ 0.41∗∗ 0.97∗∗∗

(0.69) (0.43) (0.56) (0.36) (0.44) (0.29) (0.31) (0.23) (0.20) (0.17)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.56 0.54 0.58 0.56 0.60 0.58 0.63 0.60 0.64 0.61
Observations 200,044 256,331 200,044 256,331 200,044 256,331 200,044 256,331 200,044 256,331
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Table A.5: Central Exchange Listings and Log-like Trade Volume

This table shows estimates from Specification (18):

log (a + TradeV olc,e,t) =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variable is log of a plus trade volume, where we use a range of parameter a.
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30
days or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect,
given that Binance and Coinbase typically announce listings 1-2 days in advance. We keep only
those incumbent coin-exchange pairs that were listed at least 30 days before their listing on central
exchanges, or pairs with coins that have not been listed by central exchanges, in order to identify
the listing effect on incumbent exchanges. Odd and even columns are results based on listings on
Binance and Coinbase, respectively. Standard errors are clustered at the coin-exchange pair and
time level. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: Log(1+TradeVol) Log(10+TradeVol) Log(100+TradeVol) Log(1000+TradeVol) Log(10000+TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Listing (0-30 days) 0.76∗∗∗ 0.78∗∗∗ 0.70∗∗∗ 0.73∗∗∗ 0.63∗∗∗ 0.68∗∗∗ 0.55∗∗∗ 0.60∗∗∗ 0.45∗∗∗ 0.51∗∗∗

(0.08) (0.05) (0.07) (0.05) (0.06) (0.04) (0.05) (0.04) (0.04) (0.03)
Listing (> 30 days) 1.0∗∗∗ 0.92∗∗∗ 0.91∗∗∗ 0.84∗∗∗ 0.78∗∗∗ 0.75∗∗∗ 0.64∗∗∗ 0.65∗∗∗ 0.46∗∗∗ 0.51∗∗∗

(0.10) (0.06) (0.09) (0.05) (0.08) (0.05) (0.06) (0.04) (0.05) (0.03)
Pre Three-day Listing 0.59∗∗∗ 1.0∗∗∗ 0.55∗∗∗ 0.94∗∗∗ 0.51∗∗∗ 0.87∗∗∗ 0.45∗∗∗ 0.78∗∗∗ 0.35∗∗∗ 0.66∗∗∗

(0.08) (0.08) (0.07) (0.07) (0.06) (0.07) (0.06) (0.06) (0.04) (0.05)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE-Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.85 0.86 0.86 0.87 0.86 0.86 0.86 0.86 0.85 0.84
Observations 4,895,893 9,004,676 4,895,893 9,004,676 4,895,893 9,004,676 4,895,893 9,004,676 4,895,893 9,004,676
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Table A.6: Log-like Trade Volume, Exchange Correlations, and Listings

This table shows estimates from Specification (21):

log (a + TradeV olc,e,t) =β1Listing(0-30 days)c,t + β2Listing(0-30 days)c,t × Correlatione+
β3Listing(> 30 days)c,t + β4Listing(> 30 days)c,t × Correlatione+
β5PreThreedayListingc,t + β6PreThreedayListingc,t × Correlatione+
δc,e + ηt + γe,t + ϵc,e,t

The dependent variable is log of a plus trade volume, where we use a range of parameter a.
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30
days or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect,
given that Binance and Coinbase typically announce listings 1-2 days in advance. Correlatione

is the return correlation of Bitcoin between the central exchange and the peripheral exchange e
using the entire time period where we have coverage for both exchanges in the pair. We keep only
those incumbent coin-exchange pairs that were listed at least 30 days before their listing on central
exchanges, or pairs with coins that have not been listed by central exchanges, in order to identify
the listing effect on incumbent exchanges. Odd and even columns are results based on listings on
Binance and Coinbase, respectively. Standard errors are clustered at the coin-exchange pair and
time level. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: Log(1+TradeVol) Log(10+TradeVol) Log(100+TradeVol) Log(1000+TradeVol) Log(10000+TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Listing (0-30 days) -1.1 0.15 -1.3∗∗ -0.10 -1.4∗∗∗ -0.32 -1.4∗∗∗ -0.49∗∗ -1.2∗∗∗ -0.58∗∗∗

(0.73) (0.35) (0.61) (0.30) (0.49) (0.25) (0.39) (0.20) (0.30) (0.15)
Listing (0-30 days) × Correlation 2.1∗∗ 0.74∗ 2.2∗∗∗ 0.98∗∗∗ 2.3∗∗∗ 1.2∗∗∗ 2.2∗∗∗ 1.3∗∗∗ 1.8∗∗∗ 1.3∗∗∗

(0.82) (0.41) (0.68) (0.35) (0.56) (0.29) (0.45) (0.23) (0.34) (0.18)
Listing (> 30 days) -1.3 0.68 -1.7∗∗ 0.38 -1.9∗∗∗ 0.11 -1.8∗∗∗ -0.11 -1.5∗∗∗ -0.27

(0.90) (0.42) (0.77) (0.35) (0.65) (0.29) (0.53) (0.24) (0.41) (0.18)
Listing (> 30 days) × Correlation 2.6∗∗ 0.29 2.9∗∗∗ 0.55 3.0∗∗∗ 0.76∗∗ 2.7∗∗∗ 0.90∗∗∗ 2.2∗∗∗ 0.92∗∗∗

(1.0) (0.47) (0.87) (0.40) (0.73) (0.34) (0.60) (0.27) (0.47) (0.21)
Pre Three-day Listing -1.3∗ 0.35 -1.3∗∗ 0.01 -1.2∗∗ -0.29 -1.1∗∗∗ -0.54∗∗ -0.91∗∗∗ -0.69∗∗∗

(0.76) (0.40) (0.64) (0.33) (0.53) (0.27) (0.42) (0.22) (0.32) (0.17)
Pre Three-day Listing × Correlation 2.0∗∗ 0.77∗ 2.0∗∗∗ 1.1∗∗∗ 1.9∗∗∗ 1.4∗∗∗ 1.7∗∗∗ 1.6∗∗∗ 1.4∗∗∗ 1.6∗∗∗

(0.83) (0.45) (0.71) (0.38) (0.59) (0.32) (0.47) (0.26) (0.36) (0.22)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE-Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.84
Observations 4,864,077 8,975,799 4,864,077 8,975,799 4,864,077 8,975,799 4,864,077 8,975,799 4,864,077 8,975,799
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Table A.7: Central Exchange Listings and Volume: Balanced Panel

This table shows estimates from Specification (17), (18) and (21), where we use a subsample only
keeping liquid coins (coin-exchange pairs), which have positive volume each day within a 60-day
window around the central exchange’s listing date. The dependent variables are log arbitrage volume
and trade volume. Odd and even columns are results based on listings on Binance and Coinbase,
respectively. Standard errors are clustered at the coin (coin-exchange pair) and time level. Standard
errors are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels respectively. Data source: Cryptotick, Etherscan.

Dependent Variables: log(ArbVol) log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6)
Listing (0-30 days) 2.3∗∗∗ 2.0∗∗∗ 0.74∗∗∗ 0.71∗∗∗ 0.12 0.03

(0.55) (0.30) (0.08) (0.05) (0.87) (0.50)
Listing (> 30 days) 2.6∗∗∗ 1.9∗∗∗ 0.57∗∗∗ 0.50∗∗∗ -2.3 -0.26

(0.36) (0.42) (0.12) (0.06) (1.5) (0.65)
Pre Three-day Listing 1.4∗ 1.8∗∗∗ 0.68∗∗∗ 1.0∗∗∗ 0.74 0.28

(0.65) (0.35) (0.09) (0.08) (0.94) (0.50)
Listing (0-30 days) × Correlation 0.66 0.78

(0.96) (0.56)
Listing (> 30 days) × Correlation 3.0∗ 0.87

(1.6) (0.71)
Pre Three-day Listing × Correlation -0.06 0.82

(1.0) (0.57)
Coin FE Yes Yes No No No No
Day FE Yes Yes Yes Yes Yes Yes
Coin-Exchange Pair FE No No Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes Yes Yes
Standard-Errors Coin FE & Day FE Coin-Exchange Pair FE & Day FE
Adjusted R2 0.50 0.45 0.76 0.81 0.76 0.81
Observations 11,946 25,610 746,141 1,440,781 746,141 1,440,673
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Table A.8: Central Exchange Listings and Attention

This table shows estimates from Specification:

Attentionc,t =β1PreListing(33-93 days)c,t + β2PreListing(3-33 days)c,t + β3PreThreedayListingc,t

+ β4Listing(0-30 days)c,t + β5Listing(> 30 days)c,t + δc + ηt + κmatchid,t + ϵc,t

The dependent variable is the log of 1 plus the search volume index. Listing(0-30 days)c,t and
Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30 days
ago. PreListing(33-93 days)c,t, PreListing(3-33 days)c,t, and PreThreedayListingc,t are dummy
variables which are equal to one for coin i on date t if a central exchange decides to list coin i
between date t + 33 and t + 93, t + 3 and t + 33, and t + 1 and date t + 3, respectively. Column (1)
is result based on listings on Binance. Column (2) is result based on listings on Coinbase. Standard
errors are clustered at the coin and time level. Standard errors are in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick,
Google Search.

Dependent Variables: Attention
Binance Coinbase

Model: (1) (2)
Pre Listing (93-33 days) 0.0006 0.06∗

(0.03) (0.04)
Pre Listing (33-3 days) 0.04 0.14∗∗∗

(0.04) (0.05)
Pre Listing (1-3 days) 0.09∗∗ 0.22∗∗∗

(0.04) (0.06)
Listing (0-30 days) 0.16∗∗∗ 0.25∗∗∗

(0.05) (0.05)
Listing (> 30 days) 0.06 0.09∗

(0.04) (0.05)
Coin FE Yes Yes
Day FE Yes Yes
Adjusted R2 0.86 0.86
Observations 1,333,665 1,333,665
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Table A.9: Coin Level Regressions, Attention-Matched Sample

This table shows estimates from specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation of
log prices across exchanges. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins
listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for the
pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2 days in
advance. Each treated coin is matched with a control coin based on pre-listing volume levels and
attention patterns, as described in Appendix H.3.4. Odd and even columns are results based on
listings on Binance and Coinbase, respectively. Standard errors are clustered at the coin and time
level. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels respectively. Data source: Cryptotick, Etherscan, Google Search.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.03∗∗∗ -0.02∗∗ 0.36∗∗∗ 0.22∗∗∗ 3.1∗∗∗ 1.8∗∗∗ 0.09∗∗∗ 0.06∗∗∗

(0.009) (0.008) (0.09) (0.04) (0.46) (0.33) (0.01) (0.01)
Listing (> 30 days) -0.06∗∗∗ -0.03∗∗ 0.25∗∗∗ 0.18∗∗∗ 1.6∗∗∗ 0.66∗∗ 0.004 0.001

(0.01) (0.01) (0.09) (0.04) (0.46) (0.30) (0.002) (0.003)
Pre Three-day Listing 0.004 -0.003 0.09 0.005 0.99 1.1∗∗∗ 0.02 0.04∗

(0.01) (0.009) (0.11) (0.06) (0.87) (0.38) (0.02) (0.02)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Matched Coin-Exchange Pair FE-Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.62 0.53 0.36 0.29 0.33 0.43 0.04 0.17
Observations 427,957 382,756 146,362 163,350 92,098 119,114 648,195 457,367
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Table A.10: Coin-Exchange Level Regressions, Attention-Matched Sample

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. Listing(0-30 days)c,t

and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30
days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given that Binance
and Coinbase typically announce listings 1-2 days in advance. Each treated coin-exchange pair is
matched with a control pair based on pre-listing volume levels and attention patterns, as described
in Appendix H.3.4. Odd and even columns are results based on listings on Binance and Coinbase,
respectively. Standard errors are clustered at the coin-exchange pair and time level. Standard errors
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively. Data source: Cryptotick, Google Search.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.01 0.01∗ 0.02∗∗∗ 0.008∗∗ 0.77∗∗∗ 0.56∗∗∗ 0.83∗∗∗ 0.63∗∗∗

(0.010) (0.006) (0.007) (0.004) (0.09) (0.06) (0.08) (0.05)
Listing (> 30 days) 0.04∗∗∗ 0.01∗∗ 0.04∗∗∗ 0.007∗ 0.81∗∗∗ 0.50∗∗∗ 0.87∗∗∗ 0.60∗∗∗

(0.01) (0.007) (0.009) (0.004) (0.13) (0.08) (0.11) (0.06)
Pre Three-day Listing 0.007 0.02∗∗∗ 0.01 0.02∗∗∗ 0.68∗∗∗ 0.83∗∗∗ 0.73∗∗∗ 0.89∗∗∗

(0.01) (0.007) (0.008) (0.004) (0.10) (0.09) (0.10) (0.08)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE-Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.46 0.47 0.63 0.75 0.74 0.75 0.79 0.83
Observations 1,719,653 4,145,078 1,719,653 4,145,078 1,438,901 3,569,786 1,438,901 3,569,786
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Table A.11: Coin-Level Regressions, Attention-Matched Sample (Attention Controls)

This table shows estimates from specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + β4Attentionc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation of
log prices across exchanges. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins
listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for the
pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2 days in
advance. Each treated coin is matched with a control coin based on pre-listing volume levels and
attention patterns, as described in Appendix H.3.4. Odd and even columns are results based on
listings on Binance and Coinbase, respectively. Standard errors are clustered at the coin and time
level. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels respectively. Data source: Cryptotick, Google Search.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.03∗∗∗ -0.02∗∗ 0.35∗∗∗ 0.22∗∗∗ 3.0∗∗∗ 1.5∗∗∗ 0.09∗∗∗ 0.06∗∗∗

(0.009) (0.008) (0.09) (0.04) (0.50) (0.33) (0.01) (0.01)
Listing (> 30 days) -0.06∗∗∗ -0.03∗∗ 0.25∗∗∗ 0.18∗∗∗ 1.6∗∗∗ 0.59∗ 0.003 0.0004

(0.01) (0.01) (0.09) (0.05) (0.50) (0.32) (0.002) (0.003)
Pre Three-day Listing 0.004 -0.004 0.08 0.002 0.95 1.0∗∗∗ 0.02 0.04∗

(0.01) (0.009) (0.11) (0.06) (0.92) (0.39) (0.02) (0.02)
Attention 0.0010 0.005 0.05 0.02 0.80∗∗∗ 0.63∗∗∗ 0.004∗∗∗ 0.02∗∗∗

(0.005) (0.004) (0.03) (0.02) (0.14) (0.19) (0.002) (0.004)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Matched Coin-Exchange Pair FE-Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.62 0.53 0.36 0.29 0.34 0.45 0.04 0.17
Observations 427,957 382,756 146,362 163,350 92,098 119,114 648,195 457,367
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Table A.12: Coin-Exchange Level Regressions, Attention-Matched Sample (Attention Con-
trols)

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + β4Attentionc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. Listing(0-30 days)c,t

and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30
days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given that Binance
and Coinbase typically announce listings 1-2 days in advance. Each treated coin-exchange pair is
matched with a control pair based on pre-listing volume levels and attention patterns, as described
in Appendix H.3.4. Odd and even columns are results based on listings on Binance and Coinbase,
respectively. Standard errors are clustered at the coin-exchange pair and time level. Standard errors
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively. Data source: Cryptotick, Google Search.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.01 0.01∗ 0.02∗∗∗ 0.007∗ 0.72∗∗∗ 0.47∗∗∗ 0.79∗∗∗ 0.54∗∗∗

(0.010) (0.006) (0.007) (0.004) (0.09) (0.06) (0.08) (0.05)
Listing (> 30 days) 0.04∗∗∗ 0.01∗ 0.04∗∗∗ 0.007 0.79∗∗∗ 0.47∗∗∗ 0.85∗∗∗ 0.57∗∗∗

(0.01) (0.007) (0.009) (0.004) (0.13) (0.08) (0.11) (0.06)
Pre Three-day Listing 0.007 0.02∗∗∗ 0.01 0.02∗∗∗ 0.67∗∗∗ 0.74∗∗∗ 0.72∗∗∗ 0.80∗∗∗

(0.01) (0.007) (0.008) (0.004) (0.10) (0.08) (0.10) (0.07)
Attention 0.003 0.004 -0.002 0.007∗∗∗ 0.46∗∗∗ 0.56∗∗∗ 0.43∗∗∗ 0.55∗∗∗

(0.005) (0.004) (0.004) (0.003) (0.07) (0.04) (0.06) (0.03)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE-Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.46 0.47 0.63 0.75 0.74 0.76 0.79 0.83
Observations 1,719,653 4,145,078 1,719,653 4,145,078 1,438,901 3,569,786 1,438,901 3,569,786
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Table A.13: Attention and Trade Volume

This table shows estimates from Specification:

log (TradeV olc,e,t) =β1Attentionc,t + δc,e + ηt + γe,t + κmatchid,t + ϵc,t

The dependent variable is coin-exchange-day level log trade volume. Attentionc,t denotes the log of
1 plus the search volume index for coin c at day t. Each treated coin is matched with a control coin
based on pre-listing volume levels and attention patterns, as described in Appendix H.3.4. Columns
(1) and (2) are results based on listings on Binance and Coinbase, respectively. Standard errors are
clustered at the coin and time level. Standard errors are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick, Google
Search.

Dependent Variables: Log(TradeVol)
Binance Coinbase

Model: (1) (2)
log_SVI 0.44∗∗∗ 0.59∗∗∗

(0.06) (0.02)
Coin-Exchange Pair FE Yes Yes
Day FE Yes Yes
Exchange FE × Day FE Yes Yes
matched_pair_id-Day FE Yes Yes
Adjusted R2 0.78 0.84
Observations 1,438,901 3,569,786
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Table A.14: Attention Matched Sample Summary Statistics

This table shows the summary statistics for the attention-matching balanced data. The first two
columns show results based on balanced coin-level data, while the last two columns show results
based on balanced coin-exchange-level data. Abs Diff Trend, Diff Level, and Correlation represent
the average absolute difference in trade volume between treated and control coins (coin-exchange
pairs), the average difference in trade volume between treated and control coins (coin-exchange
pairs), and the average correlation in attention between treated and control coins (coin-exchange
pairs), respectively. #Matched, #Treated Candidates, and Matching Rate denote the number of
successfully matched coins (or coin-exchange pairs), the number of treated coins (or coin-exchange
pairs), and the matching rate. Data source: Cryptotick, Google Search.

Coin Level Coin-exchange Level
Binance Coinbase Binance Coinbase

Abs Diff Level 0.95 1.1 1.02 1.01
Diff Level -0.18 -0.27 -0.16 -0.2
Correlation 0.77 0.79 0.72 0.77
# Matched 163 126 714 1816
# Treated Candidates 182 139 1129 2237
Matching Rate 0.9 0.91 0.63 0.81
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Table A.15: Coin Level Regressions and the Endorsement Channel

This table shows estimates from specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation of
log prices across exchanges. We restrict our sample to treated coins with a market capitalization of
more than $100 million one month prior to their central exchange listing date. Listing(0-30 days)c,t

and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days or more than 30
days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given that Binance
and Coinbase typically announce listings 1-2 days in advance. For price dispersion and arbitrage
volume, we exclude newly entered exchanges. For coin listings, we include only coins that were
listed on any exchange for at least 30 days before being listed on central exchanges or were never
listed by central exchanges. Odd and even columns are results based on listings on Binance and
Coinbase, respectively. Standard errors are clustered at the coin and time level. Standard errors
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively. Data source: Cryptotick.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.03∗∗ -0.02∗∗ 0.35∗∗∗ 0.19∗∗∗ 1.8∗∗∗ 1.8∗∗∗ 0.04∗∗∗ 0.06∗∗∗

(0.01) (0.009) (0.07) (0.04) (0.29) (0.29) (0.007) (0.01)
Listing (> 30 days) -0.06∗∗∗ -0.03∗∗∗ 0.37∗∗∗ 0.21∗∗∗ 2.0∗∗∗ 1.6∗∗∗ 0.01∗∗ 0.007

(0.01) (0.01) (0.06) (0.05) (0.32) (0.33) (0.004) (0.006)
Pre Three-day Listing -0.02 -0.01 0.06 0.14∗∗∗ 0.74∗∗ 1.6∗∗∗ 0.002 0.06∗∗

(0.01) (0.008) (0.09) (0.04) (0.35) (0.30) (0.009) (0.03)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.51 0.29 0.41 0.39 0.49 0.50 0.17 0.21
Observations 124,939 140,805 39,971 65,382 27,681 50,524 168,605 157,484
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Table A.16: Coin-Exchange Level Regressions and the Endorsement Channel

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. We restrict our sample
to treated coins with a market capitalization of more than $100 million one month prior to their
central exchange listing date. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins
listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for the
pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2 days
in advance. We keep only those incumbent coin-exchange pairs that were listed at least 30 days
before their listing on central exchanges, or pairs with coins that have not been listed by central
exchanges, in order to identify the listing effect on incumbent exchanges. Odd and even columns
are results based on listings on Binance and Coinbase, respectively. Standard errors are clustered at
the coin-exchange pair and time level. Standard errors are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.02∗ 0.007 0.02∗∗∗ 0.005 0.63∗∗∗ 0.54∗∗∗ 0.61∗∗∗ 0.59∗∗∗

(0.01) (0.006) (0.007) (0.004) (0.09) (0.06) (0.08) (0.05)
Listing (> 30 days) 0.04∗∗∗ 0.01 0.04∗∗∗ 0.004 0.71∗∗∗ 0.42∗∗∗ 0.53∗∗∗ 0.51∗∗∗

(0.02) (0.008) (0.01) (0.005) (0.13) (0.06) (0.13) (0.06)
Pre Three-day Listing 0.008 0.02∗∗∗ 0.01∗ 0.01∗∗∗ 0.47∗∗∗ 0.87∗∗∗ 0.52∗∗∗ 0.91∗∗∗

(0.01) (0.006) (0.008) (0.004) (0.12) (0.09) (0.10) (0.08)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.49 0.49 0.70 0.77 0.74 0.77 0.80 0.84
Observations 878,830 2,175,539 878,830 2,175,539 727,869 1,843,344 727,869 1,843,344
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Table A.17: Coin-Exchange Level Regressions and AML/KYC Requirements

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. We keep 59 exchanges
that have both AML and KYC requirements. Listing(0-30 days)c,t and Listing(> 30 days)c,t are
dummies for coins listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t

accounts for the pre-announcement effect, given that Binance and Coinbase typically announce
listings 1-2 days in advance. We keep only those incumbent coin-exchange pairs that were listed
at least 30 days before their listing on central exchanges, or pairs with coins that have not been
listed by central exchanges, in order to identify the listing effect on incumbent exchanges. Odd and
even columns are results based on listings on Binance and Coinbase, respectively. Standard errors
are clustered at the coin-exchange pair and time level. Standard errors are in parentheses. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels respectively. Data source:
Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.02 0.02∗∗∗ 0.03∗∗∗ 0.02∗∗ 0.89∗∗∗ 0.98∗∗∗ 1.0∗∗∗ 0.99∗∗∗

(0.01) (0.008) (0.009) (0.006) (0.13) (0.09) (0.12) (0.08)
Listing (> 30 days) 0.04∗∗ 0.02∗∗ 0.05∗∗∗ 0.02∗∗∗ 0.83∗∗∗ 1.0∗∗∗ 1.0∗∗∗ 1.1∗∗∗

(0.02) (0.009) (0.01) (0.007) (0.18) (0.11) (0.16) (0.09)
Pre Three-day Listing 0.02 0.03∗∗∗ 0.03∗∗ 0.02∗∗∗ 0.79∗∗∗ 1.2∗∗∗ 0.90∗∗∗ 1.3∗∗∗

(0.01) (0.009) (0.01) (0.006) (0.14) (0.11) (0.13) (0.10)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.54 0.56 0.71 0.75 0.72 0.72 0.77 0.76
Observations 1,394,050 2,805,365 1,394,050 2,805,365 1,153,621 2,359,891 1,153,621 2,359,891
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Table A.18: Coin-Exchange Level Regressions and Fake Volume: Intensive Margin

This table shows estimates from Specification (18):

log (TradeV olc,e,t) =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variable is log trade volume. We keep 29 exchanges analyzed in Cong et al. (2023b).
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days
or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given
that Binance and Coinbase typically announce listings 1-2 days in advance. For Columns (1) and
(2), we keep 3 exchanges in the regulated group. For Columns (3) and (4), we keep 10 exchanges in
the Tier 1 group. For Columns (5) and (6), we keep 16 exchanges in the Tier 2 group. We keep only
those incumbent coin-exchange pairs that were listed at least 30 days before their listing on central
exchanges, or pairs with coins that have not been listed by central exchanges, in order to identify
the listing effect on incumbent exchanges. Odd and even columns are results based on listings on
Binance and Coinbase, respectively. Standard errors are clustered at the coin-exchange pair and
time level. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: Log(TradeVol)
Regulated Tier 1 Tier 2

Binance Coinbase Binance Coinbase Binance Coinbase
Model: (1) (2) (3) (4) (5) (6)
Listing (0-30 days) 0.56 0.46∗ 0.93∗∗∗ 0.96∗∗∗ 1.1∗∗∗ 0.83∗∗∗

(0.41) (0.23) (0.11) (0.08) (0.20) (0.10)
Listing (> 30 days) 0.07 0.09 0.92∗∗∗ 1.1∗∗∗ 1.1∗∗∗ 0.82∗∗∗

(0.37) (0.26) (0.15) (0.10) (0.21) (0.11)
Pre Three-day Listing 0.28 0.95∗∗∗ 0.89∗∗∗ 1.3∗∗∗ 0.80∗∗∗ 0.93∗∗∗

(0.35) (0.19) (0.13) (0.11) (0.18) (0.11)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE Yes Yes Yes Yes Yes Yes
Adjusted R2 0.90 0.89 0.77 0.77 0.77 0.76
Observations 55,081 35,826 1,202,135 2,310,313 475,683 929,571
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Table A.19: Coin-Exchange Level Regressions and Fake Volume: Extensive Margin

This table shows estimates from Specification (18):

I (TradeV olc,e,t > 0) =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variable is trade volume dummy. We keep 29 exchanges analyzed in Cong et al.
(2023b). Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the
past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement
effect, given that Binance and Coinbase typically announce listings 1-2 days in advance. For
Columns (1) and (2), we keep 3 exchanges in the regulated group. For Columns (3) and (4), we
keep 10 exchanges in the Tier 1 group. For Columns (5) and (6), we keep 16 exchanges in the
Tier 2 group. We keep only those incumbent coin-exchange pairs that were listed at least 30 days
before their listing on central exchanges, or pairs with coins that have not been listed by central
exchanges, in order to identify the listing effect on incumbent exchanges. Odd and even columns
are results based on listings on Binance and Coinbase, respectively. Standard errors are clustered at
the coin-exchange pair and time level. Standard errors are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0)
Regulated Tier 1 Tier 2

Binance Coinbase Binance Coinbase Binance Coinbase
Model: (1) (2) (3) (4) (5) (6)
Listing (0-30 days) 0.11 -0.04 0.02∗∗ 0.02∗∗∗ 0.01 0.008

(0.08) (0.03) (0.010) (0.007) (0.01) (0.008)
Listing (> 30 days) 0.11 0.04 0.05∗∗∗ 0.04∗∗∗ 0.02∗ 0.01

(0.09) (0.03) (0.01) (0.008) (0.01) (0.009)
Pre Three-day Listing 0.11 -0.05 0.02∗∗ 0.02∗∗∗ 0.004 0.02∗

(0.08) (0.05) (0.009) (0.007) (0.02) (0.009)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE Yes Yes Yes Yes Yes Yes
Adjusted R2 0.71 0.41 0.58 0.62 0.79 0.82
Observations 57,185 38,239 1,372,158 2,578,831 638,491 1,239,375
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Table A.20: Central Exchange Listings: Coin Level (Jan 2017 to July 2022)

This table shows estimates from Specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard devia-
tion of log prices across exchanges. The sample period ranges from January 2017 to July 2022.
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days
or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given
that Binance and Coinbase typically announce listings 1-2 days in advance. For price dispersion and
arbitrage volume, we exclude newly entered exchanges. For coin listings, we include only coins that
were listed on any exchange for at least 30 days before being listed on central exchanges or were
never listed by central exchanges. Odd and even columns are results based on listings on Binance
and Coinbase, respectively. Standard errors are clustered at the coin and time level. Standard errors
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively. Data source: Cryptotick, Etherscan.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.04∗∗∗ -0.04∗∗∗ 0.38∗∗∗ 0.29∗∗∗ 2.0∗∗∗ 2.1∗∗∗ 0.06∗∗∗ 0.08∗∗∗

(0.01) (0.009) (0.05) (0.04) (0.28) (0.25) (0.01) (0.01)
Listing (> 30 days) -0.08∗∗∗ -0.07∗∗∗ 0.39∗∗∗ 0.32∗∗∗ 1.8∗∗∗ 1.9∗∗∗ 0.01∗∗∗ -0.0006

(0.01) (0.01) (0.05) (0.04) (0.23) (0.32) (0.003) (0.005)
Pre Three-day Listing -0.02 -0.03∗∗∗ 0.13∗∗ 0.23∗∗∗ 1.2∗∗∗ 1.4∗∗∗ 0.02 0.05∗

(0.01) (0.009) (0.06) (0.04) (0.30) (0.26) (0.01) (0.03)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.52 0.49 0.43 0.42 0.58 0.55 0.06 0.06
Observations 517,305 659,892 144,566 181,764 83,033 110,049 946,146 1,026,227
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Table A.21: Central Exchange Listings: Coin Level (Aug 2022 to Dec 2023)

This table shows estimates from Specification (17):

Yc,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc + ηt + ϵc,t

The dependent variables are price dispersion, arbitrage volume dummy, log arbitrage volume, and
the change in the number of exchanges. Price dispersion is calculated as the standard deviation
of log prices across exchanges. The sample period ranges from August 2022 to December 2023.
Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for coins listed within the past 30 days
or more than 30 days ago. PreThreedayListingc,t accounts for the pre-announcement effect, given
that Binance and Coinbase typically announce listings 1-2 days in advance. For price dispersion and
arbitrage volume, we exclude newly entered exchanges. For coin listings, we include only coins that
were listed on any exchange for at least 30 days before being listed on central exchanges or were
never listed by central exchanges. Odd and even columns are results based on listings on Binance
and Coinbase, respectively. Standard errors are clustered at the coin and time level. Standard errors
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively. Data source: Cryptotick, Etherscan.

Dependent Variables: Dispersion I(ArbVol > 0) Log(ArbVol) Net Listings
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) -0.03 -0.005 0.74∗∗∗ 0.17∗∗∗ 3.4∗∗∗ 2.0∗∗∗ 0.21∗∗∗ 0.07∗∗

(0.02) (0.01) (0.08) (0.06) (0.33) (0.50) (0.05) (0.03)
Listing (> 30 days) -0.06 -0.007 0.70∗∗∗ 0.21∗∗∗ 2.6∗∗∗ 1.6∗∗∗ 0.004 0.002

(0.04) (0.01) (0.08) (0.06) (0.25) (0.49) (0.008) (0.007)
Pre Three-day Listing -0.009 0.03 0.14 0.06 -0.19 2.4∗∗∗ 0.06 0.02

(0.02) (0.02) (0.10) (0.08) (0.81) (0.67) (0.04) (0.03)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.74 0.74 0.49 0.47 0.54 0.55 0.11 0.12
Observations 128,041 187,529 55,478 74,567 33,701 46,529 278,332 314,925

120



Table A.22: Central Exchange Listings: Coin-Exchange Level (Jan 2017 to July 2022)

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. The sample period ranges
from January 2017 to July 2022. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies for
coins listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts for
the pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2 days
in advance. We keep only those incumbent coin-exchange pairs that were listed at least 30 days
before their listing on central exchanges, or pairs with coins that have not been listed by central
exchanges, in order to identify the listing effect on incumbent exchanges. Odd and even columns
are results based on listings on Binance and Coinbase, respectively. Standard errors are clustered at
the coin-exchange pair and time level. Standard errors are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.01 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.64∗∗∗ 0.91∗∗∗ 0.70∗∗∗ 0.89∗∗∗

(0.008) (0.006) (0.006) (0.004) (0.07) (0.06) (0.06) (0.05)
Listing (> 30 days) 0.04∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.71∗∗∗ 1.1∗∗∗ 0.81∗∗∗ 1.1∗∗∗

(0.010) (0.007) (0.007) (0.004) (0.10) (0.07) (0.08) (0.05)
Pre Three-day Listing 0.004 0.03∗∗∗ 0.006 0.02∗∗∗ 0.56∗∗∗ 1.1∗∗∗ 0.62∗∗∗ 1.1∗∗∗

(0.009) (0.006) (0.007) (0.004) (0.09) (0.08) (0.08) (0.08)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.46 0.48 0.62 0.68 0.80 0.79 0.85 0.85
Observations 3,766,644 6,536,601 3,766,644 6,536,601 2,983,936 5,321,089 2,983,936 5,321,089
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Table A.23: Central Exchange Listings: Coin-Exchange Level (Aug 2022 to Dec 2023)

This table shows estimates from Specification (18):

Yc,e,t =β1Listing(0-30 days)c,t + β2Listing(> 30 days)c,t+
β3PreThreedayListingc,t + δc,e + ηt + γe,t + ϵc,e,t

The dependent variables are trade volume dummy and log trade volume. The sample period ranges
from August 2022 to December 2023. Listing(0-30 days)c,t and Listing(> 30 days)c,t are dummies
for coins listed within the past 30 days or more than 30 days ago. PreThreedayListingc,t accounts
for the pre-announcement effect, given that Binance and Coinbase typically announce listings 1-2
days in advance. We keep only those incumbent coin-exchange pairs that were listed at least 30 days
before their listing on central exchanges, or pairs with coins that have not been listed by central
exchanges, in order to identify the listing effect on incumbent exchanges. Odd and even columns
are results based on listings on Binance and Coinbase, respectively. Standard errors are clustered at
the coin-exchange pair and time level. Standard errors are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels respectively. Data source: Cryptotick.

Dependent Variables: I(TradeVol > 0) Log(TradeVol)
Binance Coinbase Binance Coinbase Binance Coinbase Binance Coinbase

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Listing (0-30 days) 0.09∗∗∗ 0.006 0.06∗∗∗ 0.0004 1.5∗∗∗ 0.24∗∗∗ 1.5∗∗∗ 0.25∗∗∗

(0.02) (0.009) (0.02) (0.007) (0.20) (0.07) (0.17) (0.07)
Listing (> 30 days) 0.10∗∗∗ 0.004 0.06∗∗ 0.002 1.2∗∗∗ 0.20∗∗ 1.1∗∗∗ 0.20∗∗∗

(0.03) (0.009) (0.03) (0.006) (0.26) (0.08) (0.26) (0.07)
Pre Three-day Listing 0.07∗∗∗ 0.008 0.04∗∗ 0.008 1.3∗∗∗ 0.62∗∗∗ 1.4∗∗∗ 0.61∗∗∗

(0.02) (0.01) (0.02) (0.008) (0.26) (0.21) (0.26) (0.19)
Coin-Exchange Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes
Exchange FE × Day FE No No Yes Yes No No Yes Yes
Adjusted R2 0.64 0.65 0.75 0.77 0.87 0.85 0.89 0.87
Observations 808,836 1,832,801 808,836 1,832,801 561,048 1,378,958 561,048 1,378,958
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