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Abstract

Stablecoins are cryptoassets which are designed to be pegged to the dollar, but are backed by imper-

fectly liquid USD assets. We show that stablecoins feature concentrated arbitrage: the largest issuer,

Tether, only allows 6 agents in an average month to redeem stablecoins for cash. We argue that issuers’

choice of arbitrage concentration reflects a tradeoff: efficient arbitrage improves stablecoin price sta-

bility in secondary markets, but amplifies run risks by reducing investors’ price impact from selling

stablecoins. Our findings imply that policies designed to improve stablecoin price stability may have

the unintended consequence of increasing stablecoin run risks.

https://drive.google.com/file/d/1LSxRpBKaouhu1FQVMtCwPEDRi-m_Tbpw/view


1 Introduction

Fiat-backed stablecoins are blockchain assets whose value is claimed to be stable at $1. Such price sta-

bility is achieved by promising to back each stablecoin token with at least $1 in US dollar-denominated

assets, such as bank deposits, Treasuries, corporate bonds, and loans. The six largest US dollar-backed

stablecoins have grown from $5.6 billion in market capitalization at the beginning of 2020 to over $130

billion at the beginning of 2022. The potential for stablecoins to become a widely accepted means

of payment that competes with fiat money and bank deposits (e.g., Brunnermeier, James and Landau,

2019, Duffie, 2019) has attracted active discussions about how to mitigate potential risks to financial

stability and what the optimal regulatory framework should be.1

The ideal stablecoin always trades at a stable $1 and is free from panic runs. However, the de-

terminants of and relationship between stablecoins’ run risk and price stability are far from obvious.

Stablecoins hold illiquid assets while promising a fixed $1 redemption value. Unlike an MMF or a

commercial bank, this $1 redemption is restricted to a specific set of institutional arbitrageurs. The vast

majority of investors can only trade stablecoins on secondary market exchanges, similar to investors

trading ETF shares on secondary markets. These investors trade at the secondary market price, which

frequently deviates above and below $1 depending on the demand and supply pressures in the market.

Since the stablecoin price is determined in equilibrium, when and why would stablecoin investors want

to run? How are stablecoin price deviations related to their run-risk?

We answer these questions by developing a framework for the market structure of stablecoins,

showing how issuers, arbitrageurs, and customers interact to determine the stability of stablecoin prices

and the likelihood of panic runs. Our first contribution is to document the novel and surprising fact that

stablecoins feature concentrated arbitrage. For example, the largest stablecoin, USDT, only allows for

six arbitrageurs in an average month, whereas all other investors buy and sell stablecoins in competi-

tive secondary markets. Our finding of concentrated arbitrage is surprising because arbitrageurs trade

against fluctuations in stablecoin demand: when the stablecoin price falls below $1, arbitrageurs can

buy stablecoins from the secondary market and redeem them with the issuer for $1, which pushes the

1For example, see G7 Working Group and others, 2019, “Investigating the Impact of Global Stablecoins”; ECB, 2020,
“Stablecoins: Implications for monetary policy, financial stability, market infrastructure and payments, and banking super-
vision in the euro area”; BIS, 2020, “Stablecoins: potential, risks and regulation”; and IMF, 2021, “The Crypto Ecosystem
and Financial Stability Challenges”.
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stablecoin price back up. In other words, issuers could simply authorize more arbitrageurs and make

arbitrage more efficient to improve price stability in secondary markets.

Second, we show that while limiting arbitrage is harmful to stablecoin price stability, limiting ar-

bitrage can, in fact, reduce the likelihood of panic runs. Panic runs by investors are possible despite

stablecoins trading on competitive exchanges. This is because issuers allow arbitrageurs to redeem sta-

blecoins for $1 in primary markets, but back this promise by holding illiquid reserve assets. If enough

stablecoin holders attempt to sell and the issuer cannot meet arbitrageurs’ redemption requests through

reserve asset fire-sales, it is rational for other stablecoin holders to sell, leading to a self-fulfilling

panic run. However, runs are less likely when arbitrage is inefficient because investors’ sales decrease

secondary-market prices more, discouraging other investors from selling. We thus highlight a new

tradeoff faced by stablecoin issuers: by choosing how concentrated arbitrage is, issuers trade off the

benefits of arbitrage to price stability with the costs from increased run risk.

Third, our framework has novel implications for the effects of policy interventions that have been

proposed in various jurisdictions.2 Our results imply that although improved price stability and reduced

run risk are both desirable traits of stablecoins, they are fundamentally different, and one may come

at the expense of the other. For example, proposals that remove issuers’ ability to determine arbitrage

concentration using the two-layered market structure would directly improve price stability, but may

have the unintended consequence of amplifying run risk, if not coupled with other measures that reduce

asset illiquidity.

Our empirical findings are based on a novel dataset of fiat-backed stablecoins. Each stablecoin

creation or redemption involves a stablecoin transaction between an issuer and an arbitrageur on a

public blockchain. Thus, to analyze the market structure of the arbitrage sector, we collect transaction-

level data on each stablecoin creation and redemption event for the six largest fiat-backed stablecoins:

Tether (USDT), Circle USD Coin (USDC), Binance USD (BUSD), Paxos (USDP), TrueUSD (TUSD),

and Gemini dollar (GUSD) from the Ethereum, Avalanche, and Tron blockchains. To capture trading

activity by investors and arbitrageurs on secondary markets, we also extract trading prices in secondary

markets from the main crypto exchanges. Further, we obtain the composition of reserve assets for

USDT and USDC, which reported these breakdowns at various points in 2021 and 2022.
2Proposed regulatory frameworks for stablecoins in the EU, UK, and US all contain provisions on how stablecoin cre-

ations and redemptions should be handled; see European Parliament and Council of the European Union (2023), Financial
Conduct Authority (2023), Stablecoin Transparency and Accountability for a Better Ledger Economy (STABLE), and
Guiding and Establishing National Innovation for U.S. Stablecoins (GENIUS).
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We document several stylized facts about stablecoin arbitrage. First, we find that arbitrage is gen-

erally fairly concentrated, though the degree of concentration varies significantly across stablecoins.

USDT only has six arbitrageurs redeeming stablecoins during the average month, and the largest ar-

bitrageur accounts for 66% of the total redemption activity. In contrast, arbitrage at USDC is more

competitive, with 521 redeeming arbitrageurs in an average month. Further, stablecoin trading prices

in secondary markets frequently deviate from $1. We note that these price deviations are not analo-

gous to MMFs’ “breaking the buck” nor are they an indicator of runs. Rather, stablecoins trade below

(above) $1 when selling (buying) pressure in secondary markets is not fully absorbed by arbitrage trade,

consistent with Lyons and Viswanath-Natraj (2021).

We find that stablecoins with fewer arbitrageurs have larger average price deviations in secondary

markets. For example, the median discount at USDT is 11 bps, while the median discount at USDC

is less than 1 bps. The gap between the average discounts is larger at 54 bps for USDT and 1 bps for

USDC. This finding is consistent with the limits to arbitrage literature showing that imperfect arbitrage

hurts price efficiency (e.g., Shleifer and Vishny, 1997, Gromb and Vayanos, 2002). However, it also

leaves open the question of how stablecoin issuers choose the arbitrage concentration they allow. After

all, if approving more arbitrageurs improves price stability in secondary markets, why don’t all stable-

coin issuers allow for free entry and perfectly efficient arbitrage? At the same time, how is the choice of

arbitrage concentration related to the liquidity of reserve assets given that USDT also has more illiquid

assets as part of their reserve assets than USDC?

We develop a tractable model of the two-layered market structure of stablecoins, yielding analytical

solutions on both stablecoin price and run risk. In the baseline model, stablecoin investors decide

whether to hold stablecoins to capture an exogenous long-term holding benefit. Investors can also

prematurely sell their stablecoins in the secondary market to cash out, but only arbitrageurs are allowed

to create or redeem stablecoins with the issuer for a fixed $1. Arbitrageurs have inventory costs, so that

there must be a wedge between secondary market prices and redemption values for arbitrageurs to act.

The issuer meets arbitrageur redemptions by prematurely liquidating illiquid reserve assets at a dis-

count, which is ultimately why the risk of panic runs by stablecoin investors remains. The conventional

view may imply that like ETFs, stablecoins are not runnable because of exchange trading, where the

trading price in secondary markets falls as more investors sell, creating a natural strategic substitutabil-

ity. In the case of stablecoins, arbitrageurs are promised a fixed in-cash redemption price by the issuer.
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The issuer’s costly sales of illiquid assets to meet arbitrageurs’ redemptions at $1 imply that stablecoin

investors may end up with less valuable stablecoins in the future. Consequently, stablecoins’ fixed

primary market price reintroduces strategic complementarity among secondary market investors.

Importantly, what is unique about the two-layered stablecoin market structure is that investors’

propensity to “run” on the stablecoin is influenced by the efficiency of the arbitrage sector. Our core

finding is that increasing arbitrage efficiency actually increases run risk. This is because more efficient

arbitrage lowers the price impact for investors who sell in the secondary market. A more favorable

selling price implies lower strategic substitutability and incentivizes panic-selling.

Nevertheless, constraining arbitrage is not without costs. To understand how the stablecoin issuer

optimally decides on arbitrage efficiency, we extend our baseline model by adding noise traders, whose

trades induce more variance in stablecoin prices when arbitrage is less efficient. Stablecoin issuers thus

face a tradeoff: arbitrage efficiency is beneficial for price stability, but also increases run risks. This

tradeoff implies that arbitrage efficiency can be a double-edged sword and that some limits to arbitrage

may be optimal.

There has been heightened attention on the optimal regulation of stablecoins across several juris-

dictions. In the US, for example, the Stablecoin Transparency and Accountability for a Better Ledger

Economy (STABLE) and the Guiding and Establishing National Innovation for U.S. Stablecoins (GE-

NIUS) were proposed in the House of Representatives and the Senate, respectively. Regulators and

market participants would like stablecoins to both have low run risks and stable prices. Our framework

highlights that these two desirable goals are distinct from each other and driven by different economic

forces. In particular, we highlight the tradeoff between price stability and financial stability and show

that some policies may attain one goal at the expense of the other. In this section, we apply our model

predictions to shed light on what the proposed regulation of stablecoins’ redemptions, reserves, and

interest payments imply for price stability and financial stability.

Our results provide important insights on optimal stablecoin regulation. These insights are espe-

cially relevant because different jurisdictions have recently proposed different sets of stablecoin reg-

ulations that do not always agree with each other. First, some proposals require stablecoin issuers

to provide unconstrained direct redemptions to all investors, essentially eliminating the current two-

layered market structure. Such policies would indeed benefit price stability through more competitive

arbitrage. However, to the extent that stablecoins are allowed to continue doing liquidity transforma-
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tion, our model suggests that more efficient arbitrage would also amplify the risk of panic runs. In

contrast, imposing redemption fees on arbitrageurs would reduce run risk through constraining arbi-

trage, but at the expense of price stability. Second, many policy proposals impose restrictions on how

safe and liquid stablecoin issuers’ reserve assets can be. Our results suggest that reserve asset policies

should be coordinated with policies governing redemptions, since these factors jointly determine the

dual outcomes of price stability and run risk. Third, we show that allowing for dividend payments

further improves stablecoin price stability and may lower run risks. Taken together, we highlight that

while price stability and low run risk are both desirable features of stablecoins, they are fundamentally

distinct and respond differently to policy interventions. It is, therefore, essential for policymakers to

design stablecoin regulation in a coordinated and consistent manner.

Finally, we calibrate our global games model for the largest two fiat-backed stablecoins, USDT

and USDC, to provide an estimate of their run risk and the extent to which policy interventions would

influence this risk. We measure the overall illiquidity of reserve portfolios using collateral haircuts. We

then estimate the probability at which the reserve asset payoff does not materialize using CDS spreads.

We further proxy for the long-term benefit of holding the stablecoin using the return to lending out the

stablecoin. Finally, we choose the slope of investors’ stablecoin demand and the cost of price variance

to most closely match the slope of investors’ demand and the slope of arbitrageurs’ demand in the

data. Our model estimates imply an economically significant risk of runs at both USDT and USDC.

USDT’s fragility stems from its higher liquidity transformation, while USDC is vulnerable due to less

concentrated arbitrage. Using our calibrated model, we also evaluate the extent to which allowing

issuers to make dividend payments could decrease run risks and increase price stability.

Our analysis of stablecoins belongs broadly to the growing literature of digital currencies and their

regulations (e.g., Brunnermeier, James and Landau, 2019, Duffie, 2019).3 While Bitcoin and most

other cryptocurrencies exhibit volatile and correlated prices (Hu, Parlour and Rajan, 2019), the defining

feature of stablecoins is their relative price stability at $1 and thus their potential to become a means of

payment. Our overall contribution is to point out how increasing price stability can actually increase

run risks, which has important implications for regulating stablecoins.

We show that the tradeoff between stablecoins’ price stability and run risk is determined by arbitrage

efficiency: constraints to arbitrage worsen price stability but also reduce financial fragility. The fact that

3Also see Harvey, Ramachandran and Santoro (2021), John, Kogan and Saleh (2022) and Makarov and Schoar (2022)
for detailed surveys of the market structures of various cryptocurrencies and decentralized finance.
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inefficient arbitrage decreases price efficiency has been shown in seminal papers by Shleifer and Vishny

(1997) and Gromb and Vayanos (2002). Closely related to us, Gromb and Vayanos (2018) analyze how

constrained arbitrageurs exploit price discrepancies across segmented markets, Bryzgalova, Pavlova

and Sikorskaya (2023) show that arbitrageurs face entry costs and choose to specialize in some markets,

resulting in concentrated arbitrage analogous to our findings, and Davila, Graves and Parlatore (2024)

provide a comprehensive study on the social value of closing an arbitrage opportunity. We focus on

a two-layer market structure in which we highlight a novel implication of limits to arbitrage: more

efficient arbitrage improves price stability, but may unintentionally increase run risks.

Our analysis of stablecoin runs builds on a large literature on panic runs and liquidity transformation

(e.g., Diamond and Dybvig, 1983, Allen and Gale, 1998, Bernardo and Welch, 2004, Goldstein and

Pauzner, 2005). It has also been shown that MMFs are subject to panic runs because their shares are

redeemed by investors at a fixed price (Kacperczyk and Schnabl, 2013, Sunderam, 2015, Parlatore,

2016, Schmidt, Timmermann and Wermers, 2016), while closed-end funds and ETFs are typically

viewed as less runnable because their shares are tradable at market prices (Jacklin, 1987, Allen and

Gale, 2004a, Farhi, Golosov and Tsyvinski, 2009, Koont, Ma, Pastor and Zeng, 2021). Our contribution

is to incorporate the two-layer market structure of stablecoins and a realistic arbitrage mechanism into

a run model, while keeping it tractable and yielding closed-form solutions on both the stablecoin price

and run risk.4 In doing so, our model captures the unique combination of ETFs and MMFs in the design

of stablecoins and sheds light on modeling similar financial intermediaries in future work.

In the context of stablecoins, most closely related to us is Lyons and Viswanath-Natraj (2021), who

are the first to show that USDT’s creation and redemption activity respond to secondary market price

deviations. Gorton, Klee, Ross, Ross, and Vardoulakis (2023) show that stablecoins’ use in leveraged

trading of other crypto-assets helps maintain their price stability. Uhlig (2022) and Liu, Makarov and

Schoar (2023) provide comprehensive analysis of runs on algorithmic stablecoins during the Terra-

Luna crash in 2022, while Adams and Ibert (2022) analyze earlier algorithmic stablecoin.5 Aldasoro,

Ahmed, and Duley (2023) analyzes the effect of disclosure about reserve asset quality on stablecoin

runs, while Bertsch (2023) models the effect of stablecoin adoption on fragility. Our contribution to the

4Technically, our results share similar features with a few other recent developments of run models where there is
strategic substitutability from both sides of the action space (e.g., Allen, Carletti, Goldstein and Leonello, 2018, He, Krish-
namurthy, and Milbradt, 2019, Kashyap, Tsomocos, and Vardoulakis, 2023) and the solution is guaranteed by the single-
crossing property (Athey, 2001).

5Also, taking a historical perspective, Frost, Shin, Wierts (2020), Gorton and Zhang (2021), and Gorton, Ross and Ross
(2022) compare stablecoins to deposits issued by the banking sector pre-deposit-insurance.
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stablecoins literature is to show how arbitrage concentration within the two-layered market structure

shapes price instability and run risks. This aspect of stablecoin design is relatively understudied in the

academic literature but has important implications for stablecoin regulation.

More generally, several other papers have explored risks associated with stablecoins other than

panic runs. Eichengreen, Nguyen, and Viswanath-Natraj (2023) construct measures of stablecoin de-

valuation risk using spot and futures prices. Li and Mayer (2021) develop a dynamic model to charac-

terize the endogenous transition between stable and unstable price regimes, focusing on the feedback

between debasement and the collapse of demand for stablecoins as money. d’Avernas, Maurin, and

Vandeweyer (2022) provide a framework to analyze how price stability can be maintained depending

on the issuer’s commitment to stablecoin supply. Routledge and Zetlin-Jones (2022) consider the design

of exchange rate policies in maintaining price stability. Barthelemy, Gardin and Nguyen (2021), Liao

and Caramichael (2022), Flannery (2023), and Kim (2022) analyze the potential impact of fiat-backed

stablecoin activities on the real economy, while Baughman and Flemming (2023) argue that the com-

petitive pressure of stablecoins on USD assets is limited. Anadu et al. (2023) show that investors shift

from riskier to safer stablecoins during periods of stress similar to the flight-to-safety behavior of MMF

investors. Kozhan and Viswanath-Natraj (2021) analyze collateral risk at DAI, which is a stablecoin

overcollateralized by risky crypto assets, while Griffin and Shams (2020) show that USDT was used

to facilitate bitcoin speculation and likely subject to risk of under-collateralization. Complementary to

these papers, we focus on stablecoins as financial intermediaries engaged in liquidity transformation,

the arbitrage efficiency between primary and secondary markets, and the resulting relationship between

price stability and run risk.

The rest of the paper proceeds as follows. Section 2 describes institutional details of the stable-

coin market and Section 3 explains the data we use. Section 4 documents several empirical facts that

motivate our model in Section 5. Section 6 shows the policy implications from our results. Section 7

explains the model calibration and Section 8 concludes.

2 Institutional Details

Stablecoins are blockchain assets whose value is claimed to be stable at $1. Blockchain assets can be

self-custodial: a user can use crypto wallet software, such as Metamask, to hold, send, and receive
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stablecoins directly. These stablecoins are not stored with any trusted intermediary: rather, a “private

key” – a long numeric code, generally kept only on the user’s hardware device – is used to prove to the

blockchain network that the user owns her stablecoins, and to direct the network to take actions such

as transferring stablecoins to other wallets. Others have no access to individuals’ private keys so they

cannot take funds from individuals’ wallets.

Relative to other blockchain assets like bitcoins, the defining feature of stablecoins is (relative)

price stability. The largest stablecoin issuers attempt to achieve price stability by promising to back

each stablecoin token by at least $1 in off-blockchain US dollar assets. These fiat-backed stablecoins

have experienced a rapid expansion over the last few years. Within two years, the total asset size of

the six largest fiat-biased stablecoins has grown from $5.6 billion at the beginning of 2020 to exceed

$130 billion at the beginning of 2022 (Figure 3). The largest two stablecoins are Tether (USDT) and

Circle USD Coin (USDC) which made up more than 50% of the total market size at $76.4 billion in

January 2022. Binance USD (BUSD), Paxos (PUSD), TrueUSD (TUSD), and Gemini dollar (GUSD)

are significantly smaller in size.

In the remainder of this section, we provide an overview of the uses of stablecoins and the stablecoin

market structure.

2.1 Uses of Stablecoins

Stablecoins are a fairly low-cost way to transact and hold US-dollar assets. If a sender in country A

sends funds to a receiver in country B, she can purchase stablecoins on a crypto exchange using fiat

currency in country A, withdraw these stablecoins to her crypto wallet, and send them to the wallet

of the receiver in country B. The receiver can then deposit these funds to a crypto exchange in his

country, sell the stablecoins for fiat, and then withdraw the fiat currency. Sending stablecoins from one

crypto wallet to another is relatively fast and low-cost.6 As of January 2023, sending stablecoins on the

Ethereum blockchain finalizes in under a minute and costs around $1 USD per transaction, independent

of the amount of stablecoins sent. Stablecoins can also be used as a store of value; they can be held in

crypto wallets indefinitely at no cost.

6The first and third steps in this process may incur fees and delays from converting fiat to and from crypto using local
crypto exchanges, which may vary across exchanges and countries.
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As a result, while stablecoins are costlier to use than well-functioning banking services in developed

countries, they are competitive when traditional financial infrastructure functions poorly. For example,

stablecoins are being used in settings where transactions must cross national borders, capital controls,

and financial repression are prevalent, inflation is high, or trust in financial intermediaries is low.7

Stablecoins are also used to transact with other blockchain smart contracts. For example, market

participants can use stablecoin tokens to purchase other blockchain tokens, such as ETH, MKR, or

UNI, using an automated market maker protocol such as Uniswap. Market participants can also lend

stablecoin tokens on lending and borrowing protocols, such as Aave and Maker, allowing them to

receive positive interest rates, and also use these assets as collateral to borrow other assets. In a way,

stablecoins provide a safe store of value and a medium of exchange for the blockchain ecosystem.

2.2 Market Structure

Stablecoin tokens are created (“minted”) or redeemed (“burned”) in the primary market with US dollar

cash as shown on the left-hand side of Figure 4. To create a stablecoin token, an arbitrageur sends $1

to the issuer, and the issuer then sends a stablecoin token into the market participant’s crypto wallet.

Analogously, to redeem a stablecoin token, for each stablecoin token that the market participant sends

to the issuer’s crypto wallet, the issuer sends $1, for example, through a bank transfer, into the market

participant’s bank account. The primary market for stablecoins resembles a money market fund in the

traditional financial system. Please see Appendix A for further details.

Most market participants cannot become arbitrageurs to redeem and create stablecoin tokens and

stablecoin issuers differ in how easily and costly market participants can access primary markets. Ac-

cording to market participants, USDC allows general businesses to register as arbitrageurs, while USDT

requires a lengthy due diligence process and imposes restrictions on where arbitrageurs can be domi-

ciled. Further, USDT imposes a minimum transaction size of $100,000 and charges the greater of 0.1%

and $1000 per redemption.

7Humanitarian organizations have used stablecoins to make cross-border remittance payments, circumventing banking
fees and regulatory frictions. See Fortune.com. Some firms in Africa have begun using stablecoins for international pay-
ments to suppliers in Asia. See Rest Of World. In settings with high inflation, such as Lebanon and Argentina, individuals
have begun storing value and transacting using stablecoins. See Rest Of World for a discussion of the case of Africa, CNBC
and Rest Of World for the case of Lebanon, and Coindesk, EconTalk, and Memo for the case of Argentina. Some merchants
in these areas have begun accepting stablecoins as a form of payment. For example, the Unicorn Coffee House in Beirut,
Lebanon accepts USDT (Tether) as a form of payment.
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The majority of market participants trade existing stablecoins for fiat currencies in secondary mar-

kets. Crypto exchanges allow investors to make US dollar deposits, and then trade US dollars for

stablecoins with other market participants. The price of stablecoin tokens in the secondary market is

thus driven by demand and supply. When there is a surge in stablecoin sales, the secondary market

price drops but does not induce direct liquidations of reserve assets. In this way, the buying and selling

of stablecoins on secondary markets resemble the trading of ETF shares on competitive exchanges.

However, selling pressure in the secondary market can spill over to affect the primary market

through arbitrageurs. When secondary market prices drop below $1, arbitrageurs can profit from pur-

chasing stablecoin tokens in secondary markets, and redeeming them one-for-one for $1 with the sta-

blecoin issuer in primary markets. Through this arbitrage, the $1 redemption value of stablecoins in

primary markets pulls the trading price of stablecoins towards $1 in secondary markets. At the same

time, this arbitrage process also implies that investor selling pressure in secondary markets eventually

triggers sales of reserve assets when stablecoin issuers liquidate reserves to meet arbitrageurs’ redemp-

tion in cash. These fire sales can be especially costly if illiquid reserve assets are sold at a discount.

3 Data

In this section, we explain our main data sources.

Primary market data. The core dataset used in our analysis is data on each stablecoin creation and

redemption event for the six largest fiat-backed stablecoins: USDT, USDC, USDP, TUSD, and GUSD,

on the Ethereum, Avalanche, and Tron blockchains. We obtain this data from each blockchain based on

“chain explorer” websites, which process transaction-level blockchain data into a usable format. We use

Etherscan for Ethereum, Snowtrace for Avalanche, and Tronscan for Tron. Using our data extraction

process, we see, for each stablecoin creation and redemption event, the precise timestamp of the event,

the amount of the stablecoin redeemed or created, and the wallet address of the entity involved in

stablecoin creation or redemptions. We note that the blockchain only records wallet addresses and the

same institution can have multiple wallet addresses. In our data collection process, we combine wallets

whose Etherscan labels clearly indicate that they belong to the same institution. However, this process

may not be exhaustive, so the degree of arbitrage concentration we find should be viewed as a lower

bound to true arbitrage concentration. Appendix B.1 presents further details for the primary markets
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of stablecoins and the construction of our data. Our baseline analysis uses data from the Ethereum

blockchain. We present results for the Tron and Avalanche blockchains in the appendix.

Secondary market data. For each stablecoin, we extract hourly closing prices for direct USD to

stablecoin trades from several large exchanges, including Binance, Bitfinex, Bitstamp, Bittrex, Gemini,

Kraken, Coinbase, Alterdice, Bequant, and Cexio. We provide further details on why we only use

direct USD to stablecoin trades in Appendix B.2. In our main analysis, we calculate daily prices

for each stablecoin as the weighted average of hourly closing prices across these exchanges, where

the weights are by trading volume. Differences in stablecoin prices across the main exchanges are

generally negligible, hence the price series are not substantially affected by the weights we put on

different exchanges. We winsorize secondary market prices at the 1% level.

Reserves. We use the breakdowns of reserve assets that USDT and USDC self-report at various

points in 2021 and 2022 as part of their balance sheets posted online. The other four stablecoins

have not released breakdowns of their reserve asset composition but state the broad categories of their

reserves. We note that reserve assets are not recorded on the blockchain so we cannot independently

verify the reported information. Griffin and Shams (2020), for example, have pointed out that USDT

at times issues tokens insufficiently backed by reserve assets, implying the potential for additional risk

or even fraud. We think of the reported reserve asset information as the most optimistic estimate of the

actual reserve assets that stablecoins hold. Thus, our estimates of run risk should be interpreted as a

best-case scenario, or equivalently, a lower bound.

4 Facts

In this section, we present a set of new facts about stablecoins that informs our model and calibration.

4.1 Secondary Market Prices

Fact 1. The trading price of stablecoins in the secondary market commonly deviates from $1.

Figure 5 shows the price at which different stablecoins trade on the secondary market over time.

We observe that the secondary market price rarely stays fixed at $1. Rather, stablecoins trade at a
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discount 27.2% to 41.6% of the time and trade at a premium 57.3% to 72.8% of the time for our sample

of stablecoins (see Table 1a). The extent of these price deviations varies by stablecoin. While the

average discount at USDT is 54bps, the average discount at USDC is only 1bps. The average discounts

of BUSD, TUSD, and USDP are also below that of USDT, while that of GUSD is the highest. The

median discounts are generally smaller in magnitude than the average discounts, but the variation in

the cross-section remains similar. For example, the median discount at USDT is 11bps, while that at

USDC is less than 1bps. The magnitudes also decrease when we consider a common sample period

starting from January 2020, when all the six stablecoins were traded, but the variation across coins

remains with USDT having a larger average discount than USDC (see Table 1b). The average and

median premia also show significant variation in the cross-section.

The trading of stablecoins at a discount has been commonly associated with “breaking the buck”

as in the case of money market funds and even as evidence for panic runs.8 We note that these are

misconceptions. Stablecoins’ “stable value” of $1 refers to the amount that primary market participants

receive when they redeem stablecoins with the issuer. “Breaking the buck” thus corresponds to primary

market participants not receiving a full $1. The secondary market price is the trading price of stable-

coins on exchanges. It is essentially the share price of a closed-end fund and analogous to the share

price of an ETF. Just like ETF prices can deviate from the NAV of the underlying portfolio, stablecoin

prices can deviate from $1 due to selling pressure in secondary markets and is not a direct indicator of

“breaking the buck” or panic runs.

4.2 Primary Market Concentration

Fact 2. The redemption and creation of stablecoins in the primary market is performed by a small set

of arbitrageurs, whose concentration varies by stablecoin.

Table 2 shows the characteristics of monthly primary market redemption and creation activity on the

Ethereum blockchain for different stablecoins. We observe that in an average month, USDT only has

six arbitrageurs engaged in redemptions, whereas USDC has 521. The concentration of arbitrageurs’

market shares is generally high but still varies by stablecoin. The largest arbitrageur at USDT performs

66% of all redemption activity, while the largest arbitrageur at USDC performs 45%. In comparison,
8For example, see https://www.nytimes.com/2022/06/17/technology/tether-stablecoin-cryptocurrency.html and

https://www.cnbc.com/2022/05/17/tether-usdt-redemptions-fuel-fears-about-stablecoins-backing.html
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most other stablecoins lie between USDT and USDC in terms of the number of arbitrageurs and arbi-

trageur concentration.9 In terms of transaction volumes, notice that in the average month, the volume

of redemptions at USDT is $577 million, while that at USDC is $2976 million. In comparison, the total

volume of outstanding tokens at USDT was 1.5 to 2 times that of USDC. Thus, the larger number and

lower concentration of arbitrageurs at USDC are correlated with a higher volume of redemptions rela-

tive to the total asset size as well. There is a larger volume of creations and relatively more arbitrageurs

engaged in creations but the trends across stablecoins and the arbitrage concentration remain similar.

In Appendix Tables A.3 and A.4, we repeat the analysis for the Tron and Avalanche blockchains and

obtain similar variations in arbitrageur concentration across stablecoins.

4.3 Secondary Market Price and Primary Market Concentration

Fact 3. Stablecoins with a more concentrated set of arbitrageurs experience more pronounced price

deviations in the secondary market.

We proceed to analyze the relationship between price deviations and arbitrageur concentration. For

a given stablecoin, we calculate monthly secondary market price deviations by averaging over the ab-

solute values of daily price deviations from one in a given month, which includes both deviations above

and below one. We then average over months to obtain the average price deviation of that stablecoin.

Similarly, we count the number of unique arbitrageurs that engage in redemptions and/or creations and

calculate the market share of the largest five arbitrageurs in each month and the average over time for

each coin. We plot the results in Figure 6a. A clear negative trend emerges: stablecoins with fewer ar-

bitrageurs, like USDT, have higher average price deviations from one in their secondary market prices,

relative to stablecoins with more arbitrageurs, like USDC. Another way to capture arbitrageur concen-

tration is through the market share of the largest arbitrageurs. In Figure 6b, we repeat the analysis

with the market share of the top 5 arbitrageurs. The relationship is positive. Stablecoins whose top 5

arbitrageurs consistently perform a larger share of total redemptions and creations have higher average

price deviations than other stablecoins with lower arbitrageur concentration. In other words, it seems

that higher arbitrage competition is associated with reduced price dislocations in secondary markets.

9One exception is GUSD, which has the most concentrated arbitrage market for redemptions.
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One question arising from Facts 1 to 3 is why some stablecoins choose to have a more concentrated

arbitrageur sector. If arbitrageur competition can indeed stabilize secondary market prices, all stable-

coins should be incentivized to open up arbitrageur access and encourage the entry of new arbitrageurs.

In our model, we show that a counteracting force is the presence of panic runs by investors, which

are more likely with a more competitive arbitrageur sector and are fundamentally linked to stablecoin

liquidity transformation, which we elaborate on next.

4.4 Liquidity Transformation

Fact 4. Stablecoins engage in varying degrees of liquidity transformation by investing in illiquid assets.

Stablecoin issuers hold USD-denominated assets with varying degrees of illiquidity as reserves.

Table 3 shows the composition of reserve assets for USDT and USDC on reporting dates. Overall,

reserve assets of both USDT and USDC are not fully liquid, with those of USDT being more illiquid.

A significant portion of reserve assets is in the form of deposits and money market instruments,

including commercial paper and certificates of deposits. In September 2021, for example, these two

asset classes took up 56.2% of reserve assets at USDT, and USDCs’ reserve assets were 100% in

deposits. Except for deposits in checking accounts, money market instruments and other types of

deposits are not fully liquid and experience a discount when demanded or sold before their maturity

date. Notice also that deposits are not default-free because their quantities exceed the 250K deposit

insurance limit. In fact, USDC was found to be the biggest depositor in Silicon Valley Bank.

The remaining reserve assets are comprised of Treasuries and more illiquid assets, including mu-

nicipal and agency securities, foreign securities, corporate bonds, corporate loans, and other securities.

USDT holds a significant portion of reserves in the form of Treasuries, which amounted to 28.1% in

September 2021. While Treasuries are relatively liquid and safe, the extent of their liquidity varies by

type and over time. For example, Treasury markets were strained in March 2020 following the firesale

by mutual funds and hedge funds. USDT also holds a sizable amount of more illiquid assets.

The other four stablecoins report that their assets are limited to deposits, Treasuries, and money

market instruments but unfortunately do not provide more details breakdowns. That is why our model

estimation will focus on USDT and USDC for which reserve asset breakdowns are available.
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5 Theoretical Framework

In this section, we develop a theoretical framework to reconcile the facts presented in Section 4 and

to analyze the potential for runs on fiat-backed stablecoins. In Section 5.1, we first present a baseline

model to formulate the notion of stablecoin runs, pointing to the unique two-layer market structure

that differentiates stablecoin runs from bank runs while keeping minimal deviation from an otherwise

standard bank run model to highlight our contribution. We show how stablecoin run risk is different

from bank run risk and how it is linked to stablecoins’ arbitrage concentration. We then extend the

model in Section 5.2 to analyze how arbitrage concentration simultaneously affects stablecoins’ price

stability and solve for the issuers’ choice of arbitrage concentration given the tradeoff between run risk

and price stability.

5.1 Stablecoin Runs and the Centralization of Arbitrage

The baseline economy builds on Diamond and Dybvig (1983) and has three dates, t = 1, 2, 3, with no

time discounting. We provide a timeline to illustrate the economy in Figure 1:

Figure 1: Timeline: Baseline Model

1 2 3

• Investors endowed
with stablecoins

• Investors sell
• Arbitrageurs bid

• Long-term convenience
and returns realize

There are two groups of risk-neutral players: 1) a competitive group of stablecoin investors indexed

by i, and 2) a sector of n stablecoin arbitrageurs. There are two types of assets: 1) the dollar, which

is riskless, liquid, and serves as the numeraire, and 2) an illiquid and potentially productive reserve

asset. The investors jointly hold the stablecoin that is initially backed by the reserve asset at t = 1. The

initial value of the reserve asset is normalized to one dollar. We will formalize investors’ participation

decisions and the issuer’s profit maximization in Section 5.2. Until then, we take n as exogenous and

normalize the population of participating investors to one.

At t = 2 and t = 3, investors decide whether to liquidate their stablecoins early at t = 2, potentially

triggering runs, or to hold them until maturity at t = 3 to capture long-term benefits, which we specify
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below. Unlike bank depositors, stablecoin investors cannot redeem their holdings directly from the

issuer. Instead, they liquidate at t = 2 by selling stablecoins in the secondary market, following

the mechanism of Jacklin (1987) and Farhi, Golosov and Tsyvinski (2009), to arbitrageurs, who then

redeem them for cash from the issuer. As in these models, investors sell stablecoins by independently

submitting market orders. This assumption is consistent with empirical evidence showing that retail

investors tend to use market orders more, particularly when spreads are narrow (Kelley and Tetlock,

2013), as in the case of stablecoins. We denote by λ the fraction of investors selling their stablecoins at

the market price p2.

Arbitrageurs, considering the amount they expect to be able to redeem from the issuer, bid compet-

itively in a double auction to determine the price p2 at which investors’ sales of λ stablecoins occur. In

the baseline model, we assume that arbitrageurs cannot hold net inventory, so they must on net redeem

as much on primary markets at t = 2 as they purchase in secondary markets. In Appendix C.1, we

show that this assumption is consistent with the empirical observation that the vast majority of arbi-

trageurs hold very small amounts of stablecoins. We further consider in Appendix C.2 an extension

model in which arbitrageurs are allowed to hold some stablecoins as reserves where we show that our

main results continue to hold. Arbitrageurs face quadratic inventory costs: arbitrageur j incurs a cost
z2j
2χ

for arbitraging zj units of the stablecoin from secondary to primary markets, where χ can be thought

of as capturing arbitrageurs’ balance sheet capacity: when χ is higher, inventory costs are lower.

At t = 2, there are n symmetric arbitrageurs indexed by j. At any given period, arbitrageurs bid

competitively to buy or sell stablecoins from investors and liquidity traders, incur a per-period inventory

cost if winning the auction, and then create or redeem the stablecoin at the fixed price of one dollar if

the issuer is solvent. Thus, arbitrageurs always hold zero inventory at the beginning and the end of

each period. Specifically, at any given period, the winning arbitrageurs incur a per-period inventory

cost z2j /2χ of arbitraging zj of the stablecoin, where χ is a parameter.

The issuer, in turn, meets arbitrageur redemptions in cash by liquidating the illiquid reserve asset

at t = 2. This involves a liquidation cost of φ ∈ (0, 1], i.e., liquidating one unit of the asset yields

1−φ dollars. Economically, φ captures the level of liquidity transformation as well as the various costs

incurred when transacting illiquid assets (see Duffie, 2010, for a review). Note that the issuer is solvent

if and only if λ < 1− φ. When λ ≥ 1− φ, the issuer defaults, and arbitrageurs receive the liquidation

value of (1− φ)/λ per stablecoin redeemed.
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In deciding whether to liquidate their stablecoins early, investors receive private information at

t = 2 about the fundamentals of the economy at t = 3. Following the global games literature, each

investor i obtains a private signal θi = θ + εi at t = 2, where the noise term εi are independently and

uniformly distributed over [−ε, ε]. As usual in the literature (e.g., as in Goldstein and Pauzner (2005)),

we focus on arbitrarily small noise in the sense that ε → 0, but the model results also hold beyond the

limit case.10

Fundamentals θ reflect the level of aggregate risk and determine the stablecoin’s long-term value at

t = 3. With probability 1 − π(θ), the economy enters a bad state: the reserve asset fails and investors

do not receive any nominal return nor any long-term benefits from holding the stablecoin backed by

assets of no value. With probability π(θ), the economy enters a good state: the reserve asset yields a

positive value of R(φ) ≥ 1 dollar, which accrues to the issuer. The stablecoin continues to operate, and

the remaining 1− λ investors consume a long-term benefit η > 0 per stablecoin and the initial value of

1 per unit of the remaining reserve asset. This long-term benefit η can be motivated by investors’ return

from lending out the stablecoin, as documented in Gorton, Klee, Ross, Ross, and Vardoulakis (2023).

Following backward induction, we first consider p2, the price an investor receives when liquidat-

ing the stablecoin early. In the main text, we derive the inverse demand function that arises from

arbitrageurs bidding competitively. We show in Appendix D that, if arbitrageurs bid strategically, our

model resembles the setting of Klemperer and Meyer (1989), which exhibits multiple equilibria. How-

ever, our core economic insight that arbitrage capacity influences stablecoin prices remains unchanged

under an equilibrium selection rule that chooses the equilibrium bid curve closest to the standard linear

solution.

In the main text, we derive the inverse demand function by setting prices equal to marginal costs.

We provide a more formal derivation in Appendix E, where we microfound competitive bidding by

assuming a measure n of arbitrageurs submit bid curves in a rational expectations equilibrium.

10Note that we do not impose any restrictions on the distributions of π, θ, or the increasing function π(θ), which allows
us to map the model to any empirical distribution of fundamentals. Also note that the standard assumption in the global
games literature that investors obtain a private signal about fundamentals is relatively plausible for the stablecoin market
because of its opacity: essentially no stablecoin issuers disclose asset-level information about their reserves, and investors
and arbitrageurs infer stablecoins’ value using their private information.
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Suppose λ ≤ 1−φ, implying that the issuer is solvent, an arbitrageur who purchases zj units in the

secondary market at price p2 and redeems them in the primary market earns

zj1︸︷︷︸
Redemption V alue

− zjp2︸︷︷︸
Secondary Mkt Price

−
z2j
2χ︸︷︷︸

Inventory Cost

. (5.1)

In any symmetric equilibrium, each arbitrageur absorbs z∗j = λ
n

of the total inventory. If issuers take

prices as given, in order for z∗j to be the optimal quantity absorbed, the price must equal the marginal

value of absorbing additional stablecoin quantity at z∗j . That is, differentiating (5.1) with respect to zj ,

setting to 0, and solving for p2, we must have

p2
(
z∗j
)

= 1−
z∗j
χ
.

In words, the price is just the marginal redemption value 1 less the marginal inventory cost
z∗j
χ

. Substi-

tuting that z∗j = λ
n

in symmetric equilibrium, we have

p2 (λ) = 1− λ

nχ
, ∀λ ≤ 1− φ. (5.2)

In the insolvent case, λ > 1 − φ, each unit of the stablecoin can only be redeemed at its liquidation

value 1−φ
λ

. Since investors submit market orders, the redemption value does not depend on arbitrageurs’

choice of quantity. Arbitrageur profits are thus modified to

zj

(
1− φ
λ

)
︸ ︷︷ ︸

Redemption V alue

− zjp2︸︷︷︸
Secondary Mkt Price

−
z2j
2χ︸︷︷︸

Inventory Cost

. (5.3)

Again, in the symmetric equilibrium, the price must equal arbitrageurs’ marginal value of absorbing

additional quantity. Differentiating (5.3) with respect to zj , setting to 0, and substituting z∗j = λ
n

, we

have

p2 (λ) =
1− φ
λ
− λ

nχ
, ∀λ > 1− φ.

The only difference from (5.2) is that the redemption value is modified to 1−φ
λ

. We summarize these

results in the following lemma.
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Lemma 1. The stablecoin’s secondary-market price at t = 2 is given by

p2(λ) =

1−Kλ λ ≤ 1− φ ,
1− φ
λ
−Kλ λ > 1− φ ,

(5.4)

where

K ≡ 1

nχ
. (5.5)

Lemma 1 shows that for any total redemption quantity λ > 0, p2 decreases with K and increases

with both χ and n. Intuitively, secondary market prices are less affected by investors’ sales when

arbitrageurs are better capitalized (χ is higher) and more numerous (n is higher). We refer to K as

arbitrage capacity, which plays a central role in the analysis as it measures the slope of demand in

the secondary market when the issuer remains solvent. Arbitrageurs’ bids create a downward-sloping

demand curve for the stablecoin, and when n or χ increases, the slope becomes steeper, reducing the

price impact of stablecoin sales.

Note also that p2 is strictly decreasing in λ everywhere: the more investors sell, the lower the

price is. This is important because it produces strategic substitutability in investors’ sale decisions:

when many other investors are selling, a given investor anticipates receiving less from selling, thus

discouraging her from selling. This force stands in contrast to the strategic complementarity in classic

bank run models (e.g., Diamond and Dybvig, 1983), in which depositors get a fixed deposit value from

withdrawing.

We then consider v3, the value an investor may get at t = 3 if λ other investors choose to liquidate

early. It is given by

v3(λ) =


π(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
λ ≤ 1− φ ,

0 λ > 1− φ .
(5.6)

To see why this is the case, notice that the issuer needs to liquidate

l(λ) =


λ

1− φ
λ ≤ 1− φ ,

1 λ > 1− φ .
(5.7)
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units of the reserve asset to meet arbitrageur redemptions at t = 2, and only 1 − l(λ) units remain at

t = 3, whose value will be shared by the remaining 1−λ late investors. Combining this financial value

and the long-term benefit of the stablecoin thus yields (5.6).

An important observation from (5.7) is that more investors selling (i.e., larger λ) and a higher level

of liquidity transformation (i.e., larger φ) result in more costly liquidations of the reserve asset (i.e.,

larger l(λ)). Fundamentally, this arises because the stablecoin issuer, if solvent, has to meet stablecoin

redemptions at a fixed cash value of one dollar. As we show shortly below, this force generates strate-

gic complementarities which eventually dominate the strategic substitutability from price impact, thus

leading to potential runs.

Investors’ incentives to sell stablecoins depend on the sign of the difference between (5.6), the

expected utility from holding until date-3, and (5.4), the return from selling the stablecoin early and

receiving the secondary market price. Formally, as a function of the fraction λ of other investors who

sell, this difference is:

h(λ) = v3(λ)− p2(λ) =


π(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
− 1 +Kλ λ ≤ 1− φ ,

−1− φ
λ

+Kλ λ > 1− φ .
(5.8)

It is easy to see that h(0) ≥ 0 when π(θ) is sufficiently large while h(1) < 0, implying that the model

has multiple equilibria when θ is sufficiently large and if θ is common knowledge.

Figure 7 plots the payoff gain function h(λ), which first increases, then decreases, and then in-

creases again as λ rises. In the first region, where h(λ) increases, strategic substitutability arises from

price impact in the secondary market, as captured by (5.4). When few investors sell, falling prices

discourage further sales, and investors prefer to wait until t = 3 as long as the issuer remains solvent.

As more investors sell, the issuer faces rising liquidation costs, decreasing the value of holding on to

stablecoins for remaining investors. Here, h(λ) decreases in the second region, reflecting strategic com-

plementarity or first-mover advantage: anticipating high redemptions, investors rush to redeem before

reserves are depleted. Note that these two regions differentiate our model from standard global-games

bank run models like Goldstein and Pauzner (2005), where illiquidity always leads to complementarity

even for small λ. In contrast, due to secondary-market arbitrage, our model shows substitutability at
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low λ: early sales depress prices, deterring further redemptions. Within λ ≤ 1− φ, price impact drives

strategic substitutability for small λ, while fire-sale effects drive strategic complementarity for larger λ.

Finally, when λ > 1−φ, all reserves are exhausted, late redemptions yield nothing, and a crowding-

out effect emerges: more early redemptions decrease the payoff to early redeemers because each re-

deemer gets less. This is a mechanical feature shared with Goldstein and Pauzner (2005) and other

standard bank run models that does not affect the core economics of runs.11

The global games framework allows us to solve for a unique equilibrium for any value of primitives.

Formally, we have the following result:

Proposition 1. There exists a unique threshold equilibrium in which investors sell the stablecoins if

they obtain a signal below threshold θ∗ and do not sell otherwise.

Proposition 1 implies that the model with investors’ private and noisy signals has a unique threshold

equilibrium. An investor’s liquidation decision is uniquely determined by her signal: she sells the

stablecoin at t = 2 if and only if her signal is below a certain threshold. In other words, she is

indifferent between selling and holding when her signal is at the threshold. Given the existence of

the unique run threshold, we can show that her indifference condition implies the following Laplace

equation:

∫ 1−φ

0

(1−Kλ) dλ+

∫ 1

1−φ

(
1− φ
λ
−Kλ

)
dλ =

∫ 1−φ

0

π(θ∗)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
dλ . (5.9)

Solving the Laplace equation gives an analytical solution of the run threshold and presents intuitive

comparative statics about stablecoin run risk:

Proposition 2. The run threshold is given by

π(θ∗) =
(1− φ)(2− 2φ− 2(1− φ) ln(1− φ)−K)

2 ((1 + η(1− φ))(1− φ) + φ lnφ)
. (5.10)

which satisfies the following properties:

11This matters only for technical conditions of equilibrium selection. As shown in the proof of Proposition 1 and dis-
cussed in Goldstein and Pauzner (2005), our model satisfies the single-crossing property, sufficient for threshold equilibria.
Goldstein and Pauzner (2005) satisfy the stronger one-sided strategic complementarity, ensuring all equilibria are threshold
equilibria. Our model lacks this stronger property, so we explicitly focus on threshold equilibria.
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i). The run threshold, that is, run risk, is decreasing in K (that is, increasing in n and increasing in

χ).

ii). The run threshold, that is, run risk, is increasing in φ if and only if

g(θ) ≡ 2(φ− 1) (φ− lnφ+ ln(1− φ)((1 + φ) lnφ+ 2− 2φ)− 1)

1− φ+ lnφ
> K , (5.11)

where g(φ) is continuous and strictly decreasing in φ, and satisfies limφ→0 g(φ) > 0.

A core theoretical result is part i) of Proposition 2, which shows that more efficient arbitrage, i.e.,

a smaller value of K, exacerbates run risk. This surprising result is an implication of the way that

stablecoin primary and secondary markets are connected. When arbitrage is more efficient, stablecoin

sales have a lower price impact as illustrated by Lemma 1. Thus, investors get higher payoffs from

selling early, whereas their payoffs from holding to maturity are unchanged. Investors’ incentives to

sell early increase, exacerbating run risk. Conversely, when arbitrage is inefficient, sales have more

price impact, and investors are discouraged from selling early.12 Figure 8 illustrates how investors’

payoff gain from waiting increases as the secondary market becomes less efficient.

Part ii) of Proposition 2 shows that a higher level of stablecoin liquidity transformation leads to a

higher run risk when g(φ) > K. This condition is satisfied when φ is sufficiently small for a given

K. Intuitively, when the stablecoin holds more illiquid reserve assets, the first-mover advantage among

investors increases because an investor who chooses not to sell would have to involuntarily bear a

higher liquidation cost induced by selling investors. However, when the reserve asset is too illiquid,

run risk could be dampened. The intuition can be understood from equation (5.8): investors enjoy the

first-mover advantage only when λ ≤ 1− φ, that is, only when h(λ) takes the value in the first line of

(5.8). Otherwise, too high a φ shrinks the region in which the first-mover advantage can be realized.

Thus, further increasing the level of liquidity transformation when g(φ) < K reduces run risk.

In Appendix C.2, we further show that if arbitrageurs were allowed to hold some stablecoins as

reserves, the run threshold would be strictly higher than the one in Proposition 2. Intuitively, when

arbitrageurs use their balance sheet to hold stablecoins, arbitrage becomes more efficient and investors
12This result assumes rational investors who understand the effect of arbitrage concentration on price stability and run

risk. If investors were not fully rational and interpreted price deviations as poor fundamentals, concentrated arbitrage may
amplify herding through larger price discounts. However, herding would imply that stablecoins holding more illiquid assets
choose less concentrated arbitrage to reduce their price deviations and run risk, which is inconsistent with the empirical
findings in Section 4.
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receive higher payoffs from selling early. As a result, the incentive to redeem early increases, exacer-

bating run risk.13

In addition, the analytical solution given in Proposition 2 allows us to calibrate the model to the

data to quantify run risk in Section 7. To this end, we translate the run threshold into an ex-ante run

probability with the distribution of fundamentals F (θ). Formally,

Definition 1. The ex-ante run probability of a stablecoin is given by

ρ =

∫
π(θ)<π(θ∗)

dF (θ) , (5.12)

where π(θ∗) is given by (5.10) and F (θ) is the prior distribution of the fundamentals.

Before proceeding, we make three comments about the notion of stablecoin runs in our framework

and highlight our contribution to the literature. We purposefully follow and keep minimal deviation

from Diamond and Dybvig (1983) to highlight the unique nature of stablecoin runs. Our contribution is

to incorporate the two-layer market structure of stablecoins and a realistic arbitrage mechanism into an

otherwise standard run model. Technically, the modeled economy environment does not feature univer-

sal or even one-sided strategic complementarity as that in Diamond and Dybvig (1983) and Goldstein

and Pauzner (2005). In this aspect, our results share similar features with a few other recent develop-

ments of run models where there is strategic substitutability from both sides of the action space (e.g.,

Allen, Carletti, Goldstein and Leonello, 2018, He, Krishnamurthy, and Milbradt, 2019, Kashyap, Tso-

mocos, and Vardoulakis, 2023) and the solution is guaranteed by the single-crossing property (Athey,

2001). Compared to these papers, we highlight the ultimate run incentives from secondary-market in-

vestors who face strategic substitutability in selling decisions and who do not directly interact with the

stablecoin issuer at all, as opposed to any run incentives among private-market participants, which has

been the focus of these existing papers.

Our notion of coordination motives and runs is also different from a few other prominent notions of

coordination in the literature. One possible alternative modeling choice is to follow the idea in the new

monetarism framework of Kiyotaki and Wright (1989) and Rocheteau and Wright (2005), which shows

that an agent adopts a good as a medium of exchange only if other agents adopt and thus accept the

13This result holds except in the extreme case where arbitrageurs are able to absorb all stablecoin holdings at a fixed price
and completely eliminate runs.
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same good in transactions. In other words, the value of a medium of exchange becomes higher when

more investors adopt it. This approach more explicitly highlights the payment role and network-good

feature of stablecoins without capturing liquidity transformation. However, that approach applies to any

general form of money or tokens that is not necessarily backed by dollar reserves. Several recent papers

that consider general forms of cryptocurrencies and tokens follow this view (e.g., Schilling and Uhlig,

2019, Cong, Li, and Wang, 2021, Li and Mayer, 2021, Baughman and Flemming, 2023, Bertsch, 2023,

Sockin, and Xiong, 2023a, Sockin and Xiong, 2023b). Given our focus on reserve-backed stablecoins

as a financial intermediary, as well as the financial stability implications for real dollar asset markets,

we view Diamond and Dybvig (1983) as the preferred building block for our model. At the same time,

we still capture the payment role of stablecoins by modeling its price convenience and linking it to

stablecoin price fluctuations in the extended model below.

Finally, despite our focus on secondary-market investors, our notion of coordination and runs also

differs from the idea of market runs in Bernardo and Welch (2004). There, if an illiquid secondary

asset market features a downward-sloping demand curve, investors fearing future liquidity shocks will

have an incentive to front-run each other, fire selling the asset earlier to get a higher price. However,

Bernardo and Welch (2004) do not feature an intermediary or liquidity transformation, which is the

focus of our paper.

5.2 Price Stability and Optimal Stablecoin Design

Having analyzed the run risk of stablecoins and its relationship with arbitrage concentration, we extend

the baseline model by incorporating the stablecoin’s price stability at t = 1 and the issuer’s optimal

design choices in a pre-trading game at t = 0. The extension serves two purposes. First, it allows us to

further formulate the tradeoff between stablecoins’ price stability and run risks. Second, it introduces

realistic model ingredients that facilitate the evaluation of run risks and policy proposals in Section 7.

The extended economy has four dates, t = 0, 1, 2, 3, with no time discounting. We provide a time-

line of the extended model in Figure 2. On top of the baseline model spanning t = 1, 2, 3, we introduce

one additional group of risk-neutral liquidity traders, who live and trade at t = 1, and formulate the

issuer’s optimal design problem at t = 0. At t = 0, the issuer designs the primary market. Specifically,

the issuer chooses n at t = 0, that is, how concentrated its primary market is, to maximize its expected

profit. Investors also make participation decisions at t = 0. If an investor chooses to participate in the
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stablecoin market, she incurs a cost of ci, which follows a distribution function G(c), and receives one

stablecoin. An investor participates if her expected utility from participation, which we characterize

below, exceeds c.

Figure 2: Timeline: Extended Model

0 1 2 3

• Issuer designs
arbitrageur structure
• Investors choose

stablecoin holdings

• Noise traders trade
• Arbitrageurs bid

• Investors sell
• Arbitrageurs bid

• Long-term convenience
and returns realize

At t = 1, liquidity traders trade stablecoins, creating variance in stablecoin prices. With equal

probability, liquidity traders either buy a fraction δ of the total stablecoin market cap, and then resell

them at the end of t = 1; or sell short a fraction δ of stablecoin market cap, and then rebuy at the end

of the period. Letting ω denote liquidity trader order flow, ω is equal to δ or −δ with equal probability.

Intuitively, we can think of liquidity traders as using stablecoins for remittances: as we describe in

Section 2.1, the remittance process involves buying stablecoins with fiat, sending stablecoins, then

selling for fiat.14 Liquidity traders cannot directly trade with the issuer; instead, they exchange fiat

for stablecoins by trading with arbitrageurs in secondary markets. Also at t = 1, n arbitrageurs trade

stablecoins in secondary and primary markets to profit from price deviations just like what they do

at t = 2 in the baseline model.15 We assume that liquidity trader-induced price fluctuations lower

stablecoin investors’ price convenience. Following Gorton and Pennacchi (1990), we let investors

enjoy a short-term price convenience of−αV ar(p1) per stablecoin at t = 1, where α > 0; this captures

in reduced-form that stablecoins are less valuable to users as a means of payment when their prices are

more volatile.

Consider p1 and its variance, which determines the price convenience that investors enjoy at t = 1.

Specifically, we apply the market clearing condition at t = 1:

14Technically, the specification that liquidity trader order flow perfectly reverts is convenient because, as we will show, it
implies that liquidity trading ω affects stablecoin price but does not directly generate fire sales by the issuer. This allows us
to focus on the tradeoff between price and financial stability in stablecoin design while ruling out the uninteresting case of
liquidity trading itself leading to runs.

15We note that the separation between t = 1 and t = 2 is not crucial for the model; it simplifies the model by ruling out
the uninteresting case that liquidity trading itself may lead to fire sales or render the stablecoin issuer default. Considering
that would complicate the model without new economic insights.
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Lemma 2. The stablecoin’s secondary-market price at t = 1 is given by

p1 =

1− δK ω = δ ,

1 + δK ω = −δ ,
(5.13)

where K is given in (5.5). The stablecoin’s price convenience at t = 1 is thus given by−αδ2K2, which

is decreasing in K, that is, increasing in n and χ.

Lemma 2 shows that the stablecoin’s price convenience is decreasing inK. This is intuitive because

as arbitrage becomes less efficient, the secondary market becomes less elastic and liquidity trading in-

duces larger fluctuations in the secondary market price p1. Investors thus enjoy a lower convenience,

reminiscent of the idea of information sensitivity in Gorton and Pennacchi (1990). The positive rela-

tionship between price deviations and arbitrage capacity is consistent with the empirical evidence in

Figure 6.

Taken together, Proposition 2 and Lemma 2 point to the tradeoff between price and financial stabil-

ity of the stablecoin. To formulate this tradeoff, we now consider the stablecoin issuer’s design decision

at t = 0. It involves one key choice variable that determines the elasticity of the stablecoin secondary

market: the number of arbitrageurs n who are allowed to perform primary-market redemptions and cre-

ations.16 We suppose that the stablecoin issuer chooses n to maximize its expected revenues at t = 0,

which in turn depends on how many investors participate at t = 0. We also assume that liquidity trading

and arbitrageurs’ balance sheet capacity are proportional to the population of investors. The issuer’s

objective function is thus given by

max
n

E[Π] = G(E[W ])︸ ︷︷ ︸
population of

participating investors

∫
π(θ)≥π(θ∗)

π(θ)(R(φ)− 1)dF (θ)︸ ︷︷ ︸
expected issuer revenue per

participating investor

, (5.14)

where each investor’s expected utility of participation is

E[W ] = −αδ2K2︸ ︷︷ ︸
short-term convenience

+

∫
π(θ)<π(θ∗)

(1− φ−K) dF (θ)︸ ︷︷ ︸
short-term payoff if runs

+

∫
π(θ)≥π(θ∗)

π (θ) (1 + η) dF (θ)︸ ︷︷ ︸
long-term payoff if no runs

, (5.15)

16Arbitrage capacity χ also affects arbitrage efficiency, but stablecoin issuers are unlikely to have control over the balance
sheet costs and budget constraints of arbitrageurs, which is why we let the issuer choose n for a given χ.
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in which π(θ∗) is given by (5.10) in Proposition 2.

The stablecoin issuer’s objective function (5.14) captures its revenue base. Absent a panic run, the

issuer obtains the expected net long-term return of the remaining reserve asset. At the same time, a

larger population of participating investors allows the issuer to scale up its investment in reserve assets.

Investors’ participation is, in turn, driven by their expected utility E[W ], which is comprised of three

components as shown in (5.15). The first term denotes investors’ expected price convenience loss due to

stablecoin price fluctuations. The second term denotes their expected payoff when a panic run happens,

while the third term corresponds to their expected payoff without a run.

Solving the stablecoin issuer’s problem (5.14), we have the following result about the stablecoin

issuer’s optimal choice of arbitrageur concentration:

Proposition 3. Suppose G is linear, and φ is small enough that (5.11) holds. Then the issuer’s optimal

choice of K is decreasing in φ: if reserves are more illiquid, then the issuer optimally chooses a more

concentrated arbitrage sector.

Proposition 3 stems from the tradeoff between price stability and financial stability. The stablecoin

issuer chooses arbitrage concentration K to trade off its benefits from decreasing run risks with its

costs from decreasing price stability. When asset illiquidity φ is higher, run risk is increased. The

issuer should then be more willing to sacrifice price stability to limit run risk, leading to a higher

optimal value of K.17

In the main text, we think of φ as exogeneous. In practice, differences in φ across issuers can be

driven by differences in the sets of investments available. An issuer like Tether may not have the same

access to safe and liquid US dollar assets as U.S.-based Circle. Tether may therefore hold higher-

φ assets and choose more concentrated arbitrage via Proposition 3. In Appendix F, we analyze an

extension of the model where issuers jointly optimize asset liquidity φ and arbitrage concentration K.

We formally show that issuers who have access to assets with a higher illiquidity premium optimally

17While economically intuitive, we state Proposition 3 under two technical conditions to rule out mechanically driven
or economically uninteresting cases. First, we require that φ is sufficiently small to satisfy condition (5.11), excluding
cases where liquidation becomes extremely costly, mechanically making early sales unprofitable, reducing run incentives,
and complicating the role of arbitrageur concentration. This condition is also commonly seen in the banking literature
since Allen and Gale (1998). Second, we restrict the form of consumer demand G. Since the issuer’s first-order condition
has a “markup” interpretation, changes in φ can otherwise affect demand elasticity and lead the issuer to either increase or
decrease arbitrageur concentration. Assuming linearity inG keeps demand elasticity constant and rules out such mechanical
effects.
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choose higher values of φ despite the potentially higher run risk. Consequently, they will also tend to

choose lower values of n to mitigate run risk. We leave a full-fledged endogenous determination of

φ for future research because information on stablecoins’ accessible asset pools, business models, and

regulatory risks are currently not readily available.

6 Policy Implications

There has been heightened attention on the optimal regulation of stablecoins across several jurisdic-

tions. Regulators and market participants would like stablecoins to have both low run risks and stable

prices. Our framework highlights that these two desirable goals are distinct from each other and driven

by different economic forces. In particular, we highlight the tradeoff between price stability and fi-

nancial stability and show that some policies may attain one goal at the expense of the other. In this

section, we apply our model predictions to shed light on what the proposed regulation of stablecoins’

redemptions, reserves, and interest payments imply for price stability and financial stability.

6.1 Redemptions and Primary Market Access

Regulators in many jurisdictions are considering how to regulate stablecoin issuers’ redemption poli-

cies. In the EU, the proposed policy requires unconstrained access for all stablecoin holders to redeem

their stablecoins in cash without delay.18 In the UK, the draft regulation provides a more nuanced view

by incorporating the possibility of restricting redemptions to reduce run risk, stating that “by temporar-

ily suspending the ‘next UK business day redemption requirement’ we hope that regulated stablecoin

issuers are enabled to better deal with the exceptional circumstance and reduce the chance of failure of

the regulated stablecoin issuer.”19

What are the implications of these proposed measures? In our model, allowing for unconstrained

redemptions by stablecoin holders would effectively improve arbitrage efficiency, i.e., a lower K. This

18Specifically, Article 49 of the European Parliament and Council of the European Union (2023) states that “Upon request
by a holder of an e-money token, the issuer of that e-money token shall redeem it, at any time and at par value, by paying in
funds, other than electronic money, the monetary value of the e-money token held to the holder of the e-money token.”

19See Sec. 3.48 of Financial Conduct Authority (2023).
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improvement in arbitrage efficiency affects stablecoin run risk and price stability differently, as the

following Corollary shows.

Corollary 1. When arbitrage efficiency increases (that is, K decreases) holding other primitives fixed,

price variance V ar[p∗1] decreases, but run risk increases (that is, the run threshold π(θ∗) increases).

The first part of Corollary 1, which follows from Lemma 2, suggests that unconstrained redemptions

would unambiguously benefit price stability. Intuitively, since more market participants would have the

option to quickly redeem stablecoins for dollars, stablecoin prices in secondary markets would remain

more stable at $1 than with a more constrained set of arbitrageurs.20

However, the second part of Corollary 1, which follows from Proposition 2, suggests that, un-

restricted redemptions would have the perverse effect of amplifying run risk, all else equal. Without

constraints to the set of arbitrageurs, arbitrage becomes more efficient and increases investors’ tendency

to panic sell because the price impact is lower. We thereby highlight higher run risk as an important

side-effect of requiring unconstrained access to redemptions.

Beyond policy proposals allowing all customers to redeem stablecoins, our conclusions generalize

to a number of other possible policies affecting the structure of stablecoin creations and redemptions.

In Appendix G, we formally show in Proposition 6 that imposing fees or gates on redemptions would

have a similar effect to allowing more concentrated arbitrage: secondary-market price stability would

decrease, but run risk would also decrease, consistent with Corollary 1.

Taken together, our model highlights that regulations for stablecoin redemptions should carefully

trade off the effects of price stability and run risk. Policies that require unconstrained arbitrage and

redemptions improve price stability but at the expense of worsening run risk; policies restricting re-

demptions through fees and gates lower run risk at the cost of price stability. While price stability is

observable on a daily basis and run risk only materializes in tail events, both are essential considerations

for the optimal regulation of stablecoins.

20There could still be the restrictions that redemptions are only available for market participants who pass anti-money-
laundering and other checks, as the Financial Conduct Authority (2023) proposal suggests. In this case, investors who pass
AML/CTF checks can be thought of as arbitrageurs for customers who do not pass these checks. However, this is a broad
enough set of customers so that price stability is most likely still improved in such a scenario.
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6.2 Reserves and Liquidity Transformation

The proposed regulations on stablecoin reserves also generally attempt to limit the illiquidity and credit

risk of reserve assets, that is, the level of liquidity transformation by stablecoins. For example, draft

regulation in the EU requires 30% of reserves to be deposited in credit institutions, and the rest to be

invested in a set of assets classified as secure, low-risk, highly liquid, with low market, credit, and

concentration risk. In the UK, the proposal is to restrict reserves to direct holdings of government debt

and short-term cash, while in the US, the STABLE Act and the GENIUS Act limit stablecoin reserve

assets to currency, deposits, repo, and other high-quality liquid assets (HQLAs).

Under our theoretical framework, more liquid reserve assets reduce run risk for a given arbitrage

concentration. Recall from part ii) of Proposition 2 that when the stablecoin holds less illiquid reserve

assets, the first-mover advantage among investors decreases. In this sense, limiting the illiquidity of

stablecoin reserve assets would be beneficial for financial stability.21

Nevertheless, it is important to jointly design policies that govern reserve asset liquidity and policies

that govern arbitrage concentration. This is because when reserve assets are more liquid, stablecoin

issuers are incentivized to reduce the constraints on arbitrage as pointed out in Proposition 3. This

increased arbitrage efficiency benefits price stability but may curtail the reduction in run risk from

more liquid reserve asset holdings. Therefore, our results imply that the interaction between reserve

assets and redemption policies is essential to consider in regulating stablecoins.

6.3 Dividend Issuance

For fiat-backed stablecoins, returns from reserve assets are fully accrued to the issuer, and no dividends

are issued to investors holding stablecoins. In the US, neither the STABLE Act nor the GENIUS Act

designate stablecoins as securities, which effectively prohibits dividend payments. Further, neither the

STABLE Act nor the GENIUS Act mention the issuance of interest payments. The EU has proposed

21In practice, we note that limiting reserve asset liquidity may reduce but not fully eliminate run risk. This is because
very few assets are 100% liquid and safe. For example, deposits at FDIC-insured banks may not be fully insured if the
account balance exceeds the deposit insurance limit. Deposits may also not be immediately demandable without cost. For
US Treasuries, secondary markets tend to be liquid in general, but strains may arise in stressed market conditions like in
March 2020.
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to explicitly ban interest payments to stablecoin holders and the UK similarly proposes to ban income

or interest payments, but notes that “this may be perceived as unfair to consumers”.22

To provide a sense of the asset returns that stablecoin investors are currently deprived of, we show

the percentage return and revenue of USDT and USDC in Table 4. At the end of the sample period

in March 2022, for example, USDT earned almost 2% return on its assets, amounting to $1.6 trillion.

None of this income was passed on to USDT investors. These forgone returns increase with the mon-

etary policy rate that increases the nominal return on portfolio assets. In other words, the absence of

distributions to stablecoin investors has particularly large repercussions in high interest rate environ-

ments.

In terms of the implications for price stability and run risk, our framework shows that issuing

dividends to investors can improve price stability and may, under some conditions, reduce run risk.

Formally, we model dividends by assuming that, in the good state of the world, the stablecoin issuer is

forced to pay τ per unit stablecoin to its long-term investors at t = 3. Each investor’s value at t = 3

thus becomes:

v3(λ; τ) =


π(θ)

(
1− φ− λ

(1− φ)(1− λ)
(1 + τ) + η

)
λ ≤ 1− φ ,

0 λ > 1− φ ,
(6.1)

Compared to (5.6), there is an additional τ term that can be collected when the stablecoin is solvent.

Accordingly, the stablecoin issuer’s objective function becomes:

max
n

E[Π] = G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ) (R(φ)− 1− τ) dF (θ) , (6.2)

which nests (5.14) as a special case. We have the following result:

Proposition 4. Suppose φ is small in the sense that (5.11) holds, when the stablecoin issuer distributes

a positive dividend τ to its long-term investors, the run risk of the stablecoin decreases before the issuer

re-optimizes n. In equilibrium, the stablecoin issuer optimally designs a less concentrated arbitrageur

sector, that is, n∗τ > n∗, resulting in higher price stability of the stablecoin while the change in run risk

is ambiguous.

22See article 50 of European Parliament and Council of the European Union (2023) for the EU and article 3.12 of
Financial Conduct Authority (2023) for the UK.
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Intuitively, Proposition 4 states that, if we hold arbitrage efficiency fixed, dividends lower run risk

since they increase investors’ incentives to hold the stablecoin until the final period. In response to

lowered run risks, issuers have an incentive to decrease n, increasing price stability. Regarding run risk,

it is, in theory, possible for the issuer re-optimization effect to dominate and increase run risk relative to

the no-dividends case. This is because the issuer’s expected revenue per participating investor decreases

after distributing dividends, which reduces the issuer’s incentive to prevent runs.

We acknowledge that there may be other effects of dividend issuance. For example, dividend is-

suance may intensify price competition among stablecoin issuers, which could encourage entry and

improve allocative efficiency. Stablecoins that distribute dividends would also likely be classified as a

security under US securities law and be exposed to regulatory risk.23 We leave the analysis of these and

other forces to future work.

7 Model Calibration: Quantifying Run Risks and Policies

In this section, we use our framework to assess the run risk of major stablecoins and the extent to

which various policy interventions would influence their run risk and price stability, following the

quantitative exercises in recent papers such as Davila and Goldstein (2023). We calibrate our model

to empirical moments for the largest two fiat-backed stablecoins, USDT and USDC, for which reserve

asset breakdowns are available.

7.1 Empirical Moments φ, p(θ), and η

We first estimate asset illiquidity φ, the distribution of p (θ), and the long-term benefit η directly from

the data.

Asset Illiquidity φ. We proxy asset illiquidity φ, that is, the per unit cash value lost when selling

an illiquid asset at short notice, with repo haircuts. This approach follows Bai, Krishnamurthy and

23US regulators have deemed many programs which take funds from users, and return funds with dividend or interest
payments, to be securities that fall under the SEC’s jurisdiction. For example, the June 2023 SEC case against Coinbase
argued that Coinbase’s Staking Program is a security. The June 2023 SEC case against Binance argued that Binance’s
BNB Vault and Simple Earn programs, and the BAM Trading Staking Program, constituted securities under US law. In our
conversations with market participants, many believed that a stablecoin that offered to pay accrued interest on reserves as
dividends would be classified as securities.
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Weymuller (2018), which relies on the idea that one minus the haircut in a repo transaction directly

captures how much cash can be obtained against an illiquid asset at short notice.24 Economically, repo

haircuts serve as a proxy for liquidation costs because illiquid assets such as bonds and loans are traded

over-the-counter through dealers, with prices shaped by dealers’ balance sheet and funding conditions.

In particular, since repos are commonly used to finance dealers’ bond positions, repo haircuts are

closely linked to the costs of liquidating these assets. (Macchiavelli and Zhou, 2022).

To measure the overall illiquidity of USDT and USDC’s reserve portfolios, we calculate the average

discounts of their reserve assets weighted by their portfolio weights. One challenge is that we do

not know the exact liquidity of their deposits, which include demandable deposits, time deposits, and

certificates of deposits (CDs). In the baseline estimate, we assume that one-quarter of the deposits are

fully liquid while the remainder is subject to the lowest money market discount. The results are shown

in Table 5.

Distribution of p(θ). To estimate the distribution of p(θ), the signal of how likely the risky asset

will pay nothing, we use historical CDS prices to evaluate the daily recovery value of each portfolio

component and then take a weighted average to obtain the daily expected recovery value of the reserve

portfolio. Finally, we multiply the recovery value by one plus the amount of over-collateralization

because some stablecoins are backed by slightly more than $1 per coin before asset liquidations. Using

daily data from 2008 to 2022 from Markit, we then fit a beta distribution to match the mean and variance

of daily expected recovery values. Appendix J contains further details of this procedure. The means

and variances, as well as the fitted beta distribution parameters, are shown in Appendix Table A.5.

Long-term Benefit η. To proxy for investors’ long-term benefit from holding and using the stable-

coin, we follow Gorton, Klee, Ross, Ross, and Vardoulakis (2023) to use investors’ return from lending

out the stablecoin. Specifically, we focus on Aave, which is a smart contract lending platform which

allows market participants to lend cryptoassets for interest, overcollateralized by other cryptoassets.

Intuitively, this lending rate captures the compensation to the investor for not being able to use the sta-

blecoin herself while it is on loan to another investor. Our data on lending rates is from aavescan.com.

Table 5 shows the annual return from lending out USDT and USDC in each reporting period.

24The New York Fed publishes haircuts on different securities when pledged as collateral in repos at
https://www.newyorkfed.org/data-and-statistics/data-visualization/tri-party-repo#interactive/margins.
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7.2 Estimating αδ2 and G (·) using K and ∂ logG(E[W ])
∂η

The remaining model parameters are αδ2, the cost of liquidity trading to investors, and G (·), investors’

demand function for the stablecoin. We will estimate the product αδ2 as a single parameter; our ap-

proach does not separately identify risk aversion α and the size of liquidity trading shocks δ. We

parametrize G (·) as:

G (EW ) = max [1− γ (1− EW ) , 0] .

That is, γ is simply the slope of investor demand: the issuer has a unit mass of consumers if she

produces EW = 1, and loses γ customers for any gap between 1 and EW , until the point where she

loses all consumers. We allow the demand slopes for USDC and USDT to differ, calling them γCircle

and γTether respectively, accounting for their different investor bases.

We then estimate αδ2 and G (·) through moment matching. For each choice of αδ2, γCircle, γTether

and each coin-month combination in our data, we calculate the optimal value of K, by solving the

issuer’s optimization problem (5.14). At the optimal K, we then numerically compute the partial

elasticity of investors’ demand with respect to η in the model:

∂ logG (E [W ])

∂η
.

For each choice of αδ2 and γ, this procedure gives us a model-predicted value of K and ∂ logG(E[W ])
∂η

for each month. We then choose parameters to minimize the sum of squared distances between model-

predicted log values ofK and ∂ logG(E[W ])
∂η

, averaged across months for each coin, and their counterparts

in the data.

Recall from Lemma 1 that K is the slope of demand in the secondary market when the issuer

remains solvent. Thus, to obtain K from the data, we regress daily price deviations against daily

redemption or creation volume for each stablecoin:

Deviationt = βRedemption/Creationt + FEy, (7.1)

where Deviationt is one minus the lowest observed secondary market price on redemption days and

the highest observed secondary market price minus one on creation days, Redemption/Creationt

is the volume of redemptions or creations divided by the total outstanding volume of stablecoins on
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day t. We use the lowest and highest secondary market prices on each day to capture the extent of

price dislocations that demand arbitrage rather than the price dislocations resulting from arbitrage. We

normalize the volume of redemptions and creations by the total outstanding volume of stablecoins to

consider the difference in market sizes across stablecoins. Finally, we include a year fixed effect to

capture potential structural shifts in the arbitrageur sector for each stablecoin. For example, the number

and constraints of arbitrageurs may evolve after some time with the growth of stablecoins.

From the results in Table 6, we observe that the estimated K for USDT is larger in absolute mag-

nitude than for USDC, which is consistent with the higher arbitrageur concentration of USDT con-

straining redemption volume to be less sensitive to price dislocations. That is, a larger price dislocation

is required to induce the same amount of redemptions for USDT than for USDC. Magnitude-wise, a

10 percentage point higher redemption/creation volume as a fraction of the total volume outstanding

corresponds to a 2.1 cent larger price deviation USDT and a 1.6 cent larger price deviation at USDC.

For the detailed estimation results with respect to K, please refer to Appendix Table A.6.

To obtain ∂ logG(E[W ])
∂η

from the data, we regress the monthly log change in the number of shares

outstanding against the beginning-of-month long-term benefit, i.e., the lending rate. The results in

Table 6 show that the demand for USDC is more responsive to a given change in the long-term benefit

than the demand for USDT.

The parameter estimates are shown in the first two columns of Table 5. We estimate αδ2, γTether,

and γCircle to be 7.06, 0.54, and 1.10. As is standard in structural models, both parameters contribute

to variation in both moments; however, the intuition behind the identification of model parameters is

as follows. When αδ2 is high, the cost of price variance is high. Thus, issuers will tend to choose

lower values of K, trading off slightly increased run probabilities for lower price variance and thus

lower costs of liquidity trading. Hence, the level of K in the data, relative to fundamentals, contributes

to identifying αδ2. The parameter γ controls investors’ elasticity of demand; when γ is higher, the

stablecoin market size will increase more for any given increase in η.

The fit of our model to the targeted moments is shown in Table 6. The model-predicted arbitrageur

demand slopes K are in the same range but slightly higher than those in the data.25 Note that we

can match the stylized fact that the optimal K is higher for USDT than USDC, with approximately the

25Technically, the reason for this mismatch is that, under our estimates, K values in the data would imply overly high run
probabilities for Circle, which could not be consistent with issuer optimization under any parameter settings.
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same magnitude as in the data. In terms of the second moment, we can match the elasticity of investors’

demand for stablecoins fairly well, on average over time within coins. The mapping from moments to

parameters is intuitive: we estimate investors’ demand elasticity to be somewhat higher for USDC than

USDT, which is why we find that γ is slightly higher for USDC.

7.3 Run Probability

Table 5 shows the implied run probabilities. Notice that the run risk of USDC remains substantial even

without holding illiquid assets like corporate bonds and corporate loans as USDT. For example, the run

probabilities for USDT and USDC were 2.495% and 2.134% in September 2021, respectively. This

is because of USDC’s concentrated exposure to bank deposits, which incur a higher default risk than

Treasuries in the case of uninsured deposits and retain some illiquidity in the case of time deposits. Over

time, there was a decline in run probabilities from 3.188% in May 2021 to 1.828% in October 2021 for

USDC because of φ declining and the long-term benefit η trending up. For USDT, both illiquidity φ

and the long-term benefit η display less variation over time, resulting in relatively stable run risk over

the reporting period from 2.590% in June 2021 to 1.664% in March 2022.

Our estimates of stablecoin run probability complement the empirical literature of bank runs (e.g.,

Demirguc-Kunt and Detragiache, 2002, Calomiris and Mason, 2003, Iyer and Puri, 2012), and par-

ticularly, the findings in Egan, Hortacsu and Matvos (2017) and Albertazzi, Burlon, Jankauskas, and

Pavanini (2022), who build dynamic structural models to estimate the run probability of commer-

cial banks. Their focus is on the feedback loop between a bank’s credit risk and uninsured depositor

outflows. We estimate run probabilities derived from a global games model that captures the unique

interaction between the primary and secondary markets of stablecoins. In this sense, our approach pro-

vides a complementary way to quantify the run risk of tradable assets that are also involved in liquidity

transformation.

Our estimation suggests that regulators should monitor the market structure of the stablecoin ar-

bitrage sector.26 Regulators could track the number of arbitrageurs and concentration metrics such as

top-1 or top-5 shares of arbitrage activity. Taking our model more seriously, specification (7.1) suggests

measuring the coefficient from regressing price deviations on net redemption volumes. These quantities

26Regulators already impose similar reporting requirements on ETFs with respect to their authorized participants through
the N-CEN filings.
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can be readily estimated without imposing extra reporting requirements on stablecoin issuers, because

the wallet identifiers and volumes of all primary market transactions are recorded in real-time on public

blockchains, and can be freely downloaded by regulators and academics alike. Regulators could use

these metrics to evaluate the extent to which arbitrage concentration limits run risks.

7.4 The Effect of Dividend Issuance and Redemption Fees

Having estimated run risk, we show the extent to which different policies could mitigate this risk. We

first evaluate how run risk would change with dividend issuance by stablecoins. Recall from Section 6.3

that issuing dividends to investors can improve price stability and may, under some conditions, reduce

run risk. If arbitrage efficiency is held constant, dividends lower run risk since they increase investors’

incentives to hold the stablecoin until the final period to get the dividend. However, this reduction in

run incentive in turn allows the issuer to choose more arbitrageurs for maximum price stability, which

counteracts the initial reduction in run risk. Which of these two forces dominates is thus an empirical

question.

Using our calibrated model, we find that issuing dividends leads to a net reduction in run risk for

USDT and USDC in our sample period. The results are shown in Figure 10 for the September 2021

reporting period.27 Quantitatively, as dividend issuance increases from 0 to 4%, the run probabilities

of USDC and USDT are lowered by 1.34% and 0.80%, respectively, as panel (c) shows. Consistent

with our model predictions, issuers optimally choose a lower K to make arbitrage more efficient (panel

(a)), and the cost of price variance αδ2K2 decreases relative τ = 0 (panel (b)). Although a lower K

contributes to higher run risk, the direct effect of dividends dominates in our sample period so that run

risk is reduced.

Finally, we estimate the effect of redemption fees on run risk for USDT and USDC. In Appendix

G, we show that redemption fees make redemptions more costly and increase the constraint to arbi-

trage. Imposing redemption fees thus leads to the same tradeoff between price stability and run risk.

Magnitude wise, we evaluate how much run risk would change with different values of ν, holding the

arbitrageur demand slope at the optimal values of K. We find that as redemption fees increase from

0 to 50bps, USDC and USDT run probabilities decrease by 2.01% and 2.38% for the September 2021

27Results for other reporting periods follow a similar trend and are shown in Appendix Figure A.6.
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reporting period of USDT and USDC (Figure 9).28 Overall, redemption fees would be quite effective

at decreasing run risk.

8 Conclusion

In this paper, we analyzed the tradeoff between stablecoin run risk and price stability. At a high level,

stablecoin runs arise from liquidity transformation. Stablecoin issuers hold illiquid assets while offering

arbitrageurs the option to redeem stablecoins for a fixed $1 in the primary market. This liquidity

mismatch spills over from the primary market to trigger the possibility of runs among investors on the

secondary market despite exchange trading.

Importantly, we show that stablecoin run risk is mediated by the market structure of the arbitrageur

sector, which serves as a “firewall” between the secondary and primary markets. When the arbitrageur

sector is more efficient, shocks in the secondary market are transmitted more effectively to the primary

market. The price stability of stablecoins is thus improved, but the first-mover advantage for sellers is

also higher, increasing run risk. If the arbitrageur sector is less efficient, shocks in secondary markets

transmit less effectively. Price stability suffers, but run risk decreases, as the price impact of stablecoin

trades in secondary markets discourages market participants from panic selling.

Our results have important policy implications. We show that although regulators and market partic-

ipants would like stablecoins to both have low run risks and stable prices, these two desirable goals are

distinct from each other and driven by different economic forces. In particular, allowing unconstrained

redemptions increases arbitrage efficiency, which improves price stability but may come at the expense

of higher run risk. It is also imperative to consider the dampening effect of dividend issuance on run

risk in the discussion on whether stablecoins should be allowed to pass through income to investors

in the form of dividends. Overall, the joint consideration of price stability and run risk in designing

regulation is essential for a well-functioning and safe stablecoin sector going forward.

28Note that we hold the arbitrageur demand slope K fixed rather than allowing issuers to reoptimize because it is not
possible to quantify the effects of redemption fees on price stability within our estimated model. The effect of redemption
fees depends on risk aversion α; our estimation identifies only the product αδ2 of risk aversion and the size of liquidity
trading shocks δ, so we cannot quantitatively evaluate how costly redemption fees are to price stability from consumers’
perspective. Results for other reporting periods follow a similar trend and are shown in Appendix Figure A.7.
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Figure 3: Asset Size of Fiat-backed Stablecoins

This figure shows the asset size of the six largest fiat-backed stablecoins over time.
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Figure 4: The Design of Fiat-backed Stablecoins

This figure illustrates the design of fiat-backed stablecoins.
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Figure 5: Secondary Market Trading Price

Panels (a) to (f) show the daily secondary market trading price of USDT, USDC, BUSD, USDP, TUSD,
and GUSD, respectively. Secondary market prices are volume-weighted averages of trading prices from
the exchanges listed in Section 2.
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Figure 6: Secondary Market Price Dislocations and Primary Market Structure

This figure shows the relationship between secondary market price dislocations and primary market
structure. In panel (a), each dot indicates the average secondary market price deviation and the average
number of arbitrageurs in a month for a given stablecoin. In panel (b), each dot indicates the average
secondary market price deviation and the average market share of the top 5 arbitrageurs in a month for a
given stablecoin. We first calculate monthly secondary market price deviations for a given stablecoin by
averaging over the absolute values of daily price deviations from one in a given month, which includes
both deviations above and below one. We then average over months to obtain the average secondary
market price deviation for that stablecoin. Similarly, we count the number of unique arbitrageurs that
engage in redemptions and/or creations and calculate the market share of the largest five arbitrageurs
in each month and then average over time for each coin. For ease of presentation, we take the number
of arbitrageurs for USDC, which exceeds 5000, to be 500.
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Figure 7: Investors’ Payoff Gain from Waiting versus Selling Early

This figure shows an investor’s payoff gain from waiting until t = 3 relative to selling early at t = 2.
Parameters used are π(θ) = 0.97, η = 0.2, φ = 0.05, and K = 0.3.
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Figure 8: Investors’ Payoff Gain from Waiting versus Selling Early: Comparative Statics with respect
to K

This figure shows an investor’s payoff gain from waiting until t = 3 relative to selling early at t = 2.
Parameters used are π(θ) = 0.97, η = 0.2, and φ = 0.05.
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Figure 9: Effect of Redemption Fees

This figure shows the predicted effect of redemption fees ν on run probabilities. Throughout the ex-
ercise, we hold K equal to the model-predicted optimal value of K, in the absence of redemption
fees.
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Figure 10: Effect of Dividend Payments

This figure shows the predicted effect of dividend payments to investors on the issuer’s choice of K,
the cost of price variance Kαδ2, and run probability.

(a) Elasticity K

(b) Price Variance Cost

(c) Run Probability
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Table 1: Secondary Market Price and Volume

This table provides statistics about secondary market trading, including the average daily trading vol-
ume, the proportion of days with discounts and premiums, the average discount and premium, and the
median discount and premium. Table 1a is based on the full sample period, whereas Table 1b is based
on the sample period starting in January 2020.

(a) Full Sample

USDT USDC BUSD TUSD USDP GUSD

Average Daily Volume 16.4 15.4 13.5 11.4 10.5 7.3
Proportion of Discount Days (%) 30.5 27.2 34.9 38.2 41.6 39.7
Proportion of Premium Days (%) 69.5 72.8 64.4 61.4 57.3 58.9
Average Discount (%) 0.54 0.01 0.01 0.11 0.18 0.78
Average Premium (%) 0.36 0.02 0.02 0.13 0.64 1.17
Median Discount (%) 0.11 0.00 0.00 0.05 0.09 0.63
Median Premium (%) 0.11 0.01 0.01 0.10 0.18 0.82

(b) Sample starting from January 2020

USDT USDC BUSD TUSD USDP GUSD

Average Daily Volume 18.3 15.5 13.6 13.0 11.1 7.6
Proportion of Discount Days (%) 21.8 40.7 37.5 38.3 53.5 58.0
Proportion of Premium Days (%) 78.2 59.3 62.1 61.7 45.9 41.9
Average Discount (%) 0.06 0.01 0.01 0.05 0.19 0.81
Average Premium (%) 0.07 0.02 0.02 0.10 0.20 0.81
Median Discount 0.05 0.00 0.00 0.04 0.09 0.64
Median Premium (%) 0.05 0.01 0.01 0.08 0.10 0.65
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Table 2: Primary Market Monthly Redemption and Creation Activity

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Ethereum blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 6 3 6 8
RD Top 1 Share 66 42 61 89
RD Top 5 Share 97 98 100 100
RD Vol (mil) 577 46 123 763
CR AP Num 18 9 17 26
CR Top 1 Share 59 35 57 77
CR Top 5 Share 90 84 93 99
CR Vol (mil) 1271 101 470 1800

(b) USDC

mean p25 p50 p75
RD AP Num 521 114 168 262
RD Top 1 Share 45 38 49 50
RD Top 5 Share 85 81 85 90
RD Vol (mil) 2976 160 460 4965
CR AP Num 5067 284 406 13112
CR Top 1 Share 45 31 44 51
CR Top 5 Share 81 70 84 92
CR Vol (mil) 3953 184 680 7448

(c) BUSD

mean p25 p50 p75
RD AP Num 214 157 202 274
RD Top 1 Share 48 30 50 62
RD Top 5 Share 81 74 82 87
RD Vol (mil) 1596 233 1498 2720
CR AP Num 16 8 11 19
CR Top 1 Share 65 53 68 82
CR Top 5 Share 98 97 99 100
CR Vol (mil) 2116 290 1628 3739

(d) USDP

mean p25 p50 p75
RD AP Num 178 71 174 284
RD Top 1 Share 41 24 37 54
RD Top 5 Share 74 62 77 88
RD Vol (mil) 260 94 174 262
CR AP Num 41 5 8 67
CR Top 1 Share 58 48 61 70
CR Top 5 Share 93 94 99 100
CR Vol (mil) 279 107 170 341

(e) TUSD

mean p25 p50 p75
RD AP Num 66 49 74 85
RD Top 1 Share 50 36 46 64
RD Top 5 Share 86 79 91 94
RD Vol (mil) 154 31 85 260
CR AP Num 92 53 106 130
CR Top 1 Share 50 33 46 65
CR Top 5 Share 87 83 87 92
CR Vol (mil) 164 30 77 259

(f) GUSD

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 113 7 17 164
CR AP Num 17 1 12 19
CR Top 1 Share 55 29 40 100
CR Top 5 Share 85 72 82 100
CR Vol (mil) 117 4 13 155
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Table 3: Asset Composition

This table shows the breakdown of reserves by asset class for USDT and USDC. Data are available for
the dates on which reserve breakdowns are published by USDT and USDC. For USDT, the “Deposit”
category includes bank deposits, while for USDC, the “Deposit” category includes US dollar deposits
at banks and short-term, highly liquid investments.

(a) USDT

Deposits Treas Muni MM Corp Loans Others
2021/06 10.0 24.3 0.0 50.7 7.7 4.0 3.3
2021/09 10.5 28.1 0.0 45.7 5.2 5.0 5.5
2021/12 5.3 43.9 0.0 34.5 4.6 5.3 6.4
2022/03 5.0 47.6 0.0 32.8 4.5 3.8 6.4

(b) USDC

Deposits Treas Muni MM Corp Loans Others
2021/05 60.4 12.2 0.5 22.1 5.0 0.0 0.0
2021/06 46.4 13.1 0.4 24.2 15.9 0.0 0.0
2021/07 47.4 12.4 0.7 23.0 16.4 0.0 0.0
2021/08 92.0 0.0 0.0 6.5 1.5 0.0 0.0
2021/09 100.0 0.0 0.0 0.0 0.0 0.0 0.0
2021/10 100.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4: Asset Returns

This table shows the return and revenue of asset portfolios for USDT and USDC by date. Returns are
in % and revenue is in million dollars. Data are available for the dates on which reserve breakdowns
are published by USDT and USDC. For each date, we also list the Fed funds rate in that month.

(a) USDT

Fed Funds Rate (%) Return (%) Revenue (Million $)

2021/06 0.10 0.59 370.4
2021/09 0.06 0.66 458.6
2021/12 0.07 0.97 759.7
2022/03 0.33 1.98 1634.2

(b) USDC

Fed Funds Rate (%) Return (%) Revenue (Million $)

2021/05 0.06 0.25 56.6
2021/06 0.10 0.51 127.6
2021/07 0.10 0.48 130.9
2021/08 0.08 0.18 50.2
2021/09 0.06 0.14 44.4
2021/10 0.08 0.16 52.8
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Table 5: Parameter Estimates

Parameters for asset illiquidity φ and the long-term benefit η are estimated as described in Section
7.1. Parameters for the price variance cost αδ2 and the elasticity of demand γ, η, φ are estimated as
described in Section 7.2. Run prob is the run probability at the issuer’s optimal choice of K.

Coin Month ασ2
ε γ η φ Run Prob

USDC 2021m5 7.06 1.10 0.0301 0.0250 3.188%
USDC 2021m6 0.0198 0.0296 3.893%
USDC 2021m7 0.0221 0.0293 3.737%
USDC 2021m8 0.0575 0.0178 1.883%
USDC 2021m9 0.0443 0.0150 2.134%
USDC 2021m10 0.0525 0.0150 1.828%
USDT 2021m6 0.54 0.0301 0.0431 2.590%
USDT 2021m9 0.0292 0.0436 2.495%
USDT 2021m12 0.0250 0.0413 2.040%
USDT 2022m3 0.0365 0.0395 1.664%
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Table 6: Model Fit

Target K is the slope of arbitrageur demand for the stablecoin, estimated from the data, from (7.1).
Model K is the model-predicted slope of arbitrageur demand. Target elas. is the partial elasticity of
investors’ demand for the stablecoin with respect to the long-term benefit η, as described in Subsection
(7.2). Model elas. is the model partial elasticity of investors’ demand for the stablecoin with respect to
η.

Coin Month Target K Model K Target elas. Model elas.

USDC 2021m5 0.156 0.166 2.486 2.638
USDC 2021m6 0.156 0.206 2.486 4.080
USDC 2021m7 0.156 0.201 2.486 3.822
USDC 2021m8 0.156 0.090 2.486 1.444
USDC 2021m9 0.156 0.097 2.486 1.501
USDC 2021m10 0.156 0.084 2.486 1.387
USDT 2021m6 0.209 0.269 1.600 1.687
USDT 2021m9 0.209 0.273 1.600 1.737
USDT 2021m12 0.209 0.267 1.600 1.662
USDT 2022m3 0.209 0.236 1.600 1.332
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Internet Appendix for

Stablecoin Runs and the Centralization of Arbitrage

Yiming Ma Yao Zeng Anthony Lee Zhang

A Additional Institutional Details

A.1 Minting of Stablecoins

Technically, stablecoins on Ethereum are ERC-20 tokens, and stablecoins on other blockchains are

implemented as similar token “smart contracts.” The stablecoin “smart contract,” that is, the blockchain

code that governs the behavior of the stablecoin, gives the stablecoin issuer the arbitrary right to create,

or “mint”, new stablecoin tokens, into arbitrary wallet addresses. Stablecoin issuers adopt technically

slightly different strategies to issue and redeem stablecoins in primary markets. Some, like USDC,

directly “mint” new coins using the token smart contract into customers’ wallets. Others, like Tether,

occasionally mint large amounts of stablecoin tokens to “treasury” wallets under their control, and

then issue stablecoins in primary markets by sending tokens from the “treasury” address to customers’

wallets.29

A.2 Trading on Crypto Exchanges

There are several ways individuals can purchase stablecoins with local fiat currency. One method

is to deposit fiat on a custodial centralized crypto exchange (CEX), such as Binance or Coinbase.

Centralized exchanges, like stock brokerages, keep custody of fiat and crypto assets on behalf of users,

and allow users to purchase or sell crypto assets using fiat currencies. After purchasing stablecoins

on a CEX, the user can then “withdraw” the stablecoins, instructing the CEX to send her stablecoins

29Treasury address tokens technically count towards the market cap of any given stablecoin, but they are not economically
meaningful as part of the market cap, since Tether does not have to hold US dollar assets against tokens it holds in its treasury.
Thus, we will not count tokens held in treasury addresses as part of the stablecoin supply in circulation.
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to a wallet address of her choosing, to self-custody the purchased stablecoins. Another approach is

to use peer-to-peer exchanges, such as Paxful. On these platforms, users list offers to buy or sell

stablecoins or other crypto tokens for other forms of payment. Accepted forms of payment in the US

include Zelle, Paypal, Western Union, ApplePay, and many others. The exchange platform plays an

escrow, insurance, and mediation role in these transactions. When a user buys a stablecoin, she sends

funds to the exchange’s escrow account and the stablecoin seller sends stablecoins to an address of the

buyer’s choosing. Once the buyer confirms receipt of the stablecoins, the exchange sends funds from

the escrow account to the seller’s account. In this process, purchased stablecoins are sent directly to the

user’s self-custodial wallet.

B Further Information regarding the Data

B.1 Primary Market Data

As mentioned in Appendix A, there are two ways that stablecoin tokens can be minted or redeemed.

First, the stablecoin’s “mint” or “burn” functions can be called directly to the primary market partici-

pant’s wallet. To capture this category of actions, we query Etherscan for all cases in which the “mint”

and “burn” functions are called for each stablecoin. Second, the stablecoin issuer can send or receive

stablecoins from their “treasury” address. To capture this category, we identify the treasury address or

addresses for each stablecoin, and then query Etherscan for every send or receive transaction involving

the treasury address. Logistically, some issuers, such as Tether, tend to mint a large number of stable-

coin tokens into “treasury” addresses they control, then issue tokens to market participants simply by

transferring tokens out of their treasury wallet; whereas other issuers, such as TrueUSD, occasionally

directly mint stablecoin tokens into the wallet addresses of market participants. On the other hand, most

issuers handle redemptions by having market participants send tokens to a treasury wallet address. If

the treasury wallet has a large balance of redeemed stablecoins, the issuer will occasionally “burn”

quantities of the stablecoin, removing them from the technical outstanding balance of the token.30

Different wallet addresses that we observe minting and burning stablecoins could in principle be

controlled by the same entity. We gather wallet “labels” provided by Etherscan, and group wallets that

30The exception to this rule is that TrueUSD occasionally handles redemptions by “burning” tokens directly from market
participants’ wallets, rather than the treasury.
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are labelled as belonging to the same entity. For example, Etherscan labels the addresses 0x345d8e3a1f

62ee6b1d483890976fd66168e390f2 as “Binance 23”, and 0x21a31ee1afc51d94c2efccaa2092ad10282

85549 as “Binance 15”; we group all arbitrage transactions of these and other Binance-related wallets,

and treat this group of wallets as one economic entity, for the purpose of our analysis. Not all wallets

are labelled in Etherscan, so it is conceivable that wallets we treat as separate in fact are operated by the

same economic entity. Our results may thus slightly underestimate the degree of arbitrage concentration

in practice.

We calculate the total issued market capitalization of a given stablecoin at any point in time as

the total technical market capitalization of the stablecoin minus the amount of the stablecoin held in

“treasury” addresses. This is because tokens held in treasury wallets need not be backed one-to-one

by US dollars and thus should not count as part of the total market capitalization of stablecoins in

circulation.

B.2 Secondary Market Price Data

Our sample uses direct USD to stablecoin trading pairs to calculate USD stablecoin prices because

using a larger set of trading pairs to back out the USD price of stablecoins, as is done by CoinGecko,

for example, introduces several issues.

First, using USDC/USDT trading pairs in calculating USDC (or USDT) prices introduces some

complications for stablecoins. For example, when the USDC/USDT trading pair depegs, it becomes

unclear whether this deviation is driven by USDC or USDT. Thus, we avoid using such pairs in calcu-

lating stablecoin prices.

Second, when CoinGecko includes all stablecoin/other non-stablecoin cryptocurrency pairs in its

calculations, it presumably converts these back to stablecoin prices by dividing by some cryptocur-

rency/USD metric; we think that this strategy overlooks the dispersion in other cryptocurrency prices

across exchanges due to factors like demand shocks and incomplete markets (e.g., the “kimchi pre-

mium” effect), which can be much more salient for other cryptocurrencies than for stablecoins. This

could result in variations in stablecoin prices that reflect fluctuations in other cryptocurrency demand

across exchanges, rather than in stablecoins per se.
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As an illustration, we plot the secondary market price for our sample, CoinGecko, and two major

exchanges, Kraken and Binance, in Figure A.1 below. Observe that the CoinGecko data shows sig-

nificantly more price deviations through the whole sample period for USDC than that uncovered in

our data. Also, the price deviations in our data resemble the USD/USDC data on Kraken and Binance

much better. This is consistent with CoinGecko’s being influenced by noise and rate dispersion across

exchanges on which different crypto trading pairs trade.

Figure A.1: Secondary Market Trading Price

Panels (a) to (d) show the secondary market trading price of USDC in our data, on Coingecko, Binance,
and Kraken, respectively.

(a) Our Data (b) Coingecko Data

(c) Binance Data (d) Kraken Data
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Finally, the direct stablecoin to USD trading pairs are conceptually more suitable for our research

question. We hope to analyze the “on/off ramp” behavior of consumers where they are primarily

concerned with entering or exiting the market in terms of USD. The CoinGecko data may be more

suitable for studying trading between stablecoins and other crypto assets.

C Arbitrageur Inventory Holding

In the baseline model, we assume that arbitrageurs have zero net position in stablecoins so they cannot

hold stablecoins on their balance sheet between periods. In this appendix, we first examine arbitrageurs’

stablecoin holdings in the data. Then, we extend the model to allow arbitrageurs to maintain a positive

balance of stablecoins.

C.1 Arbitrageurs’ Stablecoin Ownership in the Data

To calculate arbitrageurs’ stablecoin positions in the data, we take the following steps. First, using

Etherscan, Snowtrace, and Tronscan, we gather all send and receive transactions of stablecoins involv-

ing each arbitrageur wallet address in our dataset. Having in hand all creation, redemption, send, and

receive transactions, we can construct a time series of each arbitrageur’s holdings of each token. Using

this data, for each coin and chain, we calculate each arbitrageur wallet’s monthly balance of stablecoin

holdings and divide it by the total supply of that stablecoin.

In Figures A.2, A.3, and A.4, we plot the average stablecoin ownership of arbitrageurs on the

Ethereum, Tron, and Avalanche blockchains, respectively. The average positions are non-zero and

fluctuate over time but they remain well below 1.5% across all chains and coins. In Table A.1, we

further show the variation across arbitrageurs’ stablecoin ownership for the full sample of arbitrageurs.

These positions are minimal. The 99th percentile of stablecoin holdings remain below 1% except

USDT arbitrageurs on Tron that have a 99th percentile holding of 5.32%. When we further limit the

sample to arbitrageurs with active redemptions or creations in that month, almost all positions at the

99th percentile remain minimal and well below 2%. The only exceptions are GUSD on Ethereum and

USDT on Tron.
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Overall, our findings suggest that the vast majority of stablecoin arbitrageurs hold very small

amounts of stablecoins and do not make up a substantial fraction of total holdings. This is consistent

with our conversations with market participants. Arbitrageurs specialize in profiting from differences

between secondary-market prices and primary-market redemption values. This is a sensible strategy

for profit-seeking institutions because unlike arbitrage between primary and secondary markets, hold-

ing stablecoins per se does not generate returns because stablecoins currently do not pay out dividends.

Nevertheless, we acknowledge that our calculations may to some extent underestimate the concen-

tration of stablecoin holdings by arbitrageurs. First, multiple wallets belonging to the same arbitrageur

on the same chain may not be fully linked despite our best efforts. Second, we are unable to link wal-

lets on different chains that belong to the same arbitrageur. Although arbitrageurs would need to own a

very large number of wallets within and across chains for their holdings to be economically significant

given our empirical findings, we further extend our model to explore the effect of arbitrageurs’ allowing

stablecoin holdings on our model predictions.
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Figure A.2: Average Share of Stablecoins Held by Arbitrageurs (Ethereum)

Panels (a) to (f) show the average stablecoin ownership of arbitrageurs on the Ethereum blockchain.
For each stablecoin and chain, we show the monthly average stablecoin ownership for arbitrageurs in
our sample. Stablecoin ownership is expressed as a percentage of the total supply of stablecoins.
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(b) USDC
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(c) BUSD
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(e) TUSD
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(f) GUSD
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Figure A.3: Average Share of Stablecoins Held by Arbitrageurs (Tron)

Panels (a) to (f) show the average stablecoin ownership of arbitrageurs on the Tron blockchain. For
each stablecoin and chain, we show the monthly average stablecoin ownership for arbitrageurs in our
sample. Stablecoin ownership is expressed as a percentage of the total supply of stablecoins.
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(b) USDC
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(c) TUSD
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Figure A.4: Average Share of Stablecoins Held by Arbitrageurs (Avalanche)

Panels (a) to (f) show the average stablecoin ownership of arbitrageurs on the Avalanche blockchain.
For each stablecoin and chain, we show the monthly average stablecoin ownership for arbitrageurs in
our sample. Stablecoin ownership is expressed as a percentage of the total supply of stablecoins.
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Table A.1: Share of Stablecoins Held by Arbitrageurs

Panels (a) to (c) provide statistics about the share of stablecoins owned by active arbitrageurs on the
Ethereum, Tron, and Avalance blockchains. For each stablecoin and chain, we show the average and the
25th, 50th, 75th, 90th, 95th, and 99th percentile of stablecoin ownership for arbitrageur-month observations
in our sample. Stablecoin ownership is expressed as a percentage of the total supply of stablecoins.

(a) Ethereum

mean p25 p50 p75 p90 p95 p99
USDC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USDT 0.07 0.00 0.00 0.00 0.00 0.01 0.70
BUSD 0.00 0.00 0.00 0.00 0.00 0.00 0.02
GUSD 0.03 0.00 0.00 0.00 0.00 0.01 0.13
TUSD 0.01 0.00 0.00 0.00 0.00 0.00 0.02
USDP 0.03 0.00 0.00 0.00 0.00 0.00 0.04

(b) Tron

mean p25 p50 p75 p90 p95 p99
USDC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USDT 0.18 0.00 0.00 0.00 0.04 0.47 5.32
TUSD 0.03 0.00 0.00 0.00 0.00 0.00 0.77

(c) Avalanche

mean p25 p50 p75 p90 p95 p99
USDC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USDT 0.00 0.00 0.00 0.00 0.01 0.03 0.04
TUSD 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table A.2: Share of Stablecoins Held by Arbitrageurs (Active Arbitrageurs)

Panels (a) to (c) provide statistics about the share of stablecoins owned by active arbitrageurs on the
Ethereum, Tron, and Avalance blockchains. For each stablecoin and chain, we show the average and
the 25th, 50th, 75th, 90th, and 95th, and 99th percentile of stablecoin ownership for all arbitrageur-month
observations with active redemptions or creations. Stablecoin ownership is expressed as a percentage
of the total supply of stablecoins.

(a) Ethereum

mean p25 p50 p75 p90 p95 p99
USDC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USDT 0.09 0.00 0.00 0.01 0.06 0.24 1.81
BUSD 0.02 0.00 0.00 0.00 0.00 0.00 0.22
GUSD 0.67 0.00 0.00 0.00 0.13 1.03 36.17
TUSD 0.02 0.00 0.00 0.00 0.00 0.01 0.11
USDP 0.12 0.00 0.00 0.00 0.00 0.01 0.33

(b) Tron

mean p25 p50 p75 p90 p95 p99
USDC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USDT 0.40 0.00 0.00 0.01 0.62 1.09 12.11
TUSD 0.04 0.00 0.00 0.00 0.00 0.35 0.88

(c) Avalanche

mean p25 p50 p75 p90 p95 p99
USDC 0.03 0.00 0.03 0.06 0.06 0.07 0.07
USDT 0.01 0.00 0.01 0.02 0.03 0.04 0.04
TUSD 0.00 0.00 0.00 0.00 0.00 0.00 0.01
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C.2 Model Extension Allowing for Arbitrageurs’ Stablecoin Holdings

We now consider a stripped-down extension of the model in which arbitrageurs can absorb stablecoins

at the initial price of $1 and hold some inventories without redeeming.

In an extreme case in which arbitrageurs are willing to absorb all stablecoin holdings at a fixed price,

arbitrageurs can completely eliminate runs, serving as a form of insurance for investors. However, this

would require arbitrageurs to absorb much more inventory than they hold in practice, as we show in

the previous subsection. Interestingly, in an intermediate case where arbitrageurs are willing to absorb

small amounts of inventory at fixed prices, we will show that arbitrageurs can actually exacerbate run

risk because first-mover advantage is greater when price impact is lower.

Suppose each of the n arbitrageurs is willing to purchase up to zj = h units of stablecoin in the

secondary market at the initially fixed price of 1 and hold them in inventory. Let H = nh denote

the aggregate inventory holding capacity of the arbitrageur sector. This setup can be interpreted as

capturing, for instance, implicit or explicit agreements between arbitrageurs and exchanges to provide

a minimum quantity of liquidity at a negligible bid-ask spread. Within this inventory range, we model

that arbitrageurs simply hold stablecoins in inventory and offer to buy from investors at a fixed price

of 1. For arbitrageur purchase quantities exceeding zj > h, arbitrageurs redeem the entire purchase

quantity with the issuer, incurring the usual cost
z2j
2χ

as in the baseline model. We also impose a mild and

plausible assumption that H < 1− φ, which ensures that arbitrageurs cannot accumulate a sufficiently

large balance sheet to effectively take over the role of the stablecoin issuer in maintaining the stablecoin

price when the issuer would have become insolvent; in other words, arbitrageurs will still have to turn

to the issuer to redeem if their inventory balance becomes too high despite the capacity and willingness

to actively absorb some stablecoin sales.

Under this model extension, it is straightforward to characterize the equilibrium secondary-market

price of the stablecoin. If λ ≤ H , arbitrageurs absorb all stablecoins sold by investors without re-

deeming, and the secondary market price remains fixed at 1. If λ > H , arbitrageurs begin redeeming

their purchases with the issuer, and the pricing dynamics revert to those of the baseline model. The
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secondary market price of the stablecoin is thus given by:

pArbHolding
2 (λ) =


1 λ ≤ H ,

1−Kλ H < λ ≤ 1− φ ,
1− φ
λ
−Kλ λ > 1− φ .

(C.1)

Note that the price function (C.1) lies above the baseline price function (5.4) for λ ≤ H , and

coincides with it for λ > H .

Accordingly, the payoff gain from waiting until t = 3 rather than selling at t = 2 is now given by:

h(λ) = v3(λ)− pArbHolding
2 (λ) =


π(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
− 1 λ ≤ H ,

π(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
− 1 +Kλ H < λ ≤ 1− φ ,

−1− φ
λ

+Kλ λ > 1− φ .

(C.2)

Similarly, (C.2) lies below the baseline payoff gain function (5.8) for λ ≤ H , and coincides with it

for λ > H .

Intuitively, the arbitrage sector’s capacity to absorb redemptions at a fixed price of 1 reduces price

impact and temporarily stabilizes the market. However, this stabilization also weakens the disincen-

tive to sell early, thereby reducing investors’ incentive to wait until t = 3. In effect, the ability of

arbitrageurs to buffer modest redemption flows can inadvertently raise run risk by muting early price

signals that would otherwise discourage preemptive withdrawals.

To show this result formally, we follow the same logic as in the main text to derive the run thresh-

old under this extension and compare it to the baseline model. As before, each investor’s liquidation

decision is uniquely determined by her private signal: she sells the stablecoin at t = 2 if and only if her

signal falls below a threshold. In other words, an investor is indifferent between selling and holding

when her signal is exactly at the threshold. Given the existence of a unique run threshold, the investor’s
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indifference condition implies the following revised Laplace equation:

∫ H

0

1 dλ+

∫ 1−φ

H

(1−Kλ) dλ+

∫ 1

1−φ

(
1− φ
λ
−Kλ

)
dλ =

∫ 1−φ

0

π(θ∗∗)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
dλ ,

(C.3)

where θ∗∗ denotes the new run threshold under the inventory-holding extension.

Comparing the left-hand side of (C.3) with that of (5.9), it follows that the run threshold under the

extended model is strictly higher: θ∗∗ > θ∗. This implies that the run risk is greater when arbitrageurs

absorb some initial stablecoin sales into inventory at a fixed price without redeeming them, even though

this behavior reduces secondary-market price volatility.

The intuition behind this result echoes the main tradeoff highlighted in the baseline model between

secondary market price stability and financial stability. When arbitrageurs use their balance sheets

to support prices without demanding a discount, arbitrage becomes more efficient and price impact

declines. However, this also means investors receive higher payoffs from selling early, while their

payoff from holding until maturity remains unchanged. As a result, the incentive to redeem early

increases, exacerbating run risk. Thus, somewhat counterintuitively, allowing arbitrageurs to stabilize

prices through more active inventory holdings can worsen financial fragility, consistent with the core

message of the baseline model that greater price stability can come at the cost of increased run risks.

D Strategic Bidding

In this appendix, we extend our baseline model to incorporate imperfect competition between and

strategic bidding by arbitrageurs. The framework closely follows Klemperer and Meyer (1989), with

three key differences: (i) demand is perfectly inelastic, (ii) payoffs are slightly modified by the possibil-

ity of runs, and (iii) we consider the case of n > 2 arbitrageurs, which is briefly analyzed in Proposition

8a of Klemperer and Meyer (1989). We show that under imperfect competition and strategic bidding,

there may exist multiple equilibrium prices for any given set of primitives. Despite these technical

complexities, the core economic insight that arbitrage capacity influences secondary stablecoin prices

remains unchanged after imposing a reasonable equilibrium selection mechanism. Thus, for tractabil-

ity, we assume competitive bidding in the main text without loss of generality.
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To start, as in the main text, we assume there are n arbitrageurs, who each face a cost

z2j
2χ

for arbitraging zj units of the stablecoin. As in the main text, the redemption price pr that arbitrageurs

receive per unit of the stablecoin redeemed depends on the total amount λ redeemed due to the illiq-

uidity of the reserve asset:

pr =

1 λ ≤ 1− φ ,
1−φ
λ

λ > 1− φ .

From the perspective of arbitrageurs, we view the demand shock λ as a random variable. We assume λ

has full support on [0, 1]. While in the limit of εi → 0, consumers will perfectly coordinate on running

or not running, on the path to the limit, λ has positive support everywhere on [0, 1]. Since investors

make market orders, the demand shock is perfectly inelastic.

In contrast to the main text, we now assume arbitrageurs bid strategically, taking into account the

influence of their bids on equilibrium prices. We search for a symmetric equilibrium bid curve z (p),

where z (p) is a strictly decreasing function defining the quantity arbitrageurs are willing to arbitrage at

price p. We will sometimes work with the inverse bid curve, which we will write as p (z), defined as:

p (z̃) = {p : z (p) = z̃} .

Since the maximum value of λ is 1, with n arbitrageurs, we require p (z) to be defined only on the

range z ∈
[
0, 1

n

]
, since in a symmetric equilibrium each arbitrageur absorbs at most a quantity 1

n
. As in

Klemperer and Meyer (1989), we require that each arbitrageur finds z (p) to be an ex-post best response

conditional on any realization of demand λ.

We next characterize the first-order conditions defining equilibrium bid curves. Suppose the equi-

librium bid curve is z (p). Let p∗ represent the equilibrium market clearing price assuming symmetric

bids, which is related to λ according to:

nz (p∗) = λ . (D.1)

Assume all arbitrageurs bid according to z (·), and fix some value of p∗; this is equivalent to fixing a

value of the demand shock λ, through (D.1). For this value p∗, suppose arbitrageur i considers deviating
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from the symmetric equilibrium bid curves z (p). If n− 1 arbitrageurs bid according to z (p), given p∗,

the last arbitrageur i faces a residual supply curve – a menu of pairs of prices p and quantities, which

we will write as z̃i (p; p∗) – which satisfies:

z̃i (p; p
∗) = nz (p∗)− (n− 1) z (p) . (D.2)

That is, the quantity available to i if the price is p is total demand λ, which by the definition of p∗ in

(D.1) is equal to nz (p∗), minus total quantity purchased by other arbitrageurs, (n− 1) z (p).

Now, first, suppose the aggregate demand shock λ < 1−φ, so the issuer is solvent, and stablecoins

are redeemed for a dollar each. Taking into account arbitrage costs, i’s profit if the price is p is:

(1− p) z̃i (p; p∗)−
z̃i (p; p

∗)2

2χ
. (D.3)

That is, i makes (1− p) per unit times her quantity z̃i (p; p∗), less the arbitrage cost z̃i(p;p
∗)2

2χ
. In a sym-

metric equilibrium, for any p∗, arbitrageur i must find it optimal to absorb exactly 1
n

of total inventory,

which is only possible from (D.2) if p = p∗. Thus, in order for z (p) to form a symmetric equilibrium,

we must have:

p∗ = arg max
p

(1− p) z̃i (p; p∗)−
z̃i (p; p

∗)2

2χ
.

Differentiating with respect to p, and requiring the derivative to equal 0 at p = p∗, we have:

z′ (p) = − z

(n− 1)
(

1− z
χ
− p∗

) , (D.4)

where we used (D.2) to differentiate z̃i (p; p∗). Applying the inverse function theorem, this implies that:

p′ (z) = − (n− 1)

(
1

z
− p

z
− 1

χ

)
∀z < 1− φ

n
. (D.5)

Then, suppose λ > 1 − φ, so that the issuer is insolvent. The redemption value of each unit of the

coin is then 1−φ
λ

. The residual supply curve is still (D.2). However, (D.3), the value to the arbitrageur
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if the price is p, now becomes:

(
1− φ
nz (p∗)

− p
)
z̃i (p; p

∗)− z̃i (p; p
∗)2

2χ
.

Relative to (D.3), the redemption value is modified to only 1−φ
nz(p∗)

per unit of the coin redeemed. Differ-

entiating with respect to p, and setting to 0 at p∗, the equivalent of (D.4) is:

−z (p∗)− (n− 1) z′ (p∗)

(
1− φ
nz (p∗)

− p∗ − z (p∗)

χ

)
= 0 .

Rearranging and inverting:

p′ (z) = − (n− 1)

(
1− φ
nz2

− p

z
− 1

χ

)
∀z ≥ 1− φ

n
. (D.6)

Writing conditions (D.5) and (D.6) together, we find first-order necessary conditions for inverse demand

curves p (z) to constitute a symmetric equilibrium:31

p′ (z) =

− (n− 1)
(

1
z
− p

z
− 1

χ

)
z < 1−φ

n
,

− (n− 1)
(

1−φ
nz2
− p

z
− 1

χ

)
z ≥ 1−φ

n
.

(D.7)

Expression (D.7) is simply a first-order differential equation, specifying the derivative p′ (z) as a

function of z as well as p. This implies that there is a simple way to find candidate equilibria: we can

pick any point (p0, z0), and solve (D.7) to find a function which satisfies the differential equation on

z =
[
0, 1

n

]
and passes through (p0, z0). The top-left panel of Figure A.5 depicts the aggregate supply

curves generated by a number of such equilibria, in green, for fixed values of n, χ, φ, where we plot

λ = nz on the x-axis. There are a range of different equilibria, with different levels of prices.

Following Klemperer and Meyer (1989), we can characterize the set of equilibria as follows. Since

all equilibria must satisfy that p′ (z) < 0 throughout, we can find an upper bound to all equilibrium

price curves by finding a function which satisfies p′ (z) = 0, that is, which exactly satisfies the second-

31We have not verified that the SOCs are guaranteed to hold; however, in a very similar model to ours, Klemperer and
Meyer (1989) show that the FOCs holding and the bid slope p′ (z) > 0 are sufficient conditions for the second-order
conditions to hold globally. The equilibrium inverse demand functions p (z), substituting λ = nz, define an aggregate
arbitrage supply curve facing consumers. If consumers demand λ, then each arbitrageur must absorb quantity z = λ

n in
symmetric equilibrium, meaning that the price will be p

(
λ
n

)
.

75



order condition when the demand shock λ = 1. This function is illustrated as the dashed gray line in

the top left panel of Figure A.5. We can further solve for a “highest” possible equilibrium, which can

be characterized by finding the equilibrium, which exactly reaches p′
(
1
n

)
= 0; this is the red line in

the top left panel of Figure A.5. All other valid equilibrium bid curves lie below this one, as the figure

illustrates.

Figure A.5

These plots illustrate solutions to the FOCs in (D.7), in various settings. The x axis shows demand
λ = nz (p), and the y-axis shows the inverse aggregate supply function p

(
λ
n

)
. The top left plot shows,

for fixed parameters n, χ, φ, a number of different equilibria in green; the highest possible equilibrium,
satisfying p′

(
1
n

)
= 0, in red; and the linear equilibrium conjecture from (D.8), which fails to be an

equilibrium, in blue. The top right plot illustrates equilibrium for different values of χ, passing through
a single (p, λ) pair. The bottom plot shows the highest possible equilibria for different values of χ.
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Note that a natural conjecture for the equilibrium bid curve – that p (z) follows the well-known

linear equilibrium bids under linear marginal costs for z (p) < 1−φ
n

, that is,

p(λ) = 1− n− 1

n− 2
· λ
nχ

(D.8)

and is nonlinear thereafter, is in general not an equilibrium in this setting. The reason for this is that,

in the Klemperer and Meyer (1989) setting, there are interestingly non-local effects of marginal costs

for large values of p (z), on equilibria for small values of p (z). Essentially, an equilibrium bid curve

satisfies second-order conditions when its slope does not become 0 or∞. We can solve the differential

equation for p (z) beginning at the linear solution (D.8), and it is linear until z = 1−φ
n

. However, for

higher values of z, this differential equation reaches slope p′ (z) = 0 before z = 1
n

, thus violating the

second-order conditions for equilibria. In the figure, this potential equilibrium is illustrated as the blue

colored line; which intersects the dotted boundary well before λ = 1. This argument also illustrates

that the standard equilibrium selection criteria that equilibrium bid curves are linear, imposed in much

of the applied finance literature, is not in fact innocuous when the demand shock has finite support. In

this setting, there is actually a multiplicity of valid nonlinear bidding equilibria even when marginal

costs are fully linear, illustrated by the various trajectories to the left of z = 1−φ
n

in the figure.

Comparative statics are generally difficult to obtain due to the multiplicity of equilibria under strate-

gic bidding. However, we can derive a counterpart to our main result that lower values of χ lead to less

aggressive bidding and greater price impact under an equilibrium selection approach commonly used

in the auction literature. Since the linear equilibrium commonly used in applied settings is not always

valid in our framework, a natural selection criterion is to choose the linear equilibrium if it exists and

does not reach p′(z) = 0 before z = 1
n

. Otherwise, we select the closest possible equilibrium to the

linear equilibrium. This approach is straightforward to characterize: if the linear equilibrium fails to

exist, it does so because it lies “above” the set of feasible equilibria, as illustrated in the top-left panel

of Figure A.5. Thus, whenever the linear equilibrium is invalid, the closest alternative, measured, for

example, by the Lp norm on functions for 1 ≤ p ≤ ∞ over the domain where the linear equilibrium

is valid is simply the highest possible equilibrium, depicted by the red curve in the top-left panel. We

refer to this as the “closest-to-linear” equilibrium selection.

Under this equilibrium selection approach, we can cleanly rank equilibria for different values of χ

to facilitate comparative statics. Consider two values χ1 > χ2, such that the linear equilibrium is not
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valid in both cases. We argued that the upper bound of all equilibrium bid curves has exactly p′ (z) = 0

at z = 1
n

; we can explicitly solve for the price which implements this equilibrium by setting (D.6) to 0

for z = 1
n

and solving:
1− φ
n
(
1
n

)2 − p(
1
n

) − 1

χ
= 0 (D.9)

The price which solves (D.9) is clearly monotone in χ. This shows that, when we apply the “closest-

to-linear” equilibrium selection, the equilibrium price at z = 1
n

must be higher under χ1 than χ2.

We further show that the equilibrium price is weakly greater under χ1 than χ2 for any quantity

z ∈
[
0, 1

n

]
. To prove this, assume for contradiction that there exists some z ∈

(
0, 1

n

)
such that the

χ1-equilibrium price is lower than the χ2-equilibrium price. Since the χ1-equilibrium price is also

lower at z = 1
n

, and both equilibrium price curves are continuous, this implies that the χ1-equilibrium

price curve must cross the χ2-equilibrium price curve from below at some point. However, this is

impossible due to a single-crossing property of the differential equations characterizing equilibrium.

Specifically, Equations (D.5) and (D.6) are strictly monotone in χ, holding p and z fixed. Thus, at any

given pair (p, z), the slope p′(p, z) must be more negative for larger χ. Consequently, if χ1 > χ2, the

function p(z;χ1) can only cross p(z;χ2) from above as z increases. This single-crossing property is

illustrated in the top-right panel of Figure A.5, where equilibrium bid curves passing through a single

point exhibit steeper slopes for higher values of χ, consistently crossing lower-χ curves from above.

This contradiction implies that for χ1 > χ2, the closest-to-linear equilibrium under χ1 must yield a

higher price than the closest-to-linear equilibrium under χ2 for all z ∈
[
0, 1

n

]
. We illustrate this result

in the bottom panel of Figure A.5, where the closest-to-linear equilibria for different values of χ are

plotted. The curves become completely flat at z = 1
n

, with higher prices corresponding to higher values

of χ, and they never cross each other.

To summarize, we have shown that under a “closest-to-linear” equilibrium selection mechanism

inspired by the double auction literature, lower values of χ lead to less aggressive bidding and greater

price impact. This finding suggests that, the core economic insight that arbitrage capacity influ-

ences secondary stablecoin prices remains intact with an appropriate equilibrium selection mechanism.

Specifically, our equilibrium selection approach attempts to stay as close as possible to the linear equi-

librium implicitly selected in the double-auctions literature.
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E Microfoundation of Competitive Bidding Benchmark

In the main text, we derived the market inverse demand function in Lemma 1 by arguing that the price

must equal investors’ marginal cost of absorbing additional quantity while holding total redemption

quantity fixed, without explicitly solving for equilibrium in a demand function submission game. In

this appendix, we explicitly derive this demand curve as a simple rational expectations equilibrium in

a demand function submission game with competitive arbitrageurs.

Suppose there is a measure n of competitive arbitrageurs indexed by j ∈ [0, n]. As in the main text,

arbitrageurs incur a cost of
z2j
2χ

when purchasing and redeeming zj units of the asset. Each arbitrageur

submits a demand schedule zj(p2), representing the quantity they are willing to purchase and redeem

at secondary market price p2. In a symmetric equilibrium where all arbitrageurs bid the same demand

curve z(p2), the aggregate market demand curve is given by:

Z (p2) =

∫ n

0

z (p2) dj = nz (p2) .

In equilibrium, the inelastic quantity of investors’ market-order redemption demand, λ, must equal

Z(p2). Here, we write Z(p2) to conceptually distinguish arbitrageurs’ supply from investors’ redemp-

tion demand.

In purely private-valued models, the competitive bidding benchmark simply involves arbitrageurs

bidding up to the point where the price equals their marginal utility for the asset. Our model follows

this structure in the range where Z(p2) ≤ 1 − φ and the issuer remains solvent. However, the setting

becomes more complex when Z(p2) > 1 − φ, as the issuer is then insolvent, meaning the redemption

value per stablecoin depends on the total quantity redeemed. Consequently, investors can anticipate the

redemption value based on the price.

To address this, we seek a rational expectations equilibrium in which arbitrageurs’ demand sched-

ules, z(p2), are best responses to the induced aggregate demand schedule, Z(p2) = nz(p2), while

correctly inferring the redemption value of the stablecoin from the price p2.

First, consider values of p2 such that zj(p2) ≤ 1−φ
n

, ensuring that total redemption quantity satisfies

Z(p2) ≤ 1− φ. In this range, the issuer remains solvent, so each arbitrageur j correctly perceives that
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they can redeem each unit of stablecoin for one dollar with the issuer. The arbitrageur’s problem is thus

purely private-valued and straightforward to solve.

Each arbitrageur’s demand schedule must maximize utility, given other arbitrageurs’ demand sched-

ules and a correct forecast of redemption values. Suppose the market price is p2. Since arbitrageurs are

competitive, they take prices as given and do not account for their impact on the market. The utility of

an arbitrageur purchasing and redeeming quantity z̃ at a fixed price p2, when the redemption value is 1,

is:

z̃(1− p2)−
z̃2

2χ
.

Differentiating with respect to z̃ and setting the derivative to zero, the demand schedule z(p2) must

satisfy:

1− p2 −
z(p2)

χ
= 0,

which implies:

zj(p2) = χ(1− p2).

This is the standard demand curve under private values, where the arbitrageur bids the inverse of her

marginal utility function. The aggregate demand curve is then:

Z(p2) = nzj(p2) = nχ(1− p2).

Inverting, in a rational expectations equilibrium, the price p2(Z) satisfies:

p2(Z) = 1− Z

nχ
, ∀Z ≤ 1− φ. (E.1)

The situation becomes more complex when z(p2) >
1−φ
n

, so that Z(p2) > 1− φ. In this range, the

stablecoin’s redemption value to an arbitrageur depends on the behavior of other arbitrageurs, since a

higher total redemption quantity lowers the per-stablecoin redemption value. In a rational expectations

equilibrium, each arbitrageur correctly infers the redemption value from the price, anticipating that if

others bid z(p2) and the price is p2, then the total redemption quantity is nz(p2), and the per-stablecoin

redemption value is:
1− φ
Z(p2)

=
1− φ
nz(p2)

.
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Under this redemption value, the arbitrageur’s utility from purchasing quantity z̃ at price p2 is:

z̃

(
1− φ
nz(p2)

− p2
)
− z̃2

2χ
.

A rational expectations equilibrium requires that each arbitrageur bidding z(p2) is playing a best re-

sponse for all p2, meaning:

z(p2) = arg max
z̃
z̃

(
1− φ
nz(p2)

− p2
)
− z̃2

2χ
, (E.2)

whenever z(p2) >
1−φ
n

. Differentiating the right-hand side of (E.2) with respect to z̃, substituting z(p2)

for z̃, and setting the derivative to zero, we obtain:

1− φ
nz(p2)

− p2 −
z(p2)

χ
= 0. (E.3)

Thus, an rational expectations equilibrium demand curve z(p2) must satisfy (E.3) whenever Z > 1−φ,

i.e., z(p2) >
1−φ
n

. The equation (E.3) defines an inverse demand curve:

p2(z) =
1− φ
nz

− z

χ
, ∀z > 1− φ

n
.

Substituting Z = nz, we obtain:

p2(Z) =
1− φ
Z
− Z

nχ
, ∀Z > 1− φ. (E.4)

Equations (E.1) and (E.4) together constitute (5.4) in Lemma 1.

F Joint Design of Liquidity and Arbitrage Concentration

In this appendix, we explore a model extension where the stablecoin issuer concurrently determines the

levels of liquidity transformation φ and arbitrage concentration n, both at t = 0. We show that issuers’

optimal choice of φ is monotone in a specific ordering on the function R(φ), which determines the

returns from holding illiquid assets: when the illiquidity premium becomes higher, in a sense we will

define, the gains from increasing φ are larger, so issuers optimally choose higher values of φ.
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Note that, without other market participants taking any action at t = 0, this joint optimization

problem is equivalent to a sequential decision problem in which the issuer first decides the optimal

level of liquidity transformation φ, and then decides the optimal arbitrage concentration n as analyzed

in the baseline model.

Hence, in the extended joint optimization problem, the issuer’s objective can be written as, from

(5.14):

max
n

E[Π] = G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ) (R(φ)− 1− τ) dF (θ) .

Factoring, and ignoring τ , we have:

max
φ

max
n

(R(φ)− 1)G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ)dF (θ)

= max
φ

[
(R(φ)− 1) max

n

[
G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ)

]]
.

Define the function:

F (φ, n) ≡ G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ) .

Note that there is no dependence on R (φ). Also define:

Q (φ) ≡ R (φ− 1) .

The objective function is then:

max
φ

[
(R(φ)− 1) max

n

[
G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ)

]]

= max
φ

[
Q (φ) max

n
F (φ, n)

]
,

which can be restated by taking logs of the objective function:

arg max
φ

[
log (Q (φ)) + log max

n
F (φ, n)

]
.
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We have the following formal result about the optimal choice of liquidity transformation with re-

spect to the revenue function R, which can be understood as capturing the asset market that the stable-

coin issuer has access to. We highlight that the result in Proposition 3 still holds, that is, the optimal

arbitrage concentration can be sequentially determined as the optimal liquidity transformation is pinned

down.

Proposition 5. Suppose there are stablecoins issuers 1 and 2, with different revenue functions R1 and

R2, with the “monotone increasing ratios” property as stated below. For any φ′ > φ, suppose:

R1 (φ′)− 1

R1 (φ)− 1
≥ R2 (φ′)− 1

R2 (φ)− 1
. (F.1)

Then, the optimal φ∗ is always greater for issuer 1.

Intuitively, Proposition 5 implies that the observed variations in liquidity transformation across

different stablecoins can be justified by the access some issuers have to asset markets that command

higher illiquidity premiums. In Proposition 5, stablecoin issuer 1 could be understood as Tether, while

issuer 2 Circle. Condition (F.1) in Proposition 5 means that the asset market that Techer has access

to processes higher illiquidity premium in that a more illiquid asset holding offers a higher expected

return of the asset. Proposition 5 then predicts that Tether optimally designs USDT’s asset holdings

in that it holds more illiquid assets, that is, transforming more liquidity. To handle such a greater

level of endogenous liquidity transformation, Proposition 3 further implies that USDT admits a more

concentrated arbitrage sector, as we highlighted above.

An issuer’s optimal choice of φ is also affected by other model parameters, such as the long-term

benefit η and the demand functionG (·). However, we were not able to prove clean monotonicity results

regarding the relationship between the optimal φ and these parameters. Technically, the issue is that the

expected welfare function EW (φ, n) is not monotone in φ, meaning that the monotone comparative

statics approach we use to prove Proposition 5 cannot be applied.

G Redemption Fees and Gates

Consistent with the idea of opening up primary market redemptions to more stablecoin holders, we

show in this appendix that imposing redemption fees can reduce stablecoin run risk but faces the same
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tradeoff between price stability and run risk. Redemption fees render redemptions more costly and

thereby increase the constraints to arbitrage. Less efficient arbitrage helps to reduce run risk by raising

the price impact from selling stablecoins but hampers price stability at the same time. In the model,

we can think of redemption fees as the stablecoin issuer charging a fee of ν per stablecoin created or

redeemed. The following result characterizes the effect of the redemption fee on the run risk of the

stablecoin.

Proposition 6. Suppose φ is small in the sense that (5.11) holds. Suppose we impose an exogenous

creation/redemption fee ν per coin created/redeemed, which is paid by arbitrageurs to the issuer, hold-

ing fixed arbitrage capacity K. There exists a unique threshold equilibrium in which the run threshold

π(θ∗; ν) decreases in ν, implying that the run risk uniformly decreases as the redemption fee increases.

The effect of redemption gates resembles that of redemption fees. In our model, redemption gates

can be effectively captured by the stablecoin issuer’s choice of arbitrage concentration n in our model.

To see this logic, note that a full redemption gate implies that effectively no arbitrageur can redeem the

stablecoin, that is, n = 0. Consequently, the use of a full redemption gate implies that run risk would

be eliminated at the cost of an exceedingly volatile secondary market. If the issuer adopts a selective

redemption gate, we can think of an effective arbitrage concentration n′ ≤ n. As Proposition 2 shows,

a more selective redemption gate leads to a lower run risk at t = 2, but at the expense of worse price

stability.

Taken together, our model highlights that regulations for stablecoin redemptions should carefully

trade off the effects of price stability and run risk. Policies that require unconstrained arbitrage and

redemptions improve price stability but at the expense of worsening run risk; policies restricting re-

demptions through fees and gates improve run risk at the cost of price stability. While price stability is

observable on a daily basis and run risk only materializes in tail events, both are essential considerations

for the optimal regulation of stablecoins.

H Omitted Proofs

Proof of Proposition 1. Denote the run threshold as θ′, that is, if investor i observes a private signal

si < θ′ she sells her stablecoin at t = 2; otherwise she waits until t = 3. Then the population of
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investors who run, λ, can be written as

λ (θ, θ′) =


1 if θ ≤ θ′ − ε
θ′−θ+ε

2ε
if θ′ − ε < θ ≤ θ′ + ε

0 if θ > θ′ + ε

. (H.1)

Let h (θ, λ) be the payoff gain from waiting until t = 3 versus selling at t = 2. It is straightforward

that

h(θ, λ) = v3(θ, λ)− p2(θ, λ) =


π(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
− 1 +Kλ λ ≤ 1− φ ,

−1− φ
λ

+Kλ λ > 1− φ .

Notice that h(θ, λ) is concave in λ over (0, 1− φ) because

∂2h(θ, λ)

∂λ2
= − 2π(θ)φ

(1− λ)3(1− φ)
< 0 .

If investor i observes signal si, given that other households use the threshold strategy, she will sell

her stablecoin if ∫ si+ε

si−ε
h (θ, λ (θ, θ′)) dθ < 0 ,

or stay otherwise. To prove that there exists a unique run threshold θ∗, we need to prove that there is

a unique θ∗ such that if θ′ = θ∗, the investor who observes signal si = θ′ = θ∗ is indifferent between

selling and waiting. That is,

V (θ∗) ≡
∫ θ∗+ε

θ∗−ε
h (θ, λ (θ, θ∗)) dθ = 0.

According to Morris and Shin (2003) and Goldstein and Pauzner (2005), it then suffices to show

that h(λ) crosses 0 only once, that is, satisfies the single-crossing property when the upper dominance

region exists. To show this, first note that h(1) = −1+φ+K < 0 and that h(λ) increases in (1−φ, 1).

It then must be that h(1 − φ) < 0. On the other hand, note that h(0) > 0 when θ, and thus π(θ), are

sufficiently large. Because h(λ) is continuous and concave in (0, 1 − φ), it then immediately follows

that h(λ) must cross 0 once and only once in (0, 1− φ). Since h(λ) does not cross 0 in (1− φ, 1), this

85



implies that h(λ) crosses 0 once and only once in (0, 1), concluding the proof.

Proof of Proposition 2. Based on Proposition 1, we first compute the run threshold π(θ∗) directly. By

construction, an investor with signal θ∗ must be indifferent between selling her stablecoin at t = 2 and

waiting until t = 3. This investor’s posterior belief of θ is uniform over the interval [θ∗ − ε, θ∗ + ε].

On the other hand, she understands that the proportion of investors who sell at t = 2, as a function of

θ, is λ(θ, θ∗), where the function λ(θ, θ′) is given by (H.1) in the proof of Proposition 1. Therefore, her

posterior belief of λ is also uniform over (0, 1). At the limit, this gives the indifference condition as the

Laplace condition:

∫ 1−φ

0

(1−Kλ) dλ+

∫ 1

1−φ

(
1− φ
λ
−Kλ

)
dλ =

∫ 1−φ

0

π(θ∗)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
dλ , (H.2)

which we also give in the main text as (5.9). Solving this Laplace condition (H.2) yields the run

threshold (5.10).

We then perform comparative statics about the run threshold π(θ∗). With respect to φ, we have

∂π(θ∗)

∂φ
=

(2− 2φ−K)((φ− 1)(η(φ− 1) + 1)− lnφ)− 2(φ− 1) ln(1− φ)(−2φ+ (φ+ 1) lnφ+ 2)

2 ((1− φ)(1 + η(1− φ)) + φ lnφ)2
,

(H.3)

whose denominator is positive. Thus, (H.3) is positive if its numerator is positive. This holds when

g(θ) ≡ 2(φ− 1) (φ− lnφ+ ln(1− φ)((1 + φ) lnφ+ 2− 2φ)− 1)

1− φ+ lnφ
> K , (H.4)

where g(φ) is continuous and strictly decreasing in φ, and it satisfies limφ→0 g(φ) = 2 > 0. Thus, con-

ditions (H.3) and (H.4) hold when φ is sufficiently small for any given K ≤ 2, and then the equilibrium

run threshold π(θ∗) increases in φ.

With respect to K, we have

∂π(θ∗)

∂K
=

φ− 1

2 ((1− φ)(1 + η(1− φ)) + φ lnφ)
< 0 . (H.5)
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To see why (H.5) holds, notice that its numerator is negative. On the other hand, define its denominator

as

ζ(φ) ≡ 2 ((1− φ)(1 + η(1− φ)) + φ lnφ) .

It is straightforward to show that ζ(φ) strictly decreases in φ while limφ→1 ζ(φ) = 0 when η = 0. Thus,

the denominator of (H.5) is positive. This concludes the proof.

Proof of Proposition 3. Recall that the issuer’s objective function is

max
n

E[Π] = G(E[W ])︸ ︷︷ ︸
population of

participating investors

∫
π(θ)≥π(θ∗)

π(θ)(R(φ)− 1)dF (θ)︸ ︷︷ ︸
expected issuer revenue per

participating investor

,

as defined in (5.14). Because R(φ) > 1 and at the same time R(φ) does not affect G(E[W ]), the issuer

effectively considers the reduced problem below:

max
n

E[Π] = G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ)dF (θ) , (H.6)

We now consider the first-order condition (FOC) for the issuer’s problem (H.6) that determines the

optimal K, the slope of arbitrageurs’ demand. When G(·) is linear, the FOC is:

0 =
∂E[Π]

∂K
=
∂E[W ]

∂K

∫
π(θ)≥π(θ∗)

π(θ)dF (θ)︸ ︷︷ ︸
marginal cost from

reduced investor participation

−E[W ]
∂π(θ∗)

∂K
(f(θ∗)π(θ∗))︸ ︷︷ ︸

marginal benefit from
reduced run risk

, (H.7)

where according to (5.15),

∂E[W ]

∂K
= −2αδ2K︸ ︷︷ ︸

marginal utility cost from
decreasing price stability

+
∂π(θ∗)

∂K
(f(θ∗)(1− φ−K − π(θ∗)(1 + η)))︸ ︷︷ ︸

marginal utility benefit from
increasing financial stability

−
∫
π(θ)<π(θ∗)

dF (θ) .

(H.8)

This first-order condition reveals the various channels through which increasing K affects the sta-

blecoin issuer’s expected revenue. The first part of (H.7) captures the marginal effect of changing the

population of participating investors, which in turn depends on each investor’s expected utility from
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participating. The second part of (H.7) captures the marginal benefit that directly results from the

reduced run risk on issuer revenue (since the issuer captures the revenue only if a run is avoided). Fur-

thermore, (H.8) captures the marginal effects of increasing K on an investor’s expected utility: the first

term of (H.8) is the marginal cost that results from higher price fluctuations, while the second term is

the marginal benefit from the reduced run risk on investor utility. Notice that this last marginal benefit

then indirectly affects the issuer’s expected revenue. In equilibrium, the issuer cares about run risk both

directly and indirectly, which are captured by the second term of (H.7) and the second term of (H.8),

respectively.

Now, suppose condition (H.4) holds, that is, φ is sufficiently small. Under this condition, we know

from condition (H.3) in the proof of Proposition 2 that the equilibrium run threshold π(θ∗) increases

in φ, that is ∂π(θ∗)/∂φ > 0. We can now compute dK∗/dφ and sign the respective derivatives below.

Specifically, using the FOC (H.7) above:

∂FOCK(K,φ)

∂φ
=
∂2E[W ]

∂K∂φ︸ ︷︷ ︸
+

∫
π(θ)≥π(θ∗)

π(θ)dF (θ)︸ ︷︷ ︸
+

− π(θ∗)f(θ∗)︸ ︷︷ ︸
+

(
∂E[W ]

∂K

∂π(θ∗)

∂φ
+
∂E[W ]

∂φ

∂π(θ∗)

∂K

)
︸ ︷︷ ︸

−

− E[W ]π(θ∗)f(θ∗)︸ ︷︷ ︸
+

(
∂2π(θ∗)

∂K∂φ
π(θ∗) +

∂π(θ∗)

∂K

∂π(θ∗)

∂φ

)
︸ ︷︷ ︸

−

> 0 .

On the other hand, because K∗ is an interior solution, we have the second-order condition:

∂FOCK(K,φ)

∂K
< 0 .

Applying the implicit function theorem thus yields:

dK∗

dφ
= −

∂FOCK(K,φ)

∂φ
∂FOCK(K,φ)

∂K

> 0 ,
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which immediately implies that dn∗/dφ < 0. This concludes the proof.

Proof of Proposition 4. Following the proofs of Propositions 1 and 2, the run threshold when the

stablecoin issuer pays dividend τ can be re-derived as:

π(θ∗; τ) =
(1− φ)(2− 2φ− 2(1− φ) ln(1− φ)−K)

2 ((1 + τ + η(1− φ))(1− φ) + (1 + τ)φ lnφ)
, (H.9)

where ∂π(θ∗; τ)/∂K < 0 still holds.

It is obvious that π(θ∗; τ) is decreasing in τ , implying that the run risk decreases as the issuer pays

dividends with n and other model parameters fixed.

We next consider the issuer’s optimization problem with respect to n. With dividend τ , the issuer’s

objective function changes to

max
K

Eτ [Π] = G(Eτ [W ])︸ ︷︷ ︸
population of

participating investors

∫
π(θ)≥π(θ∗;τ)

π(θ)(R(φ)− 1− τ)dF (θ)︸ ︷︷ ︸
expected issuer revenue per

participating investor

,

where each investor’s expected utility of participation changes to

Eτ [W ] = −αδ2K2︸ ︷︷ ︸
short-term convenience

+ (1− φ−K)

∫
π(θ)<π(θ∗;τ)

dF (θ)︸ ︷︷ ︸
short-term payoff if runs

+

∫
π(θ)≥π(θ∗;τ)

π (θ) (1 + η + τ) dF (θ)︸ ︷︷ ︸
long-term payoff if no runs

,

in which π(θ∗; τ) is given by (5.10) in Proposition 2.

Similarly, we consider the FOC with respect to K:

0 =
∂Eτ [Π]

∂K
=
∂Eτ [W ]

∂K

∫
π(θ)≥π(θ∗;τ)

π(θ)(R− 1− τ)dF (θ)︸ ︷︷ ︸
marginal cost from

reduced investor participation

−Eτ [W ]
∂π(θ∗; τ)

∂K
(f(θ∗)π(θ∗; τ)(R− 1− τ))︸ ︷︷ ︸

marginal benefit from
reduced run risk

, (H.10)
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where

∂Eτ [W ]

∂K
= −2αδ2K︸ ︷︷ ︸

marginal utility cost from
decreasing price stability

+
∂π(θ∗; τ)

∂K
(f(θ∗)(1− φ−K − π(θ∗; τ)(1 + η + τ)))︸ ︷︷ ︸

marginal utility benefit from
increasing financial stability

−
∫
π(θ)<π(θ∗;τ)

dF (θ) .

We first use (H.9) to calculate that

∂2π(θ∗; τ)

∂K∂τ
=

(1− φ)(1− φ+ φ lnφ)

2 ((1− φ)(1 + τ + η(1− φ)) + (1 + τ)φ lnφ)2
> 0 ,

and also

∂ [(π(θ∗; τ)(1 + η + τ))]

∂τ
=
η(1− φ)φ(1− φ+ lnφ)(K + 2φ+ 2(1− φ) ln(1− φ)− 2)

2 ((1− φ)(1 + τ + η(1− φ)) + (1 + τ)φ lnφ)2

> 0 ,

when (H.4) holds. Thus, for τ > 0 we have

∂π(θ∗; τ)

∂K

∣∣∣∣
K=K∗

(f(θ∗)(1− φ−K∗ − π(θ∗; τ)(1 + η + τ)))

<
∂π(θ∗)

∂K

∣∣∣∣
K=K∗

(f(θ∗)(1− φ−K∗ − π(θ∗)(1 + η))) . (H.11)

On the other hand, similar calculation yields:

Eτ [W ]|K=K∗
∂π(θ∗; τ)

∂K

∣∣∣∣
K=K∗

π(θ∗; τ) < E[W ]|K=K∗
∂π(θ∗)

∂K

∣∣∣∣
K=K∗

π(θ∗) . (H.12)

Because R − 1 − τ < R − 1, conditions (H.11) and (H.12) thus jointly imply that the new FOC

(H.10) also evaluated at K∗ is smaller than the old FOC (H.7) evaluated at K∗, which is zero. This

immediately implies that K∗τ < K∗, and hence n∗τ > n∗. This concludes the proof.

Proof of Proposition 5. Note that, without other market participants taking any action at t = 0,

this joint optimization problem is equivalent to a sequential decision problem in which the issuer first
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decides the optimal level of liquidity transformation φ, and then decides the optimal arbitrage concen-

tration n as analyzed in the baseline model.

In the extended joint optimization problem, the issuer’s objective can be written as, from (5.14):

max
n

E[Π] = G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ) (R(φ)− 1− τ) dF (θ) .

Factoring, and ignoring τ , we have:

max
φ

max
n

(R(φ)− 1)G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ)dF (θ)

= max
φ

[
(R(φ)− 1) max

n

[
G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ)

]]
.

Define the function:

F (φ, n) ≡ G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ) .

Note that there is no dependence on R (φ). Also define:

Q (φ) ≡ R (φ− 1) .

The objective function is then:

max
φ

[
(R(φ)− 1) max

n

[
G (EW (φ, n))

∫
π(θ)≥π(θ∗(n,φ))

π(θ)dF (θ)

]]

= max
φ

[
Q (φ) max

n
F (φ, n)

]
,

which can be restated by taking logs of the objective function:

arg max
φ

[
log (Q (φ)) + log max

n
F (φ, n)

]
.

By contradiction suppose that φ∗1 < φ∗2. The optimality for issuer 2 implies:

log (Q2 (φ∗2)) + log max
n

F (φ∗2, n) ≥ log (Q2 (φ∗1)) + log max
n

F (φ∗1, n) ,
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and

log (Q2 (φ∗2))− log (Q2 (φ∗1)) ≥ log max
n

F (φ∗1, n)− log max
n

F (φ∗2, n) .

But (F.1) implies:

log (Q1 (φ∗2))−log (Q1 (φ∗1)) ≥ log (Q2 (φ∗2))−log (Q2 (φ∗1)) ≥ log max
n

F (φ∗1, n)−log max
n

F (φ∗2, n) ,

which further implies that:

log (Q1 (φ∗2))− log max
n

F (φ∗2, n) ≥ log (Q1 (φ∗1))− log max
n

F (φ∗1, n) ,

contradicting the optimality of issuer φ∗1. This concludes the proof.

Proof of Proposition 6. Under the redemption fee, the stablecoin’s secondary-market price at t = 2 is

given by

p2(λ; ν) =

1− ν −Kλ λ ≤ 1−φ
1−ν ,

1− φ
λ
−Kλ λ > 1−φ

1−ν ,
(H.13)

and an investor’s value at t = 3 thus becomes:

v3(λ; ν) =


π(θ)

(
1− φ− λ(1− ν)

(1− φ)(1− λ)
+ η

)
λ ≤ 1−φ

1−ν ,

0 λ > 1−φ
1−ν .

(H.14)

Note that, beyond a lower stablecoin price at t = 2 due to the redemption fee and a higher remaining

value at t = 3, the solvency threshold for the stablecoin also changes from λ = 1 − φ in the baseline

model to λ = 1−φ
1−ν > 1 − φ because the stablecoin can use the collected redemption fees to meet

redemption needs, thus becomes more resilient to redemption shocks.

Following the proofs of Propositions 1 and 2, (H.13) and (H.14) imply that the investor’s indiffer-

ence condition at t = 2 is now given by:

∫ 1−φ
1−ν

0

(1− ν −Kλ) dλ+

∫ 1

1−φ
1−ν

(
1− φ
λ
−Kλ

)
dλ =

∫ 1−φ
1−ν

0

π(θ∗)

(
1− φ− λ(1− ν)

(1− φ)(1− λ)
+ η

)
dλ .

(H.15)
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Solving (H.15) then yields:

π(θ∗; ν) =
(1− ν)(1− φ)

(
2− 2φ− 2(1− φ) ln

(
1−φ
1−ν

)
−K

)
2(1− ν + η(1− φ))(1− φ) + 2(1− ν)(φ− ν) ln

(
φ−ν
1−ν

) , (H.16)

which is decreasing in ν. This concludes the proof.
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I Additional Empirical Results

Table A.3: Primary Market Monthly Redemption and Creation Activity (Tron)

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Tron blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 5 2 4 6
RD Top 1 Share 72 53 68 94
RD Top 5 Share 100 100 100 100
RD Vol (mil) 4625 651 3575 7515
CR AP Num 11 2 12 14
CR Top 1 Share 65 46 54 96
CR Top 5 Share 98 96 99 100
CR Vol (mil) 4991 628 3515 7475

(b) USDC

mean p25 p50 p75
RD AP Num 446 11 317 391
RD Top 1 Share 58 33 51 81
RD Top 5 Share 84 78 85 100
RD Vol (mil) 41 3 24 70
CR AP Num 442 8 493 655
CR Top 1 Share 77 56 92 98
CR Top 5 Share 94 97 99 100
CR Vol (mil) 259 11 70 153

(c) TUSD

mean p25 p50 p75
RD AP Num 4 2 3 7
RD Top 1 Share 87 69 95 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 61 0 21 32
CR AP Num 3 1 2 3
CR Top 1 Share 95 98 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 85 0 24 80
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Table A.4: Primary Market Monthly Redemption and Creation Activity (Avalanche)

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Avalanche blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 50 1 10 120
CR AP Num 1 1 1 2
CR Top 1 Share 88 93 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 84 1 45 140

(b) USDC

mean p25 p50 p75
RD AP Num 34 18 32 47
RD Top 1 Share 49 31 42 60
RD Top 5 Share 94 87 96 99
RD Vol (mil) 111 3 16 219
CR AP Num 44 34 44 60
CR Top 1 Share 54 43 49 64
CR Top 5 Share 89 83 86 96
CR Vol (mil) 287 20 267 524

(c) BUSD

mean p25 p50 p75
RD AP Num 22 10 18 30
RD Top 1 Share 37 30 40 42
RD Top 5 Share 83 73 82 94
RD Vol (mil) 0 0 0 0
CR AP Num 33 11 18 43
CR Top 1 Share 41 34 38 50
CR Top 5 Share 87 82 94 98
CR Vol (mil) 0 0 0 0

(d) TUSD

mean p25 p50 p75
RD AP Num 66 49 74 85
RD Top 1 Share 50 36 46 64
RD Top 5 Share 86 79 91 94
RD Vol (mil) 154 31 85 260
CR AP Num 92 53 106 130
CR Top 1 Share 50 33 46 65
CR Top 5 Share 87 83 87 92
CR Vol (mil) 164 30 77 259
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J Additional Calibration Details and Results

The CDS spread sc on an asset class c ∈ {1 . . . C} can be thought of as the probability of default under

a recovery rate of 0. Since we assume 0 recovery rates in our model, for a single asset, sc maps exactly

to p in our model. Now, suppose the issuer holds a fraction qc of her portfolio in asset class c. If each

asset pays off 1 with probability sc and 0 with probability (1− sc), the portfolio as a whole has an

expected recovery value:
C∑
c=1

scqc

We add an adjustment factor to account for the fact that stablecoin issuers tend to be overcollateralized.

If the issuer holds 1+ξ in assets times the total number of stablecoin issued, then the expected recovery

value of assets, for each unit of stablecoin issued, is:

p = (1 + ξ)
C∑
c=1

(1− sc) qc (J.1)

Since p in the model is equal to the expected recovery value of assets per unit stablecoin issued, we will

use (J.1) on each date we observe CDS spreads as one realization of p. We can think of (J.1) as the price

of a composite security, which averages across CDS spreads of different components of a stablecoin

issuer’s portfolio, and accounts for the fact that issuers are slightly overcollateralized. With any set

of CDS spreads on a given day, we can calculate a value of p using (J.1). By plugging CDS spreads

from different dates into (J.1), we can calculate a distribution of signals p. Note that, when we plug

CDS spreads into (J.1), we use spreads from a single day; hence, this method accounts for correlations

between CDS prices of different asset classes.

We implement (J.1). We choose the historical CDS series from Markit that is liquid and that best

fits each reported asset category. For deposits, we assign the average CDS of unsecured debt at the top 6

US banks to capture the riskiness of the banking sector.32 We note that despite stablecoin issuers’ claim

that deposits are riskless in FDIC-insured institutions, they are not riskless or fully insured because

deposit accounts exceeding 250K are not covered by deposit insurance, as evident from the recent

Silicon Valley Bank episode. For Treasuries, we assign the CDS spreads on 3-year US treasuries.

For money market instruments, we use CDX spreads on 1-year investment-grade corporate debt. For

32These include Bank of America, Wells Fargo, JP Morgan Chase, Citigroup, Goldman Sachs, and Morgan Stanley.
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USDC’s corporate bonds, we assign the 10-year investment-grade corporate CDX because they are

stated to be of at least a BBB+ rating. For USDT’s corporate bonds, we assign the average 10-year

corporate CDX. The remaining categories, “foreign” and “other”, do not have a clear mapping to the

existing CDS series. For USDT, for example, assets in the “other” category include cryptocurrency,

which could potentially be very risky. In our baseline results, we use the emerging market CDX spread

as a proxy. We use the 10-year high-yield CDX spread as a robustness check. Our sample period is

from 2008 to 2022.

Using the daily portfolio-level CDS spreads as observations, we fit a beta distribution for each

coin-month by choosing the two beta distribution parameters to match the mean and variance of the

empirical distribution of signals p. We then use this beta distribution as the distribution of p (θ) in the

model. Appendix Table A.5 shows the parameters of the beta distributions we estimate.
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Table A.5: Distribution of p (θ)

This table shows the fitted beta distributions for p (θ), for each stablecoin and month in our data. α and
β are respectively the two beta distribution parameters. Mean p (θ) and SD p (θ) are the mean and SD
of the estimated beta distributions for p (θ).

Coin Month α β Mean p(θ) SD p(θ)

USDT 2021m6 156.24 1.16 0.9926 0.0068
USDT 2021m9 170.15 1.33 0.9922 0.0067
USDT 2021m12 211.54 1.60 0.9925 0.0059
USDT 2022m3 213.25 1.42 0.9934 0.0055
USDC 2021m5 127.59 0.57 0.9955 0.0059
USDC 2021m6 137.00 0.57 0.9959 0.0054
USDC 2021m7 138.22 0.58 0.9958 0.0055
USDC 2021m8 122.20 0.83 0.9933 0.0073
USDC 2021m9 121.81 0.89 0.9928 0.0076
USDC 2021m10 121.81 0.89 0.9928 0.0076
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Table A.6: Secondary Market Price Deviation versus Redemptions/Creations

This table shows the results from regressing daily secondary market price deviations against the daily
volume of redemptions/creations for USDT and USDC. For redemptions, price deviation is one minus
the lowest hourly secondary market price on that day. For creations, price deviation is the highest
hourly secondary market price on that day minus one. The daily volumes of redemptions and creations
are expressed as a proportion of the total outstanding volume of each stablecoin. We include a year
fixed effect to account for structural shifts over time.

USDT USDC

(1) (2)
Redemption/Creation 0.21∗∗∗ 0.16∗∗∗

(0.06) (0.02)
Year FE Yes Yes
Observations 1225 1792
Adjusted R2 0.01 0.05
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Figure A.6: Effect of Dividend Payments (Full Sample Period)

This figure shows the predicted effect of dividend payments to investors on the issuer’s choice of K,
the cost of price variance Kαδ2, and run probability, for all periods in our sample.

(a) Elasticity K

(b) Price Variance Cost

(c) Run Probability
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Figure A.7: Effect of Redemption Fees (Full Sample Period)

This figure shows the predicted effect of redemption fees ν on run probabilities. Throughout the exer-
cise, we hold K equal to the model-predicted optimal value of K, in the absence of redemption fees,
for all periods in our sample.
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