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Abstract

This paper studies manipulation in derivative contract markets. When traders
hedge factor risk using derivative contracts, traders can manipulate settlement prices
by trading the underlying spot goods. In equilibrium, manipulation can make all
agents worse off. The model illustrates how contract market manipulation can be
defined in a manner distinct from other forms of strategic trading behavior, and how
the structure of contract and spot markets affect the size of manipulation-induced
market distortions.
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1 Introduction

This paper studies manipulation in derivative contract markets. If a market participant
wants to buy or sell exposure to some risk factor, such as US equities, interest rates,
volatility, or energy, the simplest way to do so is often to use a derivative contract. Some
examples of derivatives are S&P 500 futures, LIBOR and SOFR derivatives, VIX futures
and options, and derivatives for commodities such as corn and wheat, base and precious
metals, oil, gas and electricity. Derivatives make up some of the world’s largest markets:
the total notional size of the interest rate derivatives market alone is over $100 trillion
USD.

Derivative contracts are linked to underlying spot markets, either through physical
delivery or cash settlement. A cash-settled derivative is simply a contract whose payoff is
determined based on some price benchmark, which is constructed based on the trade
price of some spot good. If the spot price benchmark accurately reflects some risk factor,
contracts settled using the benchmark can be used to trade exposure to this risk factor.
For example, a long position in the ICE Houston Ship Channel gas basis futures contract,
at settlement, pays its holder some multiple of a gas price index, which is calculated
based on prices of physical gas traded in Houston. If contract settlement prices are
representative of local gas prices, the futures contract can be used to trade exposure to
gas price risk.

If a trader holds positions in both contract and spot markets, she may have incentives
to distort spot markets in order to increase contract payoffs. For example, if a trader is
long the Houston Ship Channel futures contract, she can increase her contract payoffs
by buying physical gas at Houston to raise the contract settlement price. If the trader’s
futures position is large, her increased futures profits may outweigh any losses incurred
by buying physical gas at elevated prices. If many traders bid this way, however, their
bids would add noise to the settlement price, creating nonfundamental risk for all agents
holding these futures contracts.

Regulators generally consider trading in this manner to constitute illegal manipulation,
and regulators have imposed billions of dollars of fines on market participants for
manipulation in the past two decades alone. However, contract market manipulation is
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vaguely defined legally, and poorly understood from the perspective of economic theory.
We do not have a precise economic definition of manipulation in contract markets, which
differentiates it from other forms of strategic trading behavior. We do not know how
manipulation affects the welfare of different classes of market participants, what makes
contract markets vulnerable to manipulation, or how to empirically measure contract
market manipulation risk.

This paper builds a simple model of contract market manipulation. Within the
model, manipulation can be precisely defined, in a way that distinguishes it from other
forms of strategic trading behavior. Manipulation can be Pareto-disimproving, harming
both hedgers and spot market participants, and policy interventions such as contract
position limits can be Pareto-improving. The size of manipulation-induced market
distortions depend on the aggregate storage capacity in spot markets, the level of spot
market competition, and the size of spot traders’ contract positions. The magnitude
of manipulation-induced distortions can be estimated using data which is commonly
observed by contract market regulators.

In the model, I assume that a number of risk-averse agents have exogenous exposures
to a common risk factor. Agents cannot contract on the risk factor directly, but can trade
derivative contracts which are tied to the auction price of a spot good. A finite number of
spot traders can trade the spot good in an auction, and their marginal value for the good
is equal to the risk factor. If spot traders behaved competitively, the spot market would
clear with no trade, the spot auction price would be exactly equal to risk factor, and all
agents could perfectly share factor risk using derivative contracts.

In strategic equilibrium, however, first-best risk sharing is not attainable. Since spot
traders have price impact in the spot market, they have incentives to trade spot goods in
a way that increases their derivative contract payoffs. For example, a trader who holds a
long contract position has incentives to buy the spot good, to push the spot auction price
upwards to increase her contract payoffs. Within the model, I define this form of strategic
trading as contract market manipulation.

Manipulation causes auction prices to become noisy signals of the risk factor, creating
non-fundamental basis risk for all contract holders. Market structure in the spot market
determines how vulnerable the contract market is to manipulation. Manipulation-induced
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distortions are larger when the total storage capacity in spot markets is smaller. Holding
fixed aggregate storage capacity, distortions are smaller when spot markets are more
competitive; thus, competition policy in spot markets can alleviate manipulation risk,
even if it does not affect total storage capacity. Distortions also depend on the size of
spot traders’ contract positions, so regulatory limits on the size of spot traders’ contract
positions can decrease manipulation risk.

The possibility of manipulation affects spot traders’ contract purchasing decisions.
Traders tend to buy less contracts because of manipulation-induced basis risk, but tend
to buy more because they anticipate making profits from manipulating spot markets. In
equilibrium, spot traders may even over-hedge, purchasing larger derivative positions
than their total exposures to the risk factor.

There are two main effects of manipulation on spot traders’ welfare. Spot traders
receive positive transfers in expectation, because they can move settlement prices in favor
of their contract positions on average, but they also face increased risk due to settlement
price variance created by other spot traders. The negative effects can be strong enough
that spot traders, as a group, are worse off in equilibrium, relative to a world in which
all agents behaved competitively. In some settings, a regulator could increase all market
participants’ welfare by limiting the size of spot traders’ contract positions.

The conclusions of the model hold under a number of generalizations: spot traders
can have asymmetric holding costs for the spot good, receive arbitrarily distributed
inventory shocks for spot goods, and have arbitrarily distributed derivative contract
positions. In the general model, manipulation-induced basis risk can be expressed in
terms of the slopes of agents’ auction bid curves, and the variances and covariances of
spot traders’ inventory shocks and contract positions. Thus, using the model, basis risk
can be estimated using market data which is often observed by regulators. Finally, while
the baseline model focuses on cash-settled contracts for expositional simplicity, I show
that the analysis applies identically for contracts settled through physical delivery.

Implications for contract market regulators. Regulators currently do not have a
precise economic definition of contract market manipulation. In legal proceedings,
manipulation is essentially defined as trading with the intent to create artificial prices.
Regulators bring cases against market participants based on evidence, often taken from
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emails and phone calls, that a trader intentionally created price impact for profit. But
traders know that their trades move prices; the role that they play in markets is precisely
to manage and optimize the price impact of their trades. Defining manipulation as
intentional price impact is overly broad: it could in principle cover almost all forms
of strategic trading, creating substantial regulatory uncertainty for market participants.
But regulators do not currently have a definition which distinguishes contract market
manipulation in particular from other legal forms of strategic trading in financial markets.

This paper’s framework suggests a way to define contract market manipulation, in a
way which distinguishes it from other forms of strategic trading. In the paper’s model,
price impact has three distinct effects on traders’ behavior. First, traders have incentives
to provide less liquidity than they would in a competitive market: the slopes of traders’
bid curves with respect to prices are lower than they would be in the absence of price
impact. Second, traders have incentives to “shade bids”, trading less than one spot good
for each unit of their inventory shocks. Both of these effects are present in any imperfectly
competitive financial market. The third effect, which is unique to contract markets, is that
traders who are active in both the contract and spot markets have incentives to trade spot
goods in a way that increases payoffs on their contract positions. I propose to define this
third effect as illegal contract market manipulation.

Conceptually, there is a simple policy which eliminates traders’ incentives to manip-
ulate contract markets, without affecting their incentives for other forms of strategic
trading: regulators could disallow spot market participants from holding derivative
contracts. Spot traders would then have incentives to reduce liquidity provision and
shade bids, but no incentive to manipulate, since they would have no contract positions
whose payoffs they can influence. In most settings, banning spot traders from holding
derivative positions is likely impractical. However, this hypothetical policy may serve as
a useful conceptual benchmark for arguing whether a given pattern of trading behavior
is manipulative: regulators could ask whether a given trader’s behavior in spot markets
could be economically justified as profit-maximizing, if the trader did not hold contract
positions. The model also shows that manipulating agents may have incentives to over-
hedge, buying more contracts than necessary to hedge factor risk, in order to increase
profits from manipulation. This suggests that the buildup of very large contract positions,
beyond what appears necessary for hedging factor risks, is suggestive of manipulative
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intent.

The paper’s results also illustrate how regulators can limit manipulation risk by
regulating the structure of contract and spot markets. Contract position limits imposed
on spot traders can lower manipulation risk, by lowering spot traders’ incentives to
manipulate. Manipulation-induced distortions will tend to be smaller in spot markets
which are more competitive, and in markets with larger aggregate storage capacity for
spot goods. In the model of the paper, regulators can quantitatively estimate manipulation-
induced basis risk using data which is observed in many markets. These measures could
be used by regulators to determine how large contract position limits should be, and
whether to approve newly proposed derivative contracts.

Related literature. To my knowledge, this is the first paper to analyze the welfare
effects of contract market manipulation, microfounding behavior in both the contract and
spot markets. Other theoretical papers studying price manipulation include Goldstein
and Guembel (2008), Bond, Goldstein and Prescott (2010), and Bond and Goldstein (2015).
These papers study settings in which prices are used as inputs for other decisions, gener-
ating incentives for market participants to manipulate prices to distort these decisions.
Other theoretical papers on price manipulation include Garbade and Silber (1983), Kyle
(1983), Paul (1984), Cita and Lien (1992), Pirrong (2001), Lien and Tse (2006), Allen, Litov
and Mei (2006), Kyle (2007), and Guo and Prete (2019).

Two earlier papers study contract market manipulation with cash-settled futures
contracts. Kumar and Seppi (1992) analyze the equilibrium of a Kyle (1985) common-
valued competitive market-maker model with agents holding futures contracts linked to
spot prices of an asset. Dutt and Harris (2005) discuss how to set futures position limits
for agents to prevent manipulation from dominating prices. Relative to this literature,
this paper endogenizes traders’ derivative contract positions, allowing us to analyze the
welfare effects of manipulation, and also allows for rich heterogeneity between traders,
so the model can realistically be fitted to data.

A number of other papers analyze market and benchmark manipulation empirically.
For example, Abrantes-Metz et al. (2012), Gandhi et al. (2015), Bonaldi (2018) analyze
LIBOR manipulation, Griffin and Shams (2018) analyze VIX manipulation, Evans et al.
(2018) study FX manipulation, Birge et al. (2018) study manipulation in electricity markets,
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Comerton-Forde and Putnin, š (2011) and Comerton-Forde and Putnin, š (2014) study stock
price manipulation, and Nozari, Pascutti and Tookes (2019) study the related phenomenon
of profitable price impact in convertible bond markets. There is also a large regulatory
and legal literature on contract market manipulation, which I discuss briefly in subsection
2.2.

Technically, the spot market auction model of this paper builds on the literature on
linear-quadratic double auctions; some papers in this literature are Kyle (1989), Vayanos
(1999), Vives (2011), Rostek and Weretka (2015), Du and Zhu (2017), Duffie and Zhu
(2017), and Lee and Kyle (2018). Some recent papers analyze the question of optimal
benchmark design, such as Duffie, Dworczak and Zhu (2017), Duffie and Dworczak (2018),
Eisl, Jankowitsch and Subrahmanyam (2017), Coulter, Shapiro and Zimmerman (2018)
and Baldauf, Frei and Mollner (2018). While related, this paper’s focus is to quantify
manipulation risk, rather than to solve for optimal mechanisms for benchmark setting.

Outline. The remainder of the paper proceeds as follows. Section 2 discusses some
institutional details of contract market manipulation. Section 3 introduces the baseline
model, and section 4 derives the main theoretical results. Section 5 studies various
extensions of the model, and shows how to measure manipulation-induced market dis-
tortions. Section 6 discusses implications of my findings, and section 7 concludes. Proofs,
derivations, and other supplementary material are presented in the online appendix.

2 Institutional background

2.1 Derivative contracts, liquidity mismatch, and manipulation

Derivative contracts are often used by traders to hedge price risks associated with
underlying spot goods. Hedging using derivatives is usually preferred to holding spot
goods directly, because derivatives are often highly leveraged, and do not have the
physical costs associated with transporting and storing spot goods. Derivatives may be
cash-settled, in which case they pay their holders based on some price benchmark, or
settled by physical delivery, meaning that their holder is entitled to some number of units
of the underlying asset.
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There is often a liquidity mismatch between contract markets and spot markets: contract
markets are often much larger than underlying spot markets. For example, the Platts
Inside FERC Houston Ship Channel benchmark for natural gas prices is based on around
1.4 million MMBtus of natural gas trades per week;1 open interest in the ICE HSC basis
future, which is financially settled based on the Platts benchmark, is more than 75 million
MMBtus for many delivery months.2 The Secured Overnight Financing Rate (SOFR),
designed to replace USD LIBOR as an interest rate benchmark, is based on average daily
volumes of approximately $1 trillion in overnight treasury-backed repo loans;3 as of 2014,
the total notional volume of contracts linked to USD LIBOR was estimated to be greater
than $160 trillion.4

There are two main explanations for this liquidity mismatch. The first is speculation:
some market participants may wish to trade exposure to price risk simply to express
views on the direction of future prices. Derivatives have lower logistical and capital costs
to trade than spot goods, so speculators will tend to prefer trading using derivatives. The
second is cross-hedging: if prices of a group of spot goods are very correlated, derivative
activity often concentrates in one or a few contracts for liquidity reasons. For example, a
gas company located in Texas may choose to hedge risks using Henry Hub, Louisiana
gas futures contracts, even if Texas gas futures are available, if the Louisiana contract is
more liquid.

As a result of this liquidity mismatch, if a spot market participant holds a large
derivative position, she may have incentives to trade spot assets non-fundamentally, in a
way that increases the payoffs on her contract position. For example, if a gas trader holds
a large position in ICE Houston Ship Channel (HSC) basis futures, she can increase her
futures payoff by buying spot gas at HSC to increase the benchmark price. The trader
may incur losses on her spot market trades, but could generate much larger profits on
her futures position.

1See “Liquidity in Noth American Monthly Gas Markets” on the Platts website.
2ICE Report Center, End of Day reports for HSC basis futures, as of October 24th, 2018. Open interest is

above 30,000 contracts for many delivery months, and the contract multiplier is 2,500 MMBtus.
3NY Fed’s Secured Overnight Financing Rate Data.
4Financial Stability Board (2018).
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2.2 Legal background

In the US, manipulation and attempted manipulation of contract markets are illegal
under the Commodity Exchange Act of 1936. Regulators have policed contract market
manipulation aggressively in the last few decades. UBS was fined $15 million by the
CFTC in 2018 for attempting to manipulate gold futures contracts. The CFTC and the
FERC have fined traders millions of dollars for manipulating oil, gas, electricity, precious
metals, and propane derivatives.5 Fines for financial derivative manipulation are orders
of magnitude larger: banks have been fined over $10 billion for FX manipulation,6 over
$8 billion USD for manipulation of LIBOR and other interest rate benchmarks,7 and over
$500 million for manipulation of the ISDAFIX interest rate swap benchmark.8

Manipulation law and policy is a contentious topic. The Commodity Exchange Act
outlaws manipulation, but does not define it. The CFTC’s operational definition of
manipulation essentially states that trades made with the intent to create artificial prices are
manipulative.9 This definition is still vague, and there has been substantial disagreement
in both the economic and legal literatures, both on what can reasonably be defined as
manipulation under current law, and on how manipulation should be regulated from a
social planner’s perspective.

In recent times, the legal literature has largely moved away from the “artificial price”
notion, focusing instead on “intent” as the standard of proof for manipulation. Perdue
(1987) argues that manipulation should be defined as conduct which “would be uneco-
nomical or irrational, absent an effect on market price.” Fischel and Ross (1991), similarly,
argue that manipulation can only reasonably be defined based on the intent of the trader.

Regulatory authorities have also largely relied on proof of intent as the primary basis
for prosecuting manipulators. Charges are brought based on “smoking gun” evidence
that trades were made with the intention of moving benchmark prices. Levine (2014)
quotes a number of trader chat messages used in FX manipulation lawsuits. Other

5See, for example, CFTC Press Release 6041-11, 128 FERC 61,269, CFTC Press Release 4555-01, CFTC
Press Release 7683-18, and CFTC Press Release 5405-07.

6Levine (2015)
7Ridley and Freifeld (2015)
8Leising (2017)
917 CFR Part 180
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examples include the CFTC’s lawsuits brought against Parnon Energy, Inc. and others
for crude oil manipulation, Energy Transfer Partners, L.P. and others for natural gas
manipulation, and Barclays for ISDAFIX manipulation.10

Thus, the legal literature and regulatory authorities have largely taken the stance that,
under some circumstances, intentional and acknowledged price impact constitutes illegal
manipulation. The precise circumstances under which intentional price impact constitutes
illegal manipulation, and how manipulation should be distinguished from other forms of
strategic trading in financial markets, are unclear. The need to prove intent also imposes a
high bar of proof on regulators, as it is difficult to prosecute manipulators in settings where
regulators cannot easily access traders’ communication records. Legally sophisticated
market participants could in principle avoid being implicated in manipulation lawsuits,
simply by taking care not to acknowledge the price impact of their trades in recorded
media.

There is also some disagreement in the legal and economic literatures as to whether
manipulation should be regulated at all. Hieronymus (1977, pg. 328) argues that contract
market manipulation will not survive under market competition. Fischel and Ross
(1991) argue that “actual trades should not be prohibited as manipulative regardless of
the intent of the trader”, and that market competition is likely to deter manipulation.
Markham (1991) similarly proposes to abandon the concept of manipulation, and to
instead empower the CFTC to take a broader set of actions to maintain fair and orderly
markets.11

3 Model

I assume that agents have exogenous exposures to a common risk factor, and can trade
cash-settled derivative contracts to share factor risk. The model has two core frictions.
First, agents cannot contract on the risk factor directly: they must instead contract on the
auction price of a spot good, whose price is informative about the risk factor. Second,
the spot market is imperfectly competitive, so spot good trades move prices. Together,

10See the CFTC’s website for Parnon Energy, Inc., Energy Transfer Partners, L.P., and Barclays.
11A few overviews of market manipulation are Putnin, š (2012), Markham (2014), and Putnin, š (2020).
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these two frictions imply that spot traders who buy contracts to hedge factor risk have
incentives to trade strategically in spot markets, to influence the payoffs on their contract
positions. Spot traders’ strategic trading creates nonfundamental variance in contract
settlement prices, and prevents agents from perfectly sharing factor risk.

There are three kinds of agents. There is a representative pure hedger, who buys
derivative contracts, but cannot trade the spot good. There are also n > 2 identical spot
traders, who can trade both derivative contracts and spot goods. I assume that spot
traders are negligibly small relative to the hedger. The hedger and the spot traders are
risk-averse with CARA utility over wealth, with identical risk aversions: agent i’s utility
if she attains wealth W is:

Ui (W) = −e−αW (1)

There is a risk-neutral competitive market maker, who trades derivative contracts, but
cannot trade the spot good. The market maker submits a demand schedule, mapping
net order quantities, from both the hedger and spot traders, to prices. The market maker
cannot distinguish between the hedger’s order and spot traders’ orders. I will show that,
in equilibrium, the market maker will set a constant price for derivatives contracts; let pc
denote the equilibrium contract price.

Agents play a 5-stage game.

1. The hedger and spot traders draw their factor risk exposures, respectively, xH and
x1 . . . xn.

2. The hedger and spot traders submit market orders, respectively cH (xH) and ci (xi),
to trade derivative contracts with the market maker.

3. The risk factor, ψ, is realized.

4. Spot traders bid to trade the spot good in an auction.

5. Derivative contracts pay all contract holders based on the spot auction price.

In stage 1, the hedger is endowed with xH units of a productive asset, and each spot
trader i is endowed with xi units of the productive asset, where:

xH ∼ N
(

0,σ2
H

)
, xi ∼ N

(
0,σ2

x

)
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A position xi in the productive asset pays its holder xiψ net units of wealth. Thus, the
value of each unit of the productive asset depends on a normally distributed risk factor ψ,
where:

ψ ∼ N
(
µψ,σ2

ψ

)
Hence, I refer to xi as agent i’s factor exposure. The risk factor ψmay represent, for example,
future oil prices, volatility, stock prices, or interest rates; agents may be positively or
negatively exposed to each of these sources of risk. I assume that factor exposures
are privately observed. I assume the sizes of spot traders’ factor risk exposures xi are
comparable with each other, but spot traders’ positions are collectively infinitesimal,
compared to the hedger’s position xH. For analytical convenience, I normalize wealth
by assuming that an agent (spot trader or hedger) who has factor exposure xi is also
endowed with −xiµψ units of wealth, so that the expectation of all agents’ wealth is 0
regardless of xi.

In stage 2, agents can trade derivative contracts to hedge their factor exposures. In
the baseline model, I assume contracts are cash-settled. This is purely for expositional
simplicity: in subsection 5.4, I show that all outcomes are identical if contracts are instead
settled by physical delivery of the spot good. I use ci to denote the contract position of
agent i, and I assume that agents’ contract positions are private information. I assume it
is costless to hold derivative contracts. Derivative contracts are useful because agents can
purchase them prior to the realization of ψ, so contracts allow agents to hedge factor risk
exposures.

In stage 3, the risk factor ψ is drawn and commonly observed by agents. In stage
4, spot traders bid to trade the spot good in a uniform-price double auction. In stage
5, the spot auction clearing price p is used to settle agents’ derivative contracts: that is,
each agent is paid cip. In the spot market, the n spot traders trade a single homogeneous
spot good. A spot trader who purchases zi net units of the spot good attains a monetary
payoff:

ψzi −
1

2κ
z2
i (2)

The ψzi component of (2) implies that the marginal value of spot traders for the spot
good depends on the risk factor, ψ. The quadratic component, 1

2κz
2
i , implies that spot

traders have decreasing marginal values for the spot good; this can be thought of as a
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storage or holding cost for the spot good. For physical goods such as oil or gas, the
quadratic term might represent physical storage and infrastructure costs; for financial
assets such as FX, interest rate swaps, or repo, these costs may correspond to capital or
balance sheet costs. Alternatively, these costs may arise from anticipated price impact
from liquidating spot positions in the future. The parameter κ can be thought of as a
measure of agents’ storage capacity for the asset, or the inverse of agents’ holding costs.
When κ is larger, spot traders are more willing to take on large spot good positions, and
in equilibrium the price impact of spot trades will be smaller.

Combining all terms, a spot trader’s total wealth, considering her factor exposures
and outcomes in the contract and spot markets, is:

Wspot (xi, ci, zi,p,ψ) = ψxi − µψxi︸ ︷︷ ︸
Factor exposure

− pcci︸︷︷︸
Contract price

+ pci︸︷︷︸
Contract payoff

+

ziψ−
1

2κ
z2
i︸ ︷︷ ︸

Spot good payoff

− pzi︸︷︷︸
Spot good price

(3)

The pure hedger’s total wealth is:

Whedger (xH, cH,p,ψ) = ψxH − µψxH︸ ︷︷ ︸
Factor exposure

− pccH︸ ︷︷ ︸
Contract price

+ pcH︸︷︷︸
Contract payoff

(4)

3.1 Benchmarks

To illustrate how the two frictions, noncontractibility and imperfect competition, prevent
agents from perfectly sharing risk, we analyze two benchmark cases in which the first-best
outcome is attainable: when agents can directly contract on ψ, and when contracts settle
to spot market prices, but spot market participants bid competitively.

Contracting directly on ψ. Agents could perfectly share risk if they could purchase
contracts tied directly to the risk factor – that is, contracts which pay ψ per contract in
stage 5. In the first period, the market maker would set the price of these contracts equal
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to their expected payoff:
pc = E [ψ] = µψ

The market maker is willing to buy or sell an infinite amount of contracts at this price,
since the hedger and spot traders’ endowments and contract purchases are uninformative
about ψ. An agent with contract position ci would receive total wealth:

xiψ− xiµψ︸ ︷︷ ︸
Factor exposure

+ ψci︸︷︷︸
Contract payoff

− pcci︸︷︷︸
Contract price

At price pc = µψ, spot traders and the hedger would all choose to hedge perfectly, setting
ci = −xi and cH = −xH. Thus, all agents would be able to perfectly hedge, transferring
all their factor risk exposures to the risk-neutral market maker.

The first friction in the model is that agents cannot contract directly on ψ. This is
realistic: in practice, traders cannot contract on abstract risk factors, such as oil prices,
volatility, stock prices, or interest rates, directly. Instead, traders can buy and sell contracts
which are settled based on price benchmarks set in markets for spot goods, such as the
Brent or WTI oil price indices, the VIX, the S&P 500 and Russell 2000, and LIBOR or
SOFR.

Competitive spot market bidding. Even if agents cannot contract on ψ directly, first-
best risk sharing is possible using contracts settled using spot market prices, if spot
traders behaved competitively in the spot market. Each spot trader’s marginal value of
the spot good is the derivative of (2) with respect to zi:

ψ−
zi
κ

(5)

Suppose each spot trader bid in the auction as if she faced a perfectly elastic residual
supply curve; that is, suppose each spot trader i believes that the auction clears at some
random price p, which does not depend on i’s quantity traded. i then purchases goods up
to the point where her marginal utility is equal to the auction price; this is implemented
by submitting a bid curve equal to the inverse of (5):

zBi (p) = κ (ψ− p) (6)
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The spot auction would then always clear at price p = ψ. There would be no trade of
the spot good; this is efficient, since traders’ valuations for the spot good are identical.
Anticipating that p = ψ, spot traders and the hedger would buy contracts to fully hedge
their factor exposures, so agents would be able to perfectly share factor risk. In this
benchmark case, the auction plays no allocative role: its role is to elicit spot traders’
marginal utility for the asset, which is equal to ψ, and then using this as a benchmark to
settle derivative contracts.

The second friction in the model is that the spot market is imperfectly competitive.
Spot traders are strategic, and recognize that their spot good trades move the settlement
price p. Suppose a spot trader has a negative factor exposure xi, and buys a positive
contract position ci to hedge her factor risk exposure; in the spot market, the trader has
an incentive to increase her bid in the spot auction, in order to increase p and thus her
contract payoffs. This makes p a noisy signal of ψ, and prevents perfect risk sharing. I
analyze how these incentives play out in equilibrium in the following section.

3.2 Discussion of model assumptions

Assumptions on the contract market. As in Kyle (1985), I assume that there is a risk-
neutral market maker, and that spot traders’ factor risk exposures, and thus their contract
purchases, are infinitesimal relative to the hedger. These assumptions imply that market
makers will set the price of contracts equal to µψ, the expectation of the risk factor ψ.
Intuitively, since spot traders are infinitesimal, their contract purchases are perfectly
hidden within the representative hedger’s order flow, and thus net order flow is totally
uninformative about the settlement price p. The assumption that spot traders are small,
so contract purchases have no price impact, is likely a reasonable approximation for many
(but not all) contract markets: subsection 2.1 shows that contract markets are often much
larger than spot markets.

I assume that there is no cost to hold contract positions. This is a reasonable ap-
proximation in many settings: derivatives are useful because they are highly leveraged
financial assets, so they have no physical holding costs, and low capital costs relative
to spot goods. Agents’ contract positions are still limited, however, by their ability to
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bear factor risk: an agent who purchases a very large contract position holds a very large
exposure to ψ. This is why, in the model, spot traders will not have incentives to build
up infinitely large contract positions.

Contract purchases may be motivated by speculation rather than hedging. In appendix
B.4, I assume agents have heterogeneous beliefs about the mean µψ of the risk factor; this
leads agents to purchase nonzero contract positions, because agents think contracts are
mispriced in the first period. The implications for manipulation in the spot market are
unchanged.

Finally, while the model of the contract market is quite stylized, assumptions about the
contract market only matter for the results in section 4, regarding spot traders’ contract
purchasing decisions and welfare. As I discuss in section 5, spot traders’ contract positions
at settlement are sufficient statistics for estimating their incentives to manipulate spot
markets. Details of why and how spot traders entered into their contract positions do not
affect these calculations. Thus, my measure for manipulation-induced welfare losses for
hedgers are valid in a variety of different models of the contract market.

Assumptions on the spot market. The baseline spot market model is intentionally
stylized, in order to illustrate the main forces at work in the model. In section 5, I
explore various extensions, allowing spot traders to have heterogeneous spot good
storage capacities, inventory shocks, and arbitrarily distributed contract positions.

Throughout the paper, I take the number of spot market participants, n, and their
spot good holding capacities, κ, as exogeneous; I am essentially analyzing contract
market manipulation holding fixed spot market structure. Spot market structure can
change, as agents enter, exit, and adjust their holding costs, but these changes tend to
be costly and take time. For physical spot goods, such as oil and gas, holding costs
depend on costly infrastructure such as pipelines and storage facilities; for financial assets,
many benchmarks are set in inter-dealer markets, which do not allow free entry. Thus,
the assumption that spot market structure is essentially fixed in the short run seems
reasonable in many settings; however, the metrics I propose would need to be updated
over time, as spot market structure changes.

A related concern is that, if the contract market is very vulnerable to manipulation,
market participants could hedge factor risk by holding spot goods directly. However,
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as subsection 2.1 discusses, market participants would generally prefer to hedge using
derivatives, because holding spot goods involves higher logistical and capital costs. If
manipulation makes derivative contracts sufficiently unattractive that market participants
choose to hedge using spot goods, despite their higher costs, there is a social welfare
loss, because market participants could share risk at lower cost using derivatives in the
first-best outcome.

I assume that the representative hedger cannot trade the spot good. It is equivalent to
assume that the hedger can trade the spot good, but has no storage capacity: effectively,
the hedger has κ = 0. This implies that the hedger has perfectly inelastic demand for
the spot good, and cannot adjust her purchases in response to prices. For example, an
airline or chemicals plant may regularly purchase oil or other commodities as inputs to
production, but these inputs may be very inelastic in the short run. This implies that the
hedger must submit a perfectly inelastic demand curve in the spot market, and has no
ability to manipulate by adjusting her spot trades depending on her contract position.

I assume agents optimize independently of each other; however, in the model, spot
traders have incentives to collude. A spot trader who increases settlement prices generates
profits for all other traders with long contract positions; thus, colluding spot traders, who
coordinate their spot market bids to maximize joint profits, would manipulate more per
unit contract than independently optimizing traders. This is an interesting direction to
explore, but I leave this to future work.

4 Equilibrium

Proposition 1 describes equilibrium values of spot traders’ bid curves, auction prices,
contract purchases, and expected utility for all agents.

Proposition 1. For any α,µψ,σ2
ψ, κ,σ2

x,σ2
H,n, there is a unique equilibrium, in which spot

traders’ spot market bids and contract purchasing strategies are linear and symmetric across
agents. In stage 1, the market maker sets contract price pc = µψ. Spot traders’ bid curves in the
spot market are:

zBi (p; ci,ψ) =
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ) (7)
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Spot auction prices are:

p−ψ =

∑n
i=1 ci

n (n− 2) κ
∼ N

(
0,

σ2
c

n (n− 2)2 κ2

)
(8)

Spot traders’ contract positions ci (xi) are linear in traders’ factor exposures xi, so spot traders’
contract positions are normally distributed with mean 0 and variance σ2

c, where:

ci (xi) = −txi, σ2
c = t

2σ2
x (9)

where t satisfies:

t ≡

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−1

(10)

and σ2
η is the unique positive value satisfying:

σ2
η =

σ2
x

n− 1

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

(11)

σ2
η >

κ−
(
ασ2

ψ

) (
n2 − 2n

)
κ2

α
(

1 +ασ2
ψκ
) (12)

Spot traders’ expected utility, as a function of t, is:

−

√√√√ (n2−2n)κ

α

(
t2σ2

x
n−1

)
+(n2−2n)κ√√√√√1 −ασ2

x

ασ2
ψ (1 − t)2 +

 α

(
t2σ2

x
n−1

)
−κ(

ασ2
ψκ
)(
(n2−2n)κ+α

(
t2σ2

x
n−1

))
 t2


(13)

17



The hedger’s net contract position is linear in the hedger’s factor exposure xH:

cH (xH) = −
σ2
ψ

σ2
ψ + Var (p−ψ)

xH = −
σ2
ψ

σ2
ψ +

σ2
c

n(n−2)2κ2

xH (14)

The hedger’s wealth has mean 0, and its variance, over uncertainty in ψ, xH, and all xi’s, is:

Var
(
Whedger (xH, cH,p,ψ)

)
=

Var (p−ψ)

Var (p−ψ) + σ2
ψ

σ2
ψσ

2
H =

 σ2
c

n(n−2)2κ2

σ2
c

n(n−2)2κ2 + σ
2
ψ

σ2
ψσ

2
H (15)

4.1 Spot market distortions and manipulation-induced basis risk

Spot traders’ equilibrium bids, (7), differ from their competitive bids, (6), in two ways.
The first difference, which is well-known in the double-auctions literature, is that traders
decrease liquidity provision due to their price impact. The slope of (7) with respect to
prices is lower than the slope of agents’ competitive bids, (6), by a factor n−2

n−1 . The second
difference is that traders’ equilibrium bid curves depend on their contract positions ci,
even though contract positions do not affect traders’ marginal value for spot goods. Spot
traders hold contracts with payoffs that depend on p, and traders can move p by trading
the spot good, so traders have incentives to trade the spot good to increase contract
payoffs. Within the model, I define the second force as manipulation: it is a distortion
which is unique to traders who are active in both spot and contract markets, and it is
distinct from price impact avoidance, which is present more generally in any market
where traders have price impact.

Expression (7) shows that increasing a trader’s contract position by 1 unit causes her
to increase her spot good bid curve by 1

n−1 units: as n increases, contract positions affect
bids less. Intuitively, when the spot good auction is competitive, agents need to buy more
of the spot good to move prices a given amount. Thus, the cost of manipulation is higher,
so spot traders manipulate less per unit contract that they hold. In the limit as n grows
large, expression (7) converges towards (6), and traders’ contract positions have no effect
on their spot good bids.
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Since auction prices depend on spot traders’ contract positions ci, which depend on
traders’ random factor exposures xi, the equilibrium auction price p is a noisy signal
of the risk factor ψ. The difference, p−ψ, is normally distributed, and expression (8)
characterizes its variance:

Var (p−ψ) =
σ2
c

n (n− 2)2 κ2
(16)

I call this variance manipulation-induced basis risk.

Comparative statics of basis risk. We will define three quantities that influence the
level of basis risk. First, define the aggregate storage capacity of the market as nκ, the sum
over all n spot traders’ storage capacities. nκ would be the slope of aggregate market
demand for the spot good, if all agents submitted bid curves as if they had no price
impact, as in (6). Second, define the level of market competition simply as n, the number
of spot traders present in the market. Third, define the size of contract positions as σ2

c,
the variance of an individual spot trader’s contract position. This is an equilibrium object
in the model, but in practice it can often be observed directly by regulators, and directly
influenced using policies such as contract position limits.

Basis risk decreases to 0 as storage capacity becomes infinitely large, nκ→∞, holding
fixed n and σ2

c. Intuitively, when nκ is large, the price impact of manipulative spot
trading decreases towards 0, causing prices converge to ψ. However, while prices become
competitive, spot market quantities do not become competitive. From (7), the coefficient
on contract positions in agents’ bids is 1

n−1 , independent of κ. If κ increases holding n
fixed, prices converge to ψ, but spot market bids, and thus allocations in the spot market,
are still distorted in the limit.

Basis risk also decreases towards 0 as markets become competitive, n→∞, holding
fixed nκ and σ2

c. This is because, from (7), the coefficient on ci in agents’ equilibrium
bids is 1

n−1 . In more competitive markets, agents’ contract positions affect their bidding
decisions less, and thus create less price variance, even if aggregate storage capacity
is fixed. This implies that competition policy in spot markets is an effective tool for
limiting manipulation risk: blocking mergers, and splitting large spot traders into smaller
entities, can decrease manipulation-induced basis risk, even if it does not increase the
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market’s total storage capacity for the spot good.12 Note that, in contrast to the case of
increasing storage capacity, increasing competition also causes equilibrium spot market
bids to converge to competitive bids, so spot market trade quantities also converge to
their efficient values.

Basis risk also increases in the size of spot traders’ contract positions, σ2
c, holding fixed

n and nκ. Intuitively, spot traders manipulate more, and create more basis risk, when
their contract positions are larger. This implies that regulatory position limits imposed
on spot traders can lower manipulation-induced basis risk.

4.2 Spot traders’ contract positions

Expression (9) of proposition 1 shows that, in the unique equilibrium of the model, agents’
optimal contract purchases ci are linear in their factor exposures xi. The coefficient of
proportionality, defined as t in expression (10), describes how aggressively agents are
hedging; that is, how many contracts agents purchase per unit of their factor exposures.

If all traders bid competitively in spot markets, traders would perfectly hedge, setting
t = 1. In equilibrium, t can be greater or smaller than 1. On the one hand, spot traders
anticipate that others will manipulate, making spot prices noisy signals of ψ, decreasing
their incentives to buy contracts to hedge factor risk. On the other hand, spot traders
anticipate that they can profit on average from their contract positions, since they can
move spot prices in their favor, increasing their incentives to buy contracts.

The second force may dominate the first, so we can have t > 1 in equilibrium. In this
case, spot traders will “over-hedge”, buying contract positions which are larger than their
original factor risk exposures xi. In other words, agents may purchase contract positions
so large that they actually increase their exposures to factor risk, because of anticipated
profits from moving contract settlement prices in their favor. Agents do not purchase
infinitely large contract positions, because the increased exposure to basis risk eventually

12Note that σ2
c is the variance of an individual trader’s contract position. Thus, as n → ∞, the size

of aggregate contract positions across spot traders,
∑
i ci, also becomes unboundedly large. However,

the variance of
∑
i ci grows at rate n, whereas the coefficient on ci in agents’ equilibrium bids is 1

n−1 ,
contributing a factor 1

n2 to the asymptotic behavior of price variance. As a result, manipulation-induced
price variance is declining in n at asymptotic rate 1

n , holding fixed σ2
c and nκ.
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overwhelms any anticipated profits from manipulation.

From expression (10), t is greater than 1 if:

κ > ασ2
η

where σ2
η, from (11), is the expected variance of residual supply in the spot market.

Intuitively, spot traders have incentives to buy large contract positions if storage capacity
κ is large, relative to risk aversion α and the variance of residual supply σ2

η. Appendix B.2
shows that the amount of over-hedging in equilibrium can be unboundedly large: there
exist parameter settings which make the equilibrium value of t arbitrarily large. Appendix
B.3 shows that increasing n, holding other parameters fixed, causes t to converge to 1
at rate 1

n2 : when there are a large number of market participants, spot traders hedge
perfectly, and the market approaches the first-best outcome.

4.3 Spot trader welfare

Expression (13) shows spot traders’ expected welfare, over all sources of uncertainty
in the model. This allows us to assess whether spot traders are better or worse off in
equilibrium, relative to the competitive-bidding benchmark. Expression (13) also allows
us to calculate welfare for values of t other than its equilibrium value. This corresponds
to welfare in a limited social planner’s problem, in which the planner can force all spot
traders to buy contracts according to some prespecified value of t, but cannot influence
traders’ behavior in spot markets. This can be thought of as a reduced-form model of
various actions contract market regulators can take to limit the size of traders’ contract
positions, such as imposing contract position limits.13

The three panels of figure 1 show spot traders’ welfare as a function of t, alongside
the equilibrium and competitive values of t and spot trader welfare, for three different
sets of input parameters. A given spot trader’s manipulation generates both positive

13I do not directly analyze position limits because my model requires agents’ contract positions to be
Gaussian, so bounds on the size of agent’s contract positions would be intractable. In the context of the
model, appendix B.5 shows that the planner could implement any positive value of t in equilibrium by
imposing quadratic taxes or subsidies on spot traders’ contract positions, charging spot traders kc2

i for
buying ci contracts.
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and negative externalities on other spot traders, so a number of different outcomes are
possible: spot traders may gain or lose on average from manipulation, the equilibrium t

may be greater or smaller than 1, and spot traders may hedge more or less than is optimal
for spot traders’ welfare.

In the left panel, manipulation increases spot traders’ welfare, relative to the competi-
tive benchmark. Spot traders also over-hedge, choosing t > 1 in equilibrium. However,
spot traders would do even better as a group if they could commit to holding smaller
contract positions. Spot traders face a kind of prisoner’s dilemma: manipulation by one
spot trader creates a negative externality on other spot traders by increasing basis risk, so
all spot traders would prefer a lower value of t than the equilibrium value. A lower value
of t would also benefit the hedger, since it would decrease basis risk, so a regulator could
create a Pareto improvement by limiting the size of spot traders’ contract positions.

In the middle panel, like the left panel, spot traders would prefer for t to be smaller
than its equilibrium value. In addition, spot traders’ equilibrium welfare is below the
competitive value of −1. As the following subsection shows, the hedger is always
worse off in equilibrium relative to the competitive benchmark. Thus, in this example,
manipulation is Pareto disimproving relative to the competitive benchmark, decreasing
welfare for both spot traders and the hedger. Intuitively, this is because spot traders’ losses
from manipulation-induced basis risk outweigh their gains from extracting a transfer
from the hedger in expectation.

In the right panel, spot traders would actually prefer for t to be higher than its
equilibrium value. This is because manipulation by one spot trader actually creates
a positive externality on other spot traders in spot markets: manipulators make non-
fundamental trades in spot markets, so other spot traders profit as market makers,
buying low and selling high in the spot auction. In this case, spot traders face a kind of
coordination problem: all spot traders would be better off if each trader bought more
contracts and manipulated more. This would, however, increase basis risk and decrease
the hedger’s welfare, so an increase in t can never be Pareto-improving.

Together, these examples show that manipulation can be Pareto-dominated relative to
the competitive benchmark, and regulatory intervention to decrease spot traders’ hedging
aggressiveness can be Pareto improving. Appendix B.1 shows additional comparative
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Figure 1: Spot trader welfare

Notes. Expected welfare of spot traders, (13), as a function of the hedging aggressiveness
parameter t, for three different sets of parameters. The green vertical and horizontal
lines denote the competitive values of t and welfare, which are always equal to 1 and
-1 respectively. The blue line denotes the unique equilibrium value of t, and the orange
line denotes the value of t which maximizes spot traders’ welfare. The parameters for
the left panel are n = 3,α = 1, κ = 0.5,σ2

ψ = 0.3,σ2
x = 0.5; for the middle panel, they are

n = 5,α = 1, κ = 0.05,σ2
ψ = 0.9,σ2

x = 1; for the right panel, they are n = 3,α = 1, κ =

0.8,σ2
ψ = 1.5,σ2

x = 0.05.

statics of the model, illustrating how equilibrium outcomes are affected by different
model primitives.

4.4 Hedger welfare

Expression (14) shows how manipulation affects the representative hedger’s contract
purchasing decisions. The hedger buys less contracts per unit of her risk exposure,
because under manipulation, contracts are noisier hedges for factor risk. The optimal
hedge is to buy

−
σ2
ψ

σ2
ψ + Var (p−ψ)

(17)

units of contracts, per unit of her factor risk exposure. Intuitively, (17) is the coefficient
from regressing the risk factor ψ on the auction price p. With manipulation-induced basis
risk, p is a noisier signal of ψ, so the hedger optimally hedges less per unit of her factor
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risk exposure. As a result, the hedger’s wealth has variance:

Var (p−ψ)

Var (p−ψ) + σ2
ψ

σ2
ψσ

2
H (18)

The ratio Var(p−ψ)

Var(p−ψ)+σ2
ψ

is equal to 1 − R2, where R2 is the coefficient of determination from

regressing p on ψ. When basis risk is 0, R2 = 1, there is no basis risk, so the hedger can
perfectly hedge and face no wealth uncertainty. As basis risk becomes very large, R2 = 0,
so the hedger buys no contracts, and is fully exposed to factor risk. Thus, in the model,
fixing σ2

ψ and σ2
H, manipulation-induced basis risk, Var (p−ψ), is a sufficient statistic for

the hedger’s welfare losses from manipulation.

5 Extensions

In this section, I study a number of extensions of the baseline model. In subsection
5.1, I allow spot traders to have asymmetric storage capacities κi, as well as asymmetric
distributions of contract positions. In subsection 5.2, I allow spot traders to have inventory
shocks. In subsection 5.3, I show how a regulator could measure manipulation risk
empirically. Throughout these subsections, I restrict attention to stages 4 and 5 of the
game: I study spot traders’ bidding behavior in the spot market, taking spot traders’
contract positions as exogenous random variables, rather than studying the full multi-
stage game.14 Finally, subsection 5.4 shows that the results of the model also apply to
physical delivery contracts.

14The multi-stage game with asymmetric agents is difficult to solve, because each trader faces a different
variance of residual supply in the spot market, σ2

ηi. Solving for equilibrium would involve finding a set of
bids for all agents, such that agents’ bids are best responses given spot market bids of other agents, and the
variances σ2

ηi, and then bidding and contract purchasing decisions are consistent with all residual supply
variances σ2

ηi. This cannot be solved in closed-form, and appears not to add much insight compared to
studying the spot market game directly, taking contract positions as exogeneous.
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5.1 Asymmetric agents

Suppose that the wealth of spot market participant i, if she buys zi net units of the spot
good at price p, is:

Wspot,i (ci, zi,p) = pci︸︷︷︸
Contract payoff

+ ψzi −
z2
i

2κi︸ ︷︷ ︸
Spot good payoff

− pzi︸︷︷︸
Spot good price

(19)

Expression (19) generalizes (3) from the baseline model in two ways. First, (19) allows
spot market participants to have different holding capacities, κi, for the spot good. Agents
with larger κi have more elastic demand for the spot good; these may be agents who have
more storage space for physical spot goods, or lower capital costs for trading financial
spot goods. Second, I assume that contract positions ci have mean 0 and full support,
but otherwise can be arbitrarily distributed: in particular, contract positions need not
be identically distributed across agents, and different agents’ contract positions can be
arbitrarily correlated.15

Compared to (3), I also omit factor exposure and contract price terms from (19). These
terms do not depend on zi, so they do not affect traders’ decisions in the spot market.
Also, in the spot market, agents’ bids are ex-post best responses over uncertainty in other
agents’ bids, so agents’ optimization problem is nonstochastic, and we can solve (19)
without assuming that agents have CARA utility over wealth.

Expression (19) is an accurate model of spot market behavior under many different
assumptions about how the contract market works: for example, as appendix B.4 discusses,
spot traders may buy contracts to speculate rather than hedge, or as appendix B.5
discusses, spot traders’ contract purchases may have price impact. A spot trader who
holds a long contract position profits from higher spot prices, regardless of why she
entered into the contract in the first place. Thus, spot traders’ contract positions are an

15Full support is needed only to justify the ex-post equilibrium concept: when contract positions have
full support, the intercepts of the residual supply curves faced by each trader also have full support, so spot
traders’ bid curves are fully determined by requiring them to be best responses for all possible realizations
of residual supply. The assumption that each ci has mean 0 is not needed to solve the model, but implies
that p−ψ has mean 0; without it, p would not be equal to ψ in expectation, but the model conclusions
would otherwise be unchanged.
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observable sufficient statistic for spot traders’ incentives to manipulate spot markets.

The following proposition characterizes spot good bids and prices in the unique
equilibrium of the general model.

Proposition 2. When spot traders’ wealth is described by (19), there is a unique linear ex-post
equilibrium, in which i submits the bid curve:

zBi (p; ci) =
bi∑
j 6=i bj

ci − bi (p−ψ) (20)

The spot auction price is:

p−ψ =
1∑n
i=1 bi

n∑
i=1

[
bi∑
j 6=i bj

ci

]
(21)

bid slopes bi satisfy:

bi =
B+ 2κi −

√
B2 + 4κ2

i

2
(22)

and B ≡
∑n
i=1 bi is the unique positive solution to the equation:

B =

n∑
i=1

2κi +B−
√
B2 + 4κ2

i

2
(23)

Manipulation incentives depend most directly on the coefficient on ci,
bi∑
j6=i bj

, in
expression (20). From (22), bi is increasing in κi, so agents with larger storage capacities
have greater incentives to manipulate, in the sense that they trade more of the spot good
per unit contract that they hold. If the market is fairly competitive, we can obtain a simple
approximation to agents’ optimal bid curves. Define agent i’s capacity share si as:

si ≡
κi∑n
i=1 κi

(24)

Since κi represents the spot good storage capacity of agent i, si can be thought of as
i’s share of total storage capacity in the spot market. Define smax as the largest agent’s
capacity share:

smax ≡ max
i
si
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The following proposition derives bounds on the ci coefficients, bi∑
j6=i bj

, as functions of si
and smax.

Claim 1. When smax < 1
2 , we have:

si 6
bi∑
j 6=i bj

6

(
1 +

smax

1 − 2smax

)
si (25)

Claim 1 implies that the coefficient on ci in i’s bid in equilibrium is within a factor(
1 +

smax

1 − 2smax

)
of her capacity share, si. Thus, when smax is small, ci coefficients are approximately
equal to capacity shares. Intuitively, when markets are relatively competitive, an agent
who constitutes roughly 10% of the market’s storage capacity will increase her spot
market bids by approximately 10% of the size of her contract position. The factor si thus
generalizes the factor 1

n−1 in (7), the expression for spot market bid curves in the baseline
model.

If all agents’ contract positions have equal variance, σ2
c, we can also derive bounds for

manipulation-induced basis risk. Define the capacity HHI (Herfindahl-Hirschman index)
as:

HHI ≡
n∑
i=1

s2
i (26)

The HHI is a standard measure of market concentration used in antitrust analysis. When
agents are symmetric, κi = κ, the HHI is simply 1

n .

Claim 2. When smax <
1
2 , agents’ contract positions have the same variance σ2

c, and
agents’ contract positions are independently distributed, manipulation-induced basis risk
satisfies:

σ2
c

B2HHI 6 Var (p−ψ) 6

(
1 +

smax

1 − 2smax

)2
σ2
c

B2HHI (27)

Using claim 2, we can generalize the comparative statics discussion in subsection
4.1. In the asymmetric model, we can use the HHI as an inverse measure of market
competition. Analogous to the baseline model, we can define the aggregate storage capacity
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as
∑
i κi. The ratio between aggregate storage capacity and the aggregate bid slope, B,

can be bounded by a finite constant factor, which approaches 1 when smax approaches 0.
To see this, from claim 12 of appendix D, we have:(

1 −
smax

1 − smax

)
κi 6 bi 6 κi

for all i. Thus, we have: (
1 −

smax

1 − smax

) n∑
i=1

κi 6 B 6
n∑
i=1

κi

This shows that, as aggregate storage capacity
∑n
i=1 κi increases towards ∞, as long as

smax <
1
2 , the slope of aggregate market demand B must also increase towards ∞. Claim

2 then implies that, analogous to the baseline model, basis risk decreases to 0 as the
aggregate storage capacity

∑
i κi rises to ∞ (and thus B increases to ∞), holding HHI and

σ2
c fixed; as HHI decreases towards 0, holding

∑
i κi and σ2

c fixed; and as σ2
c decreases,

holding fixed HHI and
∑
i κi.

Next, suppose traders’ contract positions are independently distributed, but suppose
the variance of contract positions differs across agents. Let σ2

ci represent the variance of
trader i’s contract position. Basis risk is then:

Var (p−ψ) =
1
B2

n∑
i=1

(
bi∑
j 6=i bj

)2

σ2
ci (28)

Expression (28) states that basis risk is the weighted sum of contract position variances,

σ2
ci, with weights

(
bi∑
j6=i bj

)2
. These weights are larger for traders with larger storage

capacity κi. Intuitively, agents with larger spot good storage capacity will trade more in
the spot market per unit contract they hold, so basis risk will be higher when agents with
large storage capacity hold large contract positions. This suggests that, in order to lower
manipulation-induced basis risk, it may be beneficial to impose stricter position limits on
market participants with larger storage capacity for the spot good.
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5.2 Inventory shocks

Next, we add inventory shocks to the model. Assume spot traders’ wealth is:

Wspot,i (ci, zi,yi,p) = pci︸︷︷︸
Contract payoff

+ψzi −
(zi + yi)

2

2κi︸ ︷︷ ︸
Spot good payoff

− pzi︸︷︷︸
Spot good price

(29)

Expression (29) assumes that agents enter the spot market with some existing inventory
position, yi, in the spot good.16 I assume that each yi has mean 0 and full support,
but otherwise can be arbitrarily distributed; inventory shocks can be asymmetrically
distributed across agents, and can be arbitrarily correlated with other agents’ inventory
shocks and contract positions. Inventory shocks imply that agents will trade the spot
good even if they do not hold contract positions, so that not all trade volume in the spot
market is caused by manipulation.

Proposition 3. When spot traders’ wealth is described by (29), there is a unique linear ex-post
equilibrium in the general model, in which i submits the bid curve:

zBi (p; yi, ci) = −
bi
κi
yi +

bi∑
j 6=i bj

ci − bi (p−ψ) (30)

The spot auction price is:

p−ψ =
1∑n
i=1 bi

n∑
i=1

[
−
bi
κi
yi +

bi∑
j 6=i bj

ci

]
(31)

bid slopes bi satisfy:

bi =
B+ 2κi −

√
B2 + 4κ2

i

2
(32)

16Inventory shocks yi can alternatively be interpreted as preference shocks for the spot good: expanding
the quadratic term in (29), we have:

−
z2

2κi
−
yiz

κi
−
y2
i

2κi

Ignoring the constant y
2
i

2κi
term, yi simply linearly shifts i’s marginal value of the spot good.
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and B ≡
∑n
i=1 bi is the unique positive solution to the equation:

B =

n∑
i=1

2κi +B−
√
B2 + 4κ2

i

2
(33)

First, I specialize proposition 3 to the case in which agents are fully symmetric.

Corollary 1. Suppose that κi = κ, Var (yi) = σ2
y, Var (ci) = σ2

c for all i, and all yi and ci are
independent. Spot traders’ equilibrium bids are:

zBi (p; yi, ci) = −
n− 2
n− 1

yi +
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ) (34)

Price variance is:

Var (p−ψ) =
σ2
y

nκ2 +
σ2
c

n (n− 2)2 κ2
(35)

Expressions (34) and (35) are very similar to the expressions for bids and prices in
the baseline model, in proposition 1; the only difference is the inclusion of yi terms. The
coefficient on yi in equilibrium bid curves, (34), is n−2

n−1 . As is known in the double-auctions
literature, price impact causes agents to “shade bids”, passing through their inventory
shocks less than one-to-one into bids. As n increases, the yi coefficient increases towards
1, whereas the ci coefficient decreases towards 0. Intuitively, yi reflects a fundamental,
inventory- or utility-driven component of bids, whereas ci reflects a nonfundamental
component, reflecting agents’ preferences over prices, driven by their contract positions.
When n is higher and agents have less price impact, their bids reflect fundamentals more,
and preferences over prices less. The model thus shows how contract-linked bidding can
be distinguished from bid shading.

Another implication of (34) is that, in relatively competitive markets, the coefficient
on ci tends to be much smaller than the coefficient on yi: an agent who receives a unit
inventory shock changes her spot bid curve by approximately one unit, whereas an agent
with a unit contract shock changes her spot bid by approximately 1

n units. Thus, when n
is large, most of the variation in agents’ bids (and thus settlement prices) will be driven
by inventory shocks, even if the variance of ci is much larger than the variance of yi.
Quantitatively, from (35), inventory positions and contract positions contribute equal
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amounts to settlement price variance when:

σc = (n− 2)σy (36)

that is, when the standard deviation of contract positions is (n− 2) times greater than the
standard deviation of inventory shocks. As subsection 2.1 discusses, contract markets
are often much larger than spot markets in practice. It is a puzzle why this liquidity
mismatch can be sustained, without creating very large manipulation incentives for spot
traders. Expression (36) provides a simple answer: contract positions can be much larger
than inventory positions, without contract-driven trading dominating settlement price
variance, as long as spot markets are sufficiently competitive.

Expression (36) could be used as a simple rule-of-thumb for evaluating whether a
given market is vulnerable to manipulation: regulators need only check whether the total
size of spot traders’ outstanding contract positions is more than (n− 2) times larger than
the total size of their inventory positions. This test only formally works under strong
symmetry assumptions, but may be a reasonable first-pass when limited market data are
available.

When agents have different κi values, from (30) of proposition 3 and (22) of proposition
2, agents with higher values of κi – larger capacity relative to the market – will submit
bid curves with higher pi coefficients, lower yi coefficients, and higher ci coefficients.17

Intuitively, these agents submit bid curves which are steeper with respect to prices, so
they absorb more of other agents’ inventory shocks. They shade their inventory positions
more, trading less per unit of their inventory shocks yi. They manipulate more, trading
more per unit of their contract positions ci. As a result, expression (31) shows that
equilibrium prices depend on a weighted sum of ci and yi: the weights on yi are lower,
and the weights on ci are higher, for agents with larger κi values.

5.3 Measurement

Next, I show how manipulation-induced basis risk could be empirically estimated by
a regulator. To ensure that basis risk is finite, we assume that all yi and ci have finite

17I formally show that the coefficient on yi,
bi
κi

, is decreasing in κi, in appendix D.1.2.
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variances and covariances. Expression (31) shows that auction prices are linear in agents’
inventory and contract positions: this implies that the moments of auction prices are
functions of the moments of yi and ci. As in proposition 3, we define B ≡

∑n
i=1 bi as the

sum of agents’ bid slopes bi. Define the coefficient vectors kc,ky as:

kc =


b1∑
j6=1 bj
...
bn∑
j6=n bj

 ,ky =


b1
κ1
...
bn
κn


Define the covariance matrices of agents’ contract position, Σcc, agents’ inventory posi-
tions, Σyy, and the inventory-contract covariance matrix Σyc, respectively, as matrices
with elements:

Σcc (i, j) = Cov
(
ci, cj

)
, Σyy (i, j) = Cov

(
yi,yj

)
, Σyc (i, j) = Cov

(
yi, cj

)
Proposition 4. In the general model of proposition 3, basis risk is:

Var (p−ψ) =
1
B2

(
k′yΣyyky − 2k′yΣyckc + k

′
cΣcckc

)
(37)

Proposition 4 shows that, in order to estimate basis risk, regulators need to observe
data on agents’ bid slopes in spot markets, and the variances and covariances of agents’
inventory and contract positions.

Bid slopes. In order to estimate kc and ky, the regulator must estimate bi for all
agents, that is, the slope of each agent’s equilibrium bid curve with respect to prices. The
coefficient vectors kc and ky are functions of both bi and agents’ spot holding capacity κi;
however, κi can be recovered from the vector of bi values, and the aggregate bid slope B,
by inverting (32) of proposition 3. For benchmarks which are set in auctions, bid slopes
could be estimated directly from agents’ auctions bids. If bidding data are not available,
regulators could instead model or estimate agents’ spot good holding capacities, κi, and
then calculate implied bid slopes bi by solving for equilibrium in proposition 3.

Inventory-contract variance and covariances. The regulator must also estimate the
variance-covariance matrices of ci and yi. In many markets, regulators have access to
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detailed data on agents’ positions in both spot and derivative markets, so the variance
and covariance matrices could be estimated using historical sample moments of ci and
yi.18 If ci is not observable, the regulator could derive bounds on Σcc based on contract
position limits which are imposed by exchanges or regulators. If yi is not observable,
under some distributional assumptions, the regulator could estimate or bound Σyy using
the observed volume of trade, since more variable inventory shocks imply higher trade
volumes in spot markets.

Using Proposition 4, regulators could estimate model-predicted basis risk for any
given contract market. Regulators could, for example, set a maximum allowable level of
basis risk, and set contract position limits low enough that (37) does not exceed this level.
For newly proposed contracts, regulators could also use (37) to estimate manipulation-
induced basis risk, and regulators could reject new contracts, or require changes to
contract specifications, if predicted manipulation-induced basis risk is too high.

In appendix C.5, I define another measure of manipulation-induced distortions,
manipulation rents, which are equal to the expected profits that spot traders as a group
earn, due to their ability to move spot market prices. I show how to estimate manipulation
rents in the general asymmetric model. In the model of the paper, basis risk is a sufficient
statistic for the hedger’s welfare losses from manipulation; however, manipulation rents
may also be a useful metric to quantify spot traders’ aggregate potential profits from
manipulation.

5.4 Physical delivery contracts

Thus far, we have assumed all contracts are cash-settled. In this subsection, based on
an equivalence result in Kyle (2007), I show that the analysis is essentially unchanged if
contracts are instead settled by physical delivery. Suppose that, instead of cash settlement,
each unit of the derivative contract entitles agents to receive a unit of the spot good
during the settlement auction. All agents – the hedger, the market maker, and the n spot
traders – submit bid curves in the spot auction, taking into account the quantities that

18The covariance matrices are still high-dimensional, so finite-sample error may be a concern; this can be
solved using a variety of econometric methods, such as low-dimensional factor models for agents’ contract
and inventory covariances.
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they are entitled to from their contract positions. Market clearing in the spot market thus
requires the sum of the quantities of the spot good that each agent takes delivery of –
consisting of promised units from agents’ contract positions, plus the amount that agents
bid for in the spot market – to sum to 0. Let:

cH, zB,H (p) , cMM, zB,MM (p)

respectively denote contract positions and spot market bids from the hedger, H, and the
market maker, MM. Let qH be the net amount of the spot good that the hedger takes
delivery of, summing over her contract position and her spot good trades at settlement:

qH ≡ cH + zH

and let qMM be defined likewise. We have assumed that the hedger and market maker
cannot make or take delivery of the spot good, since they have no storage capacity. Hence,
qH and qMM must be equal to 0, so the hedger and the market maker are forced to submit
market orders – perfectly inelastic demand curves – to sell exactly the amount of the spot
good that they are entitled to in contracts:

zB,H (p) = −cH, zB,MM (p) = −cMM (38)

In practice, (38) can be interpreted as saying that the hedger and the market maker exit
their contract positions just before settlement. The market maker’s wealth is thus:

WMM (cMM) = −pccMM︸ ︷︷ ︸
Contract price

− p (−cMM)︸ ︷︷ ︸
Spot good sales

(39)

As in the baseline model, (39) implies that the market maker purchases contracts at pc,
and each unit of the contract effectively pays out the spot price p. Thus, risk-neutral
competitive market makers will set pc = E [p | cMM], as in the baseline model. The
hedger’s wealth is:

Whedger (xH, cH,p,ψ) = ψxH − µψxi︸ ︷︷ ︸
Factor exposure

− pccH︸ ︷︷ ︸
Contract price

− p (−cH)︸ ︷︷ ︸
Spot good sales

(40)
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Expression (40) is identical to (4) in section 3, so physical delivery contracts and cash-
settled contracts are identical from the perspective of the hedger. If p = ψ, these contracts
are effective for hedging, because the hedger buys contracts at pc, sells the resultant
inventory of the spot good at ψ, and does not actually take delivery of any of the spot
good. Effectively, the hedger hedges by pre-purchasing a promise to deliver at µψ, and
then selling the promised units at the realized price ψ. If p 6= ψ, the hedger hedges
imperfectly, because the price that the hedger gets from liquidating her spot inventory
does not reflect ψ perfectly.

Spot traders. With physical delivery contracts, spot traders essentially begin spot
market trading endowed with ci units of the spot good. Spot trader i’s wealth, if she
purchases an additional zi units of the spot good, is thus:

Wspot (xi, ci, zi,p,ψ) =

ψxi − µψxi︸ ︷︷ ︸
Factor exposure

− pcci︸︷︷︸
Contract price

+(zi + ci)ψ−
1

2κ
(zi + ci)

2︸ ︷︷ ︸
Spot good payoff

− pzi︸︷︷︸
Spot good price

Expanding, and ignoring terms that do not depend on ci or zi, we have:

ciψ+ ziψ−
1

2κ

(
z2
i + 2zici + c2

i

)
− pzi (41)

Expression (38) shows that the hedger and the market maker make and take no deliveries
of the spot good. Thus, in order for spot markets to clear, the total quantities that spot
traders take deliveries of – which are equal to the quantities zi purchased in the spot
market, plus traders’ total contract positions ci – must sum to 0:

n∑
i=1

zi (p; ci,ψ) + ci = 0

As above, we can define the quantity spot trader i takes delivery of, qi, as the sum of zi
and ci:

qi (p; ci,ψ) ≡ zi (p; ci,ψ) + ci (42)

Thus, when zi = −ci, trader i does not take any deliveries: she closes all her contract
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positions just before settlement. When zi = 0, trader i takes delivery of her entire contract
position ci. When zi is between 0 and −ci, i closes some fraction of her contract position,
and takes delivery of the remainder.

Proposition 5 describes outcomes in the spot market in a competitive-bidding bench-
mark, and proposition 6 describes behavior in strategic equilibrium.

Proposition 5. With physical delivery contracts, if spot traders behave competitively, as if residual
supply in the spot market is perfectly elastic, spot traders’ bids are:

zBi (p; ci,ψ) = −ci + κ (p−ψ) (43)

Spot traders’ aggregate demand for deliveries of the spot good is:

n∑
i=1

qi (p; ci,ψ) =
n∑
i=1

zBi (p; ci,ψ) + ci =
n∑
i=1

κ (p−ψ) (44)

Hence, the spot market clears with no trade: spot traders do not make or take delivery of the spot
good, and the market clearing price is p = ψ.

Proposition 6. In strategic equilibrium with physical delivery contracts, spot traders’ optimal
bids in the spot market are:

zBi (p; ci,ψ) = −
n− 2
n− 1

ci +
n− 2
n− 1

κ (p−ψ) (45)

The quantity of the spot good that traders take delivery of, qi, is identical to spot bids in the
baseline model, (7) of proposition 1:

qBi (p; ci,ψ) =
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ) (46)

The market clearing price is identical to (8) of proposition 1 in the baseline model:

p−ψ =

∑n
i=1 ci

n (n− 2) κ
∼ N

(
0,

σ2
c

n (n− 2)2 κ2

)
(47)

Propositions 5 and 6 show that physical delivery and cash-settled contracts behave
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identically within the model. Proposition 5 shows that, if spot traders behave compet-
itively, ignoring their price impact, there are no deliveries in the spot market: all spot
traders set zi = −ci, which corresponds to closing their entire contract positions just
before settlement. Spot prices are equal to the risk factor ψ, so the hedger can perfectly
hedge.

In strategic equilibrium, (46) of proposition 6 shows that the net quantity that spot
traders take delivery of, under physical delivery contracts, is identical to (7) in the cash-
settlement case. From (47), prices are identical to what they are under cash settlement, so
all welfare implications of both models for all agents are identical.

The intuition behind this equivalence, which is explained in Kyle (2007), is that cash
settlement and physical delivery contracts are exactly equivalent if traders have access to
“market-on-expiration” orders: that is, if traders can buy or sell arbitrary quantities of
the spot good at exactly the cash settlement price. This equivalence holds in the auction
model of this paper. A trader who holds a physical delivery contract, and thus is entitled
to ci units of the spot good, can sell zi = −ci units, thus taking delivery of no net units of
of the spot good, and receiving a monetary payment of cip, effectively converting her
physical delivery contract position into a cash-settled position. Similarly, a cash-settled
contract holder can submit an order for zi = ci units, converting her cash-settled contract
into a physical delivery contract.19

Proposition 5 shows that there are some differences in how manipulation occurs
notationally, under cash-settled versus physical delivery contracts. For cash-settled
contracts, a long contract holder manipulates by buying the spot good at settlement.
For physical delivery contracts, comparing (43) and (45), contract holders manipulate by
setting zi smaller in absolute value than −ci: that is, a long contract holder closes less of
her contract positions than she would in a competitive world, taking delivery on some

19Kyle (2007) also discusses conditions under which this equivalence may not hold. For some price bench-
marks, exact “market-on-expiration” orders are difficult or impossible – for example, when benchmarks
are calculated as time-weighted average prices. One other form of manipulation, which is only possible
with physical-delivery contracts, is that a long manipulator may aim to buy up enough of the underlying
asset that it is essentially impossible for shorts to fulfill their delivery requirements. The manipulator then
uses the threat of default to extract large payments from shorts to close out contracts. In cases like this,
payments from shorts may depend not only on spot market conditions, but also their perceived costs of
defaulting on contract obligations, so the model in this paper may not fully capture market outcomes in
these cases.
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fraction of her contracts. In both cases, spot traders manipulate by making or taking
deliveries of spot goods, changing spot prices and thus payoffs on contract positions.

6 Discussion

6.1 Implications for contract market regulation

This paper’s framework helps regulators to precisely define contract market manipulation,
and to distinguish it from other forms of strategic trading in imperfectly competitive
markets. The results show how structural policy tools, such as position limits, can be
used to reduce market participants’ incentives to manipulate.

Defining manipulation, and behavioral solutions. As subsection 2.2 discusses, con-
tract market manipulation is illegal, but the law does not precisely define manipulation.
Courts, regulators and academics have faced substantial difficulty in precisely defining
manipulation, and this is a major barrier to enforcing manipulation law. This paper
presents a potential definition of contract market manipulation. When strategic spot
market traders hold derivative contracts linked to spot markets, traders have incentives to
modify their trading behavior, to increase the payoffs on their contract positions. Within
the model, this force can be distinguished from two other incentives traders in imperfect
markets have to distort trading behavior: decreasing liquidity provision, that is, lowering
the slopes of their bid curves relative to a competitive benchmark; and “shading bids”,
that is, lowering the extent to which inventory shocks affect bids.

If spot traders were barred from holding derivative contracts, they would decrease
liquidity provision and shade bids, but would not have incentives to “manipulate” in
the sense of trading spot goods to increase contract payoffs. In most markets, it is likely
impractical to bar spot traders from holding derivative positions. However, the thought
experiment of eliminating spot traders’ derivative positions may be useful as a conceptual
benchmark for arguing that illegal contract market manipulation is occuring: regulators
might ask whether a given pattern of spot good trades could have been profitable, if a
trader did not hold derivative contracts.

This definition also shows what trading patterns regulators might look for, to demon-
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strate that market participants are engaging in illegal manipulation. Trading in spot
markets, which could not be profitable on a standalone basis, may be profitable once
payoffs from contract positions are taken into account. The model also shows that traders
may “over-hedge” in equilibrium, buying contract positions much larger than their factor
exposures, deliberately building up exposure to factor risk, since they know they can
manipulate contract settlement prices.

Some of the features in the model may be difficult for regulators to bring to data. For
example, while inventory or preference shocks are precisely defined within the model,
these may be difficult to estimate in practice. Market participants who are accused of
manipulation could thus always claim that their spot trades are driven by inventory or
preference shocks, rather than the desire to manipulate. The paper’s results suggest that
over-hedging is symptomatic of manipulation, but demonstrating that agents are over-
hedging requires estimating the size of market participants’ factor risk exposures, which
may be difficult if market participants have positions in many different products with
correlated values. Moreover, market participants may enter into positions to speculate
rather than hedge risk, and a market participant could always argue that a position which
appears to be an over-hedge, with manipulative intent, was in fact simply a speculative
bet on factor risk.

Structural regulation. Regulators also use a variety of structural interventions in
contract markets to limit manipulation risk. This paper’s results assist regulators in
these efforts by shedding light on the forces that affect manipulation risk. Manipulation
risk depends on the size of spot traders’ contract positions. Regulators could impose
position limits on spot traders’ contract positions, especially close to contract settlement.
Position limits are currently imposed in many derivative contract markets, but their
primary purpose seems to be preventing excessive price volatility.20 As a result, the CFTC
currently applies position limits more harshly for pure financial market participants than
spot traders.21 The results of this paper suggest that, for the purposes of alleviating

20The CFTC’s stated purpose for speculative position limits is to “protect futures markets from excessive
speculation that can cause unreasonable or unwarranted price fluctuations”; hence position limits do not
exist solely to combat manipulation, although according to my theory they can be an effective tool for
doing so.

21Contract position limits do not apply for market participants who have bona fide commercial risks to
hedge; see the CFTC’s website on Speculative Limits.
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manipulation risk, position limits should actually be more harsh for spot traders, since
they have a greater ability to trade spot goods to influence settlement prices.

Spot market storage capacity and competitiveness also affect manipulation risk.22 This
suggests, for example, that a recent regulatory effort to move interest rate benchmarks to
larger and more competitive underlying markets could potentially alleviate manipulation
risk.23 Moreover, this implies that regulators cannot determine manipulation incentives
by focusing on derivative contract markets in isolation. Contract market regulators should
monitor storage capacity and concentration in spot markets, perhaps in collaboration
with antitrust and spot market regulators, as spot market structure is an important factor
affecting contract market manipulation risk.

Subsection 5.3 of the paper shows how to estimate the size of manipulation-induced
market distortions, using data which regulators observe in many markets. Regulators
could use these measures to decide whether to approve new contracts, and how large
contract position limits should be. These measures would also inform regulators how
changes in spot market structure, such as mergers or changes in aggregate storage
capacity, would influence manipulation risk.

6.2 Mechanisms for benchmark setting

This paper uses uniform-price double auctions as a reduced-form model of price bench-
marks. This is potentially a reasonable model for many, but not all, benchmarks. Some
benchmarks, such as VIX and the LBMA gold price, are determined using actual auctions.
Derivative contracts for many equity indices are also settled based on exchange opening
or closing auction prices.24 Some benchmark-setting mechanisms may produce outcomes
similar to uniform-price double auctions. The WM/Reuters FX fixing25 and the ISDAFIX
interest rate swap benchmark26 (now the ICE swap rate) are set using exchange prices over

22Regulators already regulate benchmark setting: principles for financial benchmarks have been released
by the International Organization of Securities Commissions (IOSCO (2013)), the FCA began regulating
a number of benchmarks, and then in 2018 EU law was revised to include benchmark regulation, along
similar principles to the IOSCO report.

23See, for example, Duffie and Stein (2015),
24Understanding the Special Opening Quotation (SOQ)
25WM/Reuters FX Benchmarks
26ICE Swap Rate
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short time periods; these outcomes may be reasonably well-modelled by uniform-price
double auctions. Likewise, some benchmarks for commodities such as oil and gas are set
using volume-weighted average prices in specific geographical locations, over relatively
short time spans; if the underlying goods are relatively homogeneous, uniform-price
auctions may be a reasonable model of outcomes.27

Other benchmarks are less well approximated by auctions, and the results of this
paper may apply less well in these settings. Some benchmarks are based on trades of
underlying assets in markets with large search or transportation frictions. For example,
the CME Feeder Cattle Index is based on US-wide cattle trade prices; the price of cattle
traded in New York on any given day may differ substantially from the price of cattle
traded in California. Other markets are organized as core-periphery networks, with
central dealers trading with peripheral counterparties (Wang, 2017; Duffie and Wang,
2016). In these markets, agents’ manipulation incentives may depend on their physical
location, or their position in the dealer network, in addition to their holding capacity for
spot goods.

Some benchmarks are not based on prices of verifiable trades, but rely on market
participants to self-report trades or potential trades. For example, LIBOR is based on
banks’ announcements of their borrowing costs,28 and some natural gas benchmarks
are based on market participants’ reports of their trades.29 In these settings, market
participants can manipulate benchmarks simply by falsely reporting trades. This is
essentially a form of fraud, and is qualitatively different from the kind of contract market
manipulation studied in this paper. The results of the paper thus do not fully capture the
ways in which market participants can distort contract payoffs in these settings.

7 Conclusion

The regulation of contract market manipulation is a contentious topic in both academic
and policy circles. Illegal manipulation is essentially defined as trading with the intent

27Klemperer and Meyer (1989) shows that supply function competition between dealers produces
outcomes equivalent to uniform-price double auctions.

28ICE LIBOR
29CFTC Press Release 5409-07
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to move prices. This definition is broad and vague, and it is unclear that regulators and
courts currently apply it in a way that can improve market quality and social welfare.

This paper develops a simple model of contract market manipulation. In the model,
manipulation is a market failure, which can cause equilibrium outcomes to be Pareto
dominated. Regulatory intervention, such as imposing position limits on spot traders,
can alleviate this market failure, and in some cases can improve the welfare of all market
participants. The model admits a precise definition of contract market manipulation,
distinguishing it from other forms of strategic trading in financial markets. The model
also illustrates how market primitives affect the likelihood of manipulation, and how
different policy tools can be used to limit manipulation risk. The results of the paper
can thus potentially be used to assist policymakers in their efforts to detect and regulate
manipulation in derivative contract markets.
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Online Appendix

A Proof of proposition 1

Repeating (3), spot traders’ total wealth can be written as:

Wspot (xi, ci, zi,p,ψ) = ψxi − µψxi︸ ︷︷ ︸
Factor exposure

− µψci︸︷︷︸
Contract price

+ pci︸︷︷︸
Contract payoff

+

ziψ−
1

2κ
z2
i︸ ︷︷ ︸

Spot good payoff

− pzi︸︷︷︸
Spot good price

(48)

A.1 Spot market bidding

To solve the spot market auction, I adopt the standard solution concept of equilibrium
in ex-post optimal bid curves. A bid curve is ex-post optimal if it is optimal for any
realization of other agents’ bid curves which occurs in equilibrium. I further restrict
attention to linear bid curves, and strategies which are symmetric across agents.

From the perspective of agent i, the spot auction defines a residual supply curve, zRSi (p),
specifying the number of units of the underlying asset that i is able to trade at price p.
This is the negative of the sum of all other agents’ bid curves:

zRSi (p) = −
∑
j 6=i
zBj
(
p; cj,ψ

)
(49)

In equilibrium, if bid curves are linear, residual supply functions will also be linear, with
a fixed slope:

zRSi (p) = d (p−ψ) + ηi (50)

Where the random intercept ηi depends on uncertainty in other traders’ bid curves,
resulting from uncertainty in their contract positions ci. I solve the spot auction model
using the standard Kyle (1989) trick: I assume agents can choose the quantity they want
to purchase for every possible realization of ηi, then show that these choices can be
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implemented by an affine demand schedule.

Claim 3. In the spot market, given d, agents’ optimal bid curves are:

zBi (p; ci,ψ) =
κ

d+ κ
ci −

κd

d+ κ
(p−ψ) (51)

Proof. Spot trader i’s wealth is given by (48). Trader i chooses her bid curves after xi
and ψ are realized, so I analyze agents’ choices conditional on xi and ψ. Assume the
agent faces a residual supply curve as described in (50), and rearrange to get the inverse
residual supply function:

pRS (zi;ηi,ψ) = ψ+
zi − ηi
d

(52)

Suppose i can condition her purchase decision on ηi. We can write (48) as:

W = ψxi −ψµx + pRS (zi;ηi,ψ) ci − µxci + ziψ−
1

2κ
z2
i − zipRS (zi;ηi,ψ) (53)

All components of (53) are known to i, so i simply chooses her purchase quantity zi to
maximize (53). Differentiate with respect to zi:

p′RS (zi;ηi,ψ) ci +ψ− zip
′
RS (zi;ηi,ψ) − p (zi;ηi,ψ) −

zi
κ

= 0 (54)

From (52), we have p′RS (zi;ηi) =
1
d , hence (54) becomes:

ci
d
+ψ−

zi
d
− pRS (zi;ηi,ψ) −

zi
κ

= 0 (55)

Expression (55) implicitly defines the optimal choice of zi given ηi. Expression (55) defines
an affine bid curve; solving for zi, we attain expression (51). Since (51) passes through
exactly all pairs (zi,p) which are i’s optimal choices for some realization of ηi, i can do
no better than submitting bid curve (51).

Now, note that from (49), the slope of residual supply d facing any given agent is
equal to the sum of all n− 1 other agents’ bid slopes. Thus, in equilibrium, we must have:

d = (n− 1)
κd

d+ κ
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Solving for d, we get:
d = (n− 2) κ (56)

Plugging this into (51), we get (7) of proposition 1. This implies that agents’ optimal bids
are:

zBi (p; ci,ψ) =
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ)

proving (7).

To get prices, sum bids and add to 0:

n∑
i=1

1
n− 1

ci −
n− 2
n− 1

κ (p−ψ) = 0

Solving for p−ψ, and using that agents’ contract positions are normally distributed with
variance σ2

c, we get (8).

A.2 Spot trader welfare conditional on xi

Now, I analyze how much utility trader i achieves in expectation, if she has factor
exposure xi. Suppose an agent with factor exposure xi is bidding against a residual
supply curve of the form (50).

Claim 4. Agent i’s expected utility given α,σ2
ψ, κ, xi, ci,σ2

η,d is:√
d2 + 2κd

ακσ2
η + d

2 + 2κd

(
− exp

(
−
α

2

(
−ασ2

ψ (ci + xi)
2 −

ασ2
η − κ

ακσ2
η + d

2 + 2κd
c2
i

)))
(57)

Proof. To calculate expected utility over uncertainty in ηi and ψ, we first write expected
utility from the auction as a function of ηi, fixing ci. Rearranging residual supply from
(50), we have:

p = ψ+
zi + ηi
d

(58)

Wealth is:
W = ψxi − µψxi − µψci + pci + ziψ−

1
2κ
z2
i − zip

Plugging in (58) for prices and rearranging, we have:
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W = ψxi − µψxi − µψci +ψci +
ηici
d

+

zi (ηi; ci) ci
d

−
(zi (ηi; ci))

2

2κ
−

(zi (ηi; ci))
2

d
−
ηizi (ηi; ci)

d
(59)

Now, to find an expression for zi (ηi; ci), we eliminate prices from expression (51) for
optimal bid curves and expression (50) for residual supply, to get zi as a function of ηi:

zi (ηi; ci) =
κ

d+ 2κ
(ci − ηi) (60)

Plugging (60) into expression (59) for wealth, and simplifying, we have that wealth is:

ψxi − µψxi − µψci +ψci +
ηici
d

+
(ci − ηi)

2 κ

2d2 + 4κd

Given our assumption of CARA utility, agents’ utility is:

− exp

(
−α

(
ψxi − µψxi − µψci +ψci +

ηici
d

+
(ci − ηi)

2 κ

2d2 + 4κd

))
(61)

We first integrate (61) over uncertainty in ηi, assuming that ηi is normally distributed
with mean 0 and variance σ2

η, to get:

−

√
d2 + 2κd

ακσ2
η + d

2 + 2κd
exp

[

−α
(
ψxi − µψxi +ψci − µψci

)
+
α

2

(
ασ2

η − κ

ακσ2
η + d

2 + 2κd

)
c2
i

]
(62)

This gives expected utility over uncertainty in ηi, conditional on ψ. Now, we integrate
(62) over uncertainty in ψ, which is normally distributed with mean µψ and variance σ2

ψ,
to get:
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√
d2 + 2κd

ακσ2
η + d

2 + 2κd

(
− exp

(
−
α

2

(
−ασ2

ψ (ci + xi)
2 −

ασ2
η − κ

ακσ2
η + d

2 + 2κd
c2
i

)))

as desired.

A.3 Optimal hedging

Using claim 4, we can find spot traders’ optimal choice of ci. We conjecture that the
equilibrium contract price is pc = µψ, and we prove this conjecture in Appendix A.7
below.

Claim 5. If:

1 +
ασ2

η − κ

ασ2
ψ

(
ακσ2

η + d
2 + 2κd

) > 0 (63)

then spot traders’ objective function is strictly concave in ci, and there is a unique optimal
choice of ci, which satisfies:

ci

1 +
ασ2

η − κ(
ασ2

ψ

) (
d2 + 2dκ+ακσ2

η

)
 = −xi (64)

Proof. Take conditional expected utility from (57). Since only the exponent depends on c,
and the function − exp

(
−α

2 (x)
)

is increasing in x, we choose ci to maximize:

−ασ2
ψ (ci + xi)

2 −
ασ2

η − κ

ακσ2
η + d

2 + 2κd
c2
i (65)

Taking the second derivative, note that the problem is only concave if:

1 +
ασ2

η − κ

ασ2
ψ

(
d2 + 2dκ+ακσ2

η

) > 0

proving (63). Assuming (63) holds, differentiate (65) with respect to ci and rearrange to
get (64). Claim 5, plugging in d = (n− 2) κ from (56), gives expressions (9) and (10) of
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proposition 1.

A.4 Equilibrium σ2
η

From (9) of proposition 1, traders’ optimal contract purchases are linear in their factor
exposures xi, and traders’ factor exposures xi are mean-0 normal, so traders’ equilibrium
contract positions are also mean-0 normally distributed. Thus, the residual supply
intercept term, ηi, is also mean-0 normally distributed. We can then solve the model by
requiring agents’ optimal behavior given σ2

η, the variance of the residual supply intercept
ηi, to generate residual supply curves with variance σ2

η.

Claim 6. For any α,σ2
ψ, κ,σ2

x,n there is a unique symmetric equilibrium value of σ2
η,

satisfying:

σ2
η =

σ2
x

n− 1

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

(66)

σ2
η >

κ−
(
ασ2

ψ

) (
n2 − 2n

)
κ2

α
(

1 +ασ2
ψκ
) (67)

Proof. Since (64) implies that contract positions ci are linear in exposures xi, agents’
contract positions are also normally distributed, with mean 0 and variance:

σ2
c =

1 +
ασ2

η − κ(
ασ2

ψ

) (
d2 + 2dκ+ακσ2

η

)
−2

σ2
x (68)

Now, note that residual supply facing i, summing over other agents’ bids using (7), is:

−
∑
j 6=i
zBi (p; ci) = −

∑
j 6=i

(
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ)

)

hence, using representation (50) of residual supply, we have:

ηi = −
∑
j 6=i

1
n− 1

ci
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and all factor exposures xi are independent. Hence, the variance of the residual supply
intercept, ηi, is:

σ2
η =

σ2
c

n− 1
(69)

Combining this with (68), and plugging in d = (n− 2) κ from (56), we obtain (66). Note
also that, using the definition of t in (9), we can write (69) as:

σ2
η =

t2σ2
x

n− 1
(70)

By claim 5, in order for (11) to solve agents’ optimal contract purchasing problem, the
concavity condition (63) must also hold; plugging in d = (n− 2) κ to (63), we get:

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

) > 0 (71)

Setting (71) to 0 and solving for σ2
η, we get:

κ−
(
ασ2

ψ

) (
n2 − 2n

)
κ2

α
(

1 +ασ2
ψκ
) (72)

The LHS of (71) is increasing in σ2
η, so (72) defines a lower bound for equilibrium

values of σ2
η. This is (67) of Claim 6. For notational convenience, we define the lower

bound as:

Mlower ≡
κ−

(
ασ2

ψ

) (
n2 − 2n

)
κ2

α
(

1 +ασ2
ψκ
) (73)

To show that there is a unique value of σ2
η satisfying (66) and (67), rearrange (66) to:

(n− 1)σ2
η =

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

σ2
x (74)

We want to study the behavior of (74), for σ2
η on the interval (Mlower,∞). This is true
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because of monotonicity. The LHS of (74) is strictly increasing in σ2
η, starting from 0 when

σ2
η = 0, and increasing unboundedly as σ2

η is large. On the interval (Mlower,∞), the RHS,

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

σ2
x

is strictly decreasing. As σ2
η approaches Mlower from the right, the RHS is unbounded

above. As σ2
η increases towards ∞, the RHS decreases towards the finite quantity:

(
1 +

1
ακσ2

ψ

)−2

σ2
x

Hence, the LHS and RHS of (74) cross exactly once on the interval (Mlower,∞).

To visually depict this argument, appendix figure A.1 shows the LHS and RHS of
(74) under different parameter settings. There are essentially two possibilities: the lower
bound Mlower, defined in (72), can be positive or negative. The left plot shows a case
where Mlower is negative. For positive σ2

η, the RHS begins from a constant value and
decreases. The right plot shows a case where Mlower is positive. The RHS is ∞ at
σ2
η =Mlower, and decreases towards a constant value. In either case, these curves must

cross exactly once, and there is a unique equilibrium value of σ2
η.

This proves claim 6, and thus (11) and (12) of proposition 1.

A.5 Spot traders’ expected welfare over uncertainty in factor exposures

Plugging in ci = txi, d = (n− 2) κ to (57) of claim 4, we get expected utility conditional
on xi, for any linear contract purchasing rule:

√
(n2 − 2n) κ

ασ2
η + (n2 − 2n) κ

− exp

−
α

2

−ασ2
ψ (1 − t)2 −

ασ2
η − κ(

ασ2
ψκ
) (

(n2 − 2n) κ+ασ2
η

)t2
 x2

i


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Figure A.1: Uniqueness of equilibrium σ2
η

Notes. Each panel shows the LHS (blue line) and RHS (red line) of (74), as we vary σ2
η.

In the left plot, we set n = 3,α = 1, κ = 1,σ2
ψ = 1,σ2

x = 1. In the right plot, we set
n = 3,α = 0.3, κ = 0.3,σ2

ψ = 1,σ2
x = 1. The dotted vertical line in the right plot is the

lower bound Mlower, defined in (73).

Integrating this against uncertainty in xi, with mean 0 and variance σ2
x, we get:

−

√
(n2−2n)κ

ασ2
η+(n2−2n)κ√√√√1 −ασ2

x

(
ασ2

ψ (1 − t)2 +

(
ασ2
η−κ(

ασ2
ψκ
)
((n2−2n)κ+ασ2

η)

)
t2

) (75)

Substituting for σ2
η using (70), we get (13).

A.6 The hedger’s contract purchasing decisions and welfare

From (4), the hedger’s wealth is:

Whedger (xH, cH,p,ψ) = ψxH − µψxH − µψcH + pcH

Since the expectation of p, over uncertainty in ψ and xH, is µψ, the expectation of the
hedger’s wealth is always equal to 0. To find the variance, adding and subtracting ψci,
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we can write this as:

= ψxH − µψxH − µψcH +ψcH + (p−ψ) cH (76)

Since the mean of the hedger’s wealth is independent of cH, the hedger simply purchases
contracts to minimize the variance of wealth. Ignoring the constant terms, we can write
(76) as:

ψxH + (ψ+ (p−ψ)) cH (77)

The hedger chooses cH to minimize the variance of (77), where p−ψ is independent of
ψ. This is a regression problem, and the solution is to choose cH equal to negative the
coefficient from regressing ψxH on p = ψ+ (p−ψ):

cH = −
Cov (ψxi,ψ+ (p−ψ))

Var (ψ+ (p−ψ))
= −

σ2
ψxH

σ2
ψ + Var (p−ψ)

This proves (14). The residual wealth variance that the hedger is exposed to is
(
1 − R2)

times the unhedged variance of wealth, x2
Hσ

2
ψ:

Var (ψxi + (ψ+ (p−ψ)) cH) =

(
1 −

(Cov (xiψ,ψ+ (p−ψ)))2

Var (ψ+ (p−ψ))Var (xiψ)

)
x2
Hσ

2
ψ

=
Var (p−ψ)

σ2
ψ + Var (p−ψ)

x2
Hσ

2
ψ (78)

Taking the expectation of (78) over xH, which has variance σ2
H, we get (15).

A.7 Equilibrium in the contract market

Finally, we show that it is an equilibrium for the market maker to set pc = µψ. As in Kyle
(1985), the market maker sets prices equal to the expectation of prices conditional on order
flow. In any linear equilibrium, spot traders’ and the pure hedger’s contract positions
ci, cH are linear in their factor exposures xi, xH; since we have assumed spot traders’ factor
exposures are infinitesimal relative to the hedger’s, spot traders’ contract positions are
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also infinitesimal. Thus, total order flow for contracts is equal to the hedger’s order flow
cH, and the market maker sets price:

pc = E [p | cH]

We can write:

E [p | cH] = E [ψ+ (p−ψ) | cH] = E [ψ | cH] + E [p−ψ | cH]

Now, we have assumed cH is independent of ψ, so E [ψ | cH] = µψ. Moreover, since xi
and xH are independent, ci and cH are independent, so from expression (8) for spot good
prices, cH is independent of p−ψ. Hence, E [p−ψ | cH] = 0. This shows that

E [p | cH] = µψ

Thus, the market maker sets pc = µψ in the first stage. This completes the proof of
proposition 1.

B Supplementary material for section 4

B.1 Comparative statics

Figure A.2 illustrates the effects of varying input parameters on equilibrium outcomes.
When spot traders’ risk aversion α is low, traders are more willing to bear factor risk in
order to attain manipulation profits, so the equilibrium and spot-trader-optimal values
of t increase, causing price variance to increase. When the spot good holding capacity κ
decreases, price variance increases. The welfare-maximizing value of t for spot traders
tends to be lower than the equilibrium t when κ is low, because the negative basis risk
externalities from manipulation are larger.

Decreasing the variance of the risk factor, σ2
ψ, makes spot traders more willing to buy

large contract positions and manipulate, which increases t in equilibrium and increases
basis risk. Increasing agents’ factor exposure variance, σ2

x, increases price variance, but
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Figure A.2: Comparative statics

Notes. Comparative statics of the equilibrium and spot trader welfare-maximizing values
of t, spot traders’ equilibrium welfare gain (minus the competitive equilibrium value of
-1), and equilibrium price variance, Var (p−ψ), as input parameters vary. The baseline
values that parameters are varied around are n = 3,α = 1, κ = 0.8,σ2

ψ = 1.5,σ2
x = 0.05.

actually decreases the equilibrium and socially optimal values of t, as it becomes more
costly for agents to deviate from full hedging. Larger factor exposures also imply that spot
traders’ welfare losses are larger, and because negative basis risk externalities are larger,
the spot-trader welfare maximizing t tends to fall below the equilibrium t when σ2

x is
large. Finally, increasing n causes all parameters to converge rapidly to their competitive
values: the equilibrium t converges to 1, and price variance and net spot trader welfare
losses from manipulation converge to 0.
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B.2 Unboundedness of equilibrium t

Claim 7. The unique equilibrium value of t is unbounded above: there exist choices of
parameters α,σ2

ψ, κ,σ2
x,n such that the equilibrium value of t is arbitrarily large.

Proof. From (11) of proposition 1, the equilibrium σ2
η must satisfy:

(n− 1)σ2
η =

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

σ2
x (79)

We can rearrange this to:

(n− 1)σ2
η

σ2
x

=

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

(80)

Analogous to (79), the LHS of (80) is increasing in σ2
η and the RHS is decreasing, so the

curves cross exactly once. From (10), the RHS of (80) is equal to t2. Hence, to show that
the equilibrium amount of overhedging can be unbounded above, we must show that, in
equilibrium, the y-value of the point where the LHS and RHS of (80) cross is unbounded
above.

To show this, consider any set of parameters such that the lower bound Mlower,
defined in (73), is greater than 0. This is true when:(

ασ2
ψ

)(
n2 − 2n

)
κ < 1

Intuitively, this requires that n,α,σ2
ψ, κ are relatively small. The RHS of (80) then ap-

proaches ∞ as σ2
η approaches Mlower from the right. As we decrease σ2

x towards 0, the
y-value of the intercept increases unboundedly. This is depicted in Appendix Figure A.3
below. As we decrease σ2

x, the LHS of (80) becomes steeper, and intersects the RHS (the
purple line) at higher and higher y-values. The RHS is unbounded above, so the y-value
of the intercept is also unbounded above.

Intuitively, what is happening in this example is that the positive lower bound Mlower
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Figure A.3: Unbounded over-hedging

Notes. The dotted vertical line is the lower bound Mlower, defined in (73). The purple line
is the RHS of (80), as σ2

η varies. The blue, red, yellow, and green lines show the LHS of
(80), for different values of σ2

x in {0.1, 0.25, 0.5, 1}. For all lines, we set n = 3,α = 0.3, κ =
0.3,σ2

ψ = 1.

implies that there cannot be an equilibrium with low σ2
η, in order for spot traders’ second-

order condition to hold. But σ2
η depends on t and σ2

x , the variance of spot traders’ factor
risk exposures. As we decrease σ2

x towards 0, in order to sustain an equilibrium with a
large equilibrium σ2

η, spot traders must buy a large number of contracts for each unit
of their factor risk exposures, so t must increase unboundedly to keep σ2

η above the
lower bound Mlower. In other words, spot traders must manipulate enough, and create
enough basis risk, to discourage other spot traders from buying infinitely large contract
positions.

B.3 Convergence rate of equilibrium t

Claim 8. As n increases to ∞ holding fixed other parameters, t− 1 converges to 0 at rate
1
n2 .
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Proof. From (11) and (10), we have:

σ2
η =

σ2
x

n− 1

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

(81)

and:

t =

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

)
−2

(82)

The RHS of (82) is decreasing in σ2
η. Hence an upper bound for the equilibrium t comes

from setting σ2
η to 0:

t 6

1 −
κ(

ασ2
ψκ
)
((n2 − 2n) κ)

−1

(83)

Now, we can get an upper bound for σ2
η by plugging the upper bound on t, (83) into (81):

σ2
η 6

σ2
x

n− 1

1 −
κ(

ασ2
ψκ
)
((n2 − 2n) κ)

−2

(84)

The RHS is decreasing in n, hence, we can set n = 3 in (84) to get:

σ2
η 6M ≡

σ2
x

2

1 −
κ(

ασ2
ψκ
)
(3κ)

−2

where M does not depend on n. Now, a lower bound for t comes from plugging the
upper bound M into (82).

t >

1 −
αM− κ(

ασ2
ψκ
)
((n2 − 2n) κ+αM)

−1

(85)

Together, (83) and (85) bound the equilibrium value of t. Now, the function 1
1−x is

differentiable at x = 1 with derivative equal to 1. Hence, (83) converges to 1 at the same
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rate that
1 −

κ(
ασ2

ψκ
)
((n2 − 2n) κ)

converges to 1, which is 1
n2 ; (85) is analogous. Thus, the equilibrium value of t − 1

converges to 0 at rate 1
n2 .

B.4 Heterogeneous beliefs

In this appendix, I show that contract purchases can also be generated by dispersion
in agents’ beliefs about ψ. Suppose a spot trader believes the mean of ψ is βψi, and
its variance is σ2

ψ. We assume for simplicity, as in proposition 1, that spot traders can
purchase contracts at a fixed price µψ, and have no price impact in the contract market.
We assume spot traders have no factor exposures. From (62), the agent’s utility as a
function of ψ, over uncertainty in the spot market, is:√

d2 + 2κd
ακσ2

η + d
2 + 2κd

(
− exp

(
−α
(
ψci − µψci

)
−
α

2

(
ασ2

η − κ

ακσ2
η + d

2 + 2κd

)
c2
i

))

To calculate the agent’s expected utility (under her beliefs), we integrate assuming ψ has
mean βψi and variance σ2

ψ. This gives:

=

√
d2 + 2κd

ακσ2
η + d

2 + 2κd

(
− exp

(
−
α

2

(
−ασ2

ψc
2
i + 2βψici − 2µψci −

ασ2
η − κ

ακσ2
η + d

2 + 2κd
c2
i

)))

Only the exponent depends on ci, so we maximize:

−ασ2
ψc

2
i + 2

(
βψi − µψ

)
ci −

ασ2
η − κ

ακσ2
η + d

2 + 2κd
c2
i

Differentiating and solving for ci, we have:

ci

1 +
ασ2

η − κ(
ασ2

ψ

) (
d2 + 2dκ+ακσ2

η

)
 =

βψi − µψ

ασ2
ψ

(86)
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Comparing (86) to (9) and (10), a belief shock βψi is isomorphic to a factor exposure xi of
size:

xi = −
βψi − µψ

ασ2
ψ

in the sense that it generates the same contract purchasing decisions and spot market
behavior. Hence, contract purchases can be motivated either by disagreement or risk-
sharing. If we do not observe factor exposures directly, based only on agents’ contract
purchases and spot market behavior, we cannot separately identify factor exposures from
heterogeneous beliefs, complicating welfare analysis for spot traders.

However, spot traders’ optimal behavior in spot markets only depends on the size of
their contract positions and the structure of spot markets, not the motivations of spot
traders for purchasing contracts. Hence, the results of this paper concerning spot traders’
incentives in the spot market, and their effects on hedgers’ welfare, hold even if spot
traders’ contract positions are driven by differences in beliefs.

B.5 Price impact in the contract market, quadratic taxes and subsidies

In this appendix, I show that, if spot traders’ contract purchases have some exogeneous
amount of price impact, we can still solve for linear optimal contract purchasing rules.
Moreover, price impact is isomorphic to subsidies or taxes to spot traders which are
quadratic in the size of traders’ contract positions. Thus, a regulator can implement any
desired choice of hedging aggressiveness t in equilibrium using some quadratic subsidy
or tax scheme.

Suppose that spot traders’ contract purchases move the spot price linearly: if a spot
trader purchases ci contracts, the price per contract is:

µψ + λci

The total cost of buying ci contracts is then:

µψci + λc
2
i (87)
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Combining this cost with (3) and integrating, a spot trader’s conditional expected utility
if she has factor exposure xi and contract position ci is:

−1√
2πσ2

ψ

ˆ √
d2 + 2κd

ακσ2
η + d

2 + 2κd
exp

[

−α
(
ψxi − µψxi +ψci − µψci − λc

2
i

)
−
α

2

(
ασ2

η − κ

ακσ2
η + d

2 + 2κd

)
c2
i

]
exp

(
−

(
ψ− µψ

)2

2σ2
ψ

)
dψ

=

√
d2 + 2κd

ακσ2
η + d

2 + 2κd

(
− exp

(
−
α

2

(
−ασ2

ψ (ci + xi)
2 − 2λc2

i −
ασ2

η − κ

ακσ2
η + d

2 + 2κd
c2
i

)))
Hence, agents choose ci to maximize:

−ασ2
ψ (ci + xi)

2 − 2λc2
i −

ασ2
η − κ

ακσ2
η + d

2 + 2κd
c2
i

The optimal choice of ci thus satisfies:

ci = −

1 +
ασ2

η − κ(
ασ2

ψ

) (
d2 + 2dκ+ακσ2

η

) + 4λ
ασ2

ψ

−1

xi (88)

Substituting for d using the spot market equilibrium bid curves, we have:

ci = −

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

) + 4λ
ασ2

ψ

−1

xi (89)

Expression (89) shows that spot traders’ optimal contract positions are still linear in their
factor exposures xi, with coefficient:

t ≡

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

) + 4λ
ασ2

ψ

−1

(90)

Comparing (90) to (10) of proposition 1, price impact in the contract market decreases
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t, causing spot traders to hedge less per unit of their factor exposures. Given this t, the
equilibrium σ2

η is the unique value that satisfies:

σ2
η =

σ2
x

n− 1

1 +
ασ2

η − κ(
ασ2

ψκ
) (

(n2 − 2n) κ+ασ2
η

) + 4λ
ασ2

ψ

−2

and outcomes in the spot market are described by (7) and (8). Qualitatively, price impact
in contract markets simply causes spot traders to buy less contracts per unit of their factor
exposures.

Expressions (88) and (90) also imply that regulators can implement any desired choice
of t as a unique equilibrium, by imposing quadratic taxes or subsidies on agents’ contract
positions. To see this, suppose that a regulator can charge all spot traders some net
amount τc2

i for buying ci contracts, where τ can be positive or negative. A spot trader’s
total cost for buying ci contracts is thus:

µψci + λc
2
i + τc

2
i

Analogous to (90), spot traders’ optimal hedging decisions are linear, satisfying:

t ≡

1 +
ασ2

η − κ(
ασ2

ψ

) (
d2 + 2dκ+ακσ2

η

) + 4λ
ασ2

ψ

+
4τ
ασ2

ψ

−1

(91)

Now, suppose the regulator wishes to implement some positive level of hedging aggres-
siveness, t∗ > 0, in equilibrium. From (70) of appendix A.4, we have:

σ2
η =

(t∗)2 σ2
x

n− 1

Hence, in order to implement t∗, we must choose τ such that:

t∗ =

1 +
α
(
(t∗)2σ2

x
n−1

)
− κ(

ασ2
ψ

)(
d2 + 2dκ+ακ

(
(t∗)2σ2

x
n−1

)) +
4λ
ασ2

ψ

+
4τ
ασ2

ψ


−1
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By changing τ, the RHS can be varied from 0 to ∞, so for any t∗, and any values of other
primitives, there is a unique value of τ which implements t∗ as an equilibrium outcome.

Throughout this appendix, we have taken price impact as exogenous. In a more
realistic model, price impact would result endogenously from the contract market, in
which spot traders and the hedger bid for contracts in a double auction. This is analytically
difficult to solve, because spot traders’ order flow would be informative about their spot
market trades, and thus contract settlement prices.

The λc2
i term in (87) could also be used to model holding costs for contracts, which

may arise from margin capital requirements or related factors. The results of this appendix
then imply that quadratic holding costs, like price impact, decrease spot traders’ hedging
aggressiveness in equilibrium. Once again, spot traders’ optimal behavior in spot markets
depends only on the size of their contract positions and spot market structure. Thus,
price impact in contract markets would not affect the results of section 5.

C Supplementary material for section 5

C.1 Proof of propositions 2 and 3

We prove proposition 3; proposition 2 is a special case. Claim 9 first characterizes agents’
best responses, given the slope of residual supply, and subsection C.1.2 proves proposition
3 using claim 9.

C.1.1 Best responses

Claim 9. If agent i has inventory position yi and contract position ci, and the slope of
residual supply is di, then agent i’s unique ex-post optimal bid curve is:

zBi (p; yi, ci) = −
di

κi + di
yi +

κi
κi + di

ci −
κidi
κi + di

(p−ψ) (92)
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Proof. Analogously to claim 3, assume that residual supply takes the form:

zRSi (p,η) = di (p−ψ) + ηi

We will optimize pointwise in the residual supply intercept ηi. Since we assumed all ci
and yi have full support, in any linear bidding equilibrium, all ηi’s will also have full
support. Define p∗ (ηi) as the optimal choice of p for any given ηi, that is:

p∗ (ηi) ≡ arg max
p
W (zRSi (p,ηi) ,p; yi, ci)

= arg max
p
ψzRSi (p,ηi) −

y2
i

2κi
−
yizRSi (p,ηi)

κi
−
zRSi (p,ηi)

2

2κi
+ cip− zRSi (p,ηi)p

Since zRSi (p,ηi) is affine and increasing in p, the objective function concave in p, thus the
first-order condition is necessary and sufficient for p∗ (ηi) to be optimal. Differentiating
with respect to p and setting to 0, and using that z′RSi (p,ηi) = di, we have:

−
di
κi
yi −

zRS (p
∗ (ηi) ,ηi)
κi

di + ci − zRS (p
∗ (ηi) ,ηi) − (p∗ (ηi) − π)di = 0 (93)

Hence, any pair (p∗ (ηi) , zRS (p∗ (ηi) ,ηi)) – that is, any point (p, z) which is the agent’s
optimal choice for some ηi – satisfies (93). Hence, the unique bid curve which passes
through the set of all ex-post optimal points is the curve implicitly defined by (93). Solving
(93) for zRS (p∗ (ηi) ,ηi), we have (92).

C.1.2 Equilibrium

This proof is based on Appendix A.4 of Du and Zhu (2012), with notational modifications
to suit the context of this paper. We seek a vector of demand and residual supply slopes
bi which satisfy, for all i:

di =
∑
j 6=i
bi = B− bi (94)

bi =
diκi
κi + di

(95)
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Rearranging, we have:

di =
biκi
κi − bi

(96)

Combining (94) and (96), we have:

∑
j

bj − bi =
biκi
κi − bi

Defining B ≡
∑
j bj, we have

(κi − bi) (B− bi) = biκi

This has two solutions. In order for B > bi, we must pick:

bi =
2κi +B−

√
B2 + 4κ2

i

2
(97)

This is (22) of proposition 2. B must satisfy:

B =
∑
j

bj =

n∑
i=1

2κi +B−
√
B2 + 4κ2

i

2
(98)

This is (23) in the main text. By multiplying the top and bottom of the RHS by 2κi +B+√
B2 + 4κ2

i and simplifying, this becomes:

B =

n∑
i=1

2κiB

2κi +B+
√
B2 + 4κ2

i

Or,

B

−1 +

n∑
i=1

2κi

2κi +B+
√
B2 + 4κ2

i

 = 0 (99)
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Now, define

f (B) = −1 +

n∑
i=1

2κi

2κi +B+
√
B2 + 4κ2

i

In order for B to solve (99) when B > 0, we need f (B) = 0. Now, f (0) > 0, f (B) → −1
as B→∞, and f′ (B) < 0 for B > 0. Hence, f (B) = 0 at some unique B, hence there is a
unique value of B which solves (99), and thus there is a unique linear equilibrium for any
demand slopes κ1 . . . κn.

Substituting bi =
κidi
κi+di

into agents’ best-response bid curves from claim 9, we have
agents’ equilibrium bids in expression (30). To find prices, sum agents’ demand curves
and equate to 0:

n∑
i=1

[
−yi

bi
κi

+ ci
bi∑
j 6=i bj

− (p−ψ)bi

]
= 0

Solving for p, we have (31).

C.2 Proof of claim 2

Proof. If contract positions are i.i.d., with variance σ2
c, the variance of prices can be

calculated by taking the variance of (21):

Var (p−ψ) =
1
B2

n∑
i=1

(
bi∑
j 6=i bj

)2

σ2
c (100)

Now, using the upper and lower bounds we have upper and lower bounds for each
bi∑
j6=i bj

from (25) of claim 1, we have:

1
B2

n∑
i=1

s2
iσ

2
c 6

1
B2

n∑
i=1

(
bi∑
j 6=i bj

)2

σ2
c 6

1
B2

n∑
i=1

(
1 +

smax

1 − 2smax

)2

s2
iσ

2
c

=⇒ σ2
c

B2

n∑
i=1

s2
i 6

1
B2

n∑
i=1

(
bi∑
j 6=i bj

)2

σ2
c 6

σ2
c

B2

(
1 +

smax

1 − 2smax

)2 n∑
i=1

s2
i

Using the definition of HHI in (26), we get (27).
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C.3 Proof of corollary 1

Conjecture that:

bi =
n− 2
n− 1

κ

This solves (22) and (23). Plugging this into (30) and (31), we get (34). To calculate price
variance, set the sum of all agents’ bids to 0 and solve for price, to get:

p−ψ =
1
nκ

n∑
i=1

[
−yi +

1
n− 2

ci

]

Taking the variance, and using that all yi and ci are i.i.d., we get (35).

C.4 Proof of proposition 4

For basis risk, we simply take the variance of expression (31). Let y and c represent
vectors of inventory shocks and contract positions:

y =


y1
...
yn

 , c =


c1
...
cn


Writing (31) using vector notation, prices are:

p−ψ =
1
B

(
k′yy+ k′cc

)
Since we have assumed that contract positions and inventory shocks have mean 0, price
variance can be written as:

E
[
(p−ψ)2

]
= E

[
1
B2

(
k′yy+ k′cc

) (
k′yy+ k′cc

)′]
= E

[
1
B2

(
k′yyy

′ky + 2k′yyc
′kc + k

′
ccc

′kc
)]

(101)
Now, since we assumed each element of y and c has mean 0, we have:

E
[
yy′

]
= Σyy, E

[
yc′
]
= Σyc, E

[
cc′
]
= Σcc (102)
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Substituting these into (101), we get (37).

C.5 Manipulation rents

Define the expected manipulation rent as:

E

[(
p− µψ

) n∑
i=1

ci

]
(103)

Expression (104) is the total expected transfer from spot traders to manipulators. I call this
the expected manipulation rent, as it represents the rents that spot traders, as a group, extract
from the hedger, as a result of spot traders’ ability to move prices in spot markets. This
may be a useful number in regulatory proceedings, to quantify the total expected profits
that spot traders as a group extract from the representative hedger. In the symmetric case,
the expected manipulation rent is:

Claim 10. In the symmetric model, the expected manipulation rent is:

τ ≡ E

[(
p− µψ

) n∑
i=1

ci

]
=

σ2
c

(n− 2) κ
(104)

Proof. Since we have assumed that ψ is independent of factor exposures xi, which are
linearly related to contract positions ci, we have:

E

[
ψ

n∑
i=1

ci

]
= E [ψ]E

[
n∑
i=1

ci

]
= E

[
µψ

n∑
i=1

ci

]

Hence,

E

[(
p− µψ

) n∑
i=1

ci

]
= E

[
(p−ψ)

n∑
i=1

ci

]
Now, plugging in for (p−ψ) using (8) of proposition 1, this is:

E

((
n∑
i=1

ci

)
(
∑n
i=1 ci)

n (n− 2) κ

)
(105)
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Since we have assumed agents’ factor exposures xi are independent, agents’ contract
positions ci are also independent, so (105) becomes (104).

Expression (104) behaves similarly to basis risk, (15). Both are higher when spot
traders’ contract positions, σ2

c, are large; when spot traders’ holding capacities κ are low,
so the price impact of spot trades is higher; and when n is lower, so auctions are less
competitive.

In the context of the model, only basis risk matters for the hedger’s welfare. This is
because we have made the simplifying assumption that spot traders are infinitisemally
small, so manipulation rents are infinitesimally small from the perspective of the hedger.
Basis risk, on the other hand, affects the hedger and is not diffused away. The following
claim shows that manipulation rents are also fairly simple to estimate in the general
model, with similar data requirements to basis risk.

Claim 11. In the general model of proposition 3, manipulation rents are:

τ =
1
B

(
−2k′yΣyc1 + k′cΣcc1

)
(106)

where 1 is the length-n unit vector.

Proof. We have:

E

[
(p−ψ)

(
n∑
i=1

c

)]
= E

[(
1
B

(
k′yy+ k′cc

)) (
c′1
)]

= E

[
1
B

(
k′yyc

′1 + k′ccc
′1
)]

Substituting using (102), we get (106).

C.6 Proof of proposition 5

In the competitive case, spot traders’ wealth is described by (41). Spot traders’ marginal
value of the spot good is thus:

ψ−
ci
κ
−
zi
κ
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If residual supply is perfectly elastic, spot traders bid to equate marginal values to the
spot price:

ψ−
ci
κ
−
zi
κ

= p

Solving for zi, we get (43).

C.7 Proof of proposition 6

We largely follow appendix A.1. Traders face residual supply curve:

zRSi (p) = d (p−ψ) + ηi

Spot traders’ wealth, ignoring terms independent of zi, is:

(zi + ci)ψ−
1

2κ
(zi + ci)

2 − pRS (zi;ηi,ψ) zi (107)

If we write (107) in terms of the quantity that traders take delivery of, qi ≡ zi− ci, defined
in (42), we get:

qiψ−
1

2κ
q2
i − pRS (zi;ηi,ψ) (qi − ci)

= pRS (zi;ηi,ψ) ci + qiψ−
q2
i

2κ
− pRS (zi;ηi,ψ)qi (108)

Expression (108) is identical to (53), up to terms that do not depend on ci, zi,pRS. Thus,
appendix A.1 implies that the ex-post equilibrium bid curves, expressed in terms of
delivered quantities qi, are:

qBi (p; ci,ψ) =
1

n− 1
ci −

n− 2
n− 1

κ (p−ψ) (109)

this proves (46) of proposition 6. Substituting zBi for qBi in (109) using the fact that
qBi = zBi+ ci from (42), we get (45) of proposition 6. To calculate equilibrium prices, note
that markets clear when:

n∑
i=1

ci + zBi (q; ci,ψ) =
n∑
i=1

qBi (p; ci,ψ) = 0
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Since the quantity-delivered bid curve (109) is identical to the bid curve (7) in proposition
1 of the baseline model, the market clearing price under physical delivery is identical to
the market clearing price (8) of proposition 1 in the baseline model, proving (47).

D Proof of claim 1

Fix κ1 . . . κN, and let
smax =

maxi κi∑n
i=1 κi

In appendix D.1 below, I prove the following claim.

Claim 12. For any demand slopes κ1 . . . κN, when smax < 1
2 , for all i, we have:(

1 −
smax

1 − smax

)
6
bi
κi

6 1

Now, from claim 9 of appendix C.1, agents’ best-response bid curves are:

zBi (p; yi, ci) =
di

κi + di
yi +

κi
κi + di

ci −
κidi
κi + di

(p− π) (110)

We want to bound the difference between this and the approximation:

zBi (p; yi, ci) ≈ yi +
κi∑n
i=1 κi

ci − κi (p− π) (111)

Using claim 12, we can bound all three coefficients in the bid curve (110). Recall that
bi =

κidi
κi+di

. Thus, we have: (
1 −

smax

1 − smax

)
κi 6

κidi
κi + di

6 κi

1 −
smax

1 − smax
6

di
κi + di

6 1
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Recall that di ≡
∑
j 6=i bi. Thus,

κi
κi + di

=
κi

κi +
∑
j 6=i bi

Using claim 12, we have:

κi
κi +

∑
j 6=i κj

>
κi

κi +
∑
j 6=i bi

>
κi

κi +
(

1 − smax
1−smax

)∑
j 6=i κj

(112)

Now, note that:

κi

κi +
(

1 − smax
1−smax

)∑
j 6=i κj

>
κi(

1 − smax
1−smax

)(
κi +

∑
j 6=i κj

) = si

(
1 +

smax

1 − 2smax

)

Hence, (112) becomes:

si 6
κi

κi +
∑
j 6=i bi

6

(
1 +

smax

1 − 2smax

)
si

This proves claim 1, since from (110), κi
κi+

∑
j6=i bi

is just another way to write bi∑
j6=i bj

.

D.1 Proof of claim 12

From (22) in proposition 2, we have:

bi =
B+ 2κi −

√
B2 + 4κ2

i

2

This immediately implies that bi 6 κi, as bi approaches κi from below as B→∞. This
proves the upper bound in claim 12,

bi
κi

6 1
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Thus, we need only prove the lower bound:(
1 −

smax

1 − smax

)
6
bi
κi

(113)

We will proceed in two stages. Appendix D.1.1 proves claim 13, which states that, given
smax and κmax, we can construct an analytical lower bound for B. Appendix D.1.2 then
uses the lower bound for B to lower-bound the ratio bi

κi
.

D.1.1 A lower bound for B

This subsection proves the following claim:

Claim 13. Fixing κmax, smax, we have:

B >
2smax − 1

smax (smax − 1)
κmax

Proof. From (23) in proposition 2, given κ1 . . . κN, B satisfies:

− 1 +

n∑
i=1

2κi

2κi +B+
√
B2 + 4κ2

i

= 0 (114)

For any κ1 . . . κN, define B (κ1 . . . κn) as the induced value of B, that is:

B (κ1 . . . κn) =

B : −1 +

n∑
i=1

2κi

2κi +B+
√
B2 + 4κ2

i

= 0


Now, without loss of generality, suppose agent i = 1 has the largest demand slope, so
that:

smax = s1 =
κ1∑n
i=1 κi

Alternatively, we can write this as:

n∑
i=2

κi =

(
1 − smax
smax

)
κ1 (115)
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Consider the following optimization problem:

min
κ2...κn

B (κ1 . . . κn)

s.t.
n∑
i=2

κi =

(
1 − smax
smax

)
κ1, 0 6 κi 6 κ1 ∀i (116)

In words, problem (116) states that we choose κ2 . . . κn to minimize B (κ2 . . . κn), fixing κ1

and smax (which is equivalent to fixing the sum
∑n
i=2 κi). The minimal value of B from

this problem is a lower bound for B (κ1 . . . κn) given κ1 and smax. The following claim
characterizes the solution to problem (116).

Claim 14. If κ2 . . . κn are an optimal solution to (116), then all but 1 element of κ2 . . . κn
must be equal to either κ1 or 0.

Proof. We use the the implicit function theorem to calculate the derivative dB
dκi

. Write
expression (114) as:

L = −1 +
2κ1

2κ1 +B+
√
B2 + 4κ2

1

+

n∑
i=2

2κi

2κi +B+
√
B2 + 4κ2

i

= 0 (117)

Differentiate (117) with respect to κi, to get:

∂L

∂κi
:

2B
(
B+

√
B2 + 4κ2

i

)
√
B2 + 4κ2

i

(
B+ 2κi +

√
B2 + 4κ2

i

)2 (118)

which is strictly positive. Differentiate (117) with respect to B to get:

∂L

∂B
: −

n∑
i=1

2κi

(
1 + B√

B2+4κ2
i

)
(
B+ 2κi +

√
B2 + 4κ2

i

)2
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This is strictly negative, so we have:

dB

dκi
= −

∂L
∂κi
∂L
∂B

> 0 (119)

Hence, B is strictly increasing in κi. Differentiating (118) once again in κi, we have:

∂2L

∂κ2
i

= −
2B

(B2 + 4κ2)
3
2
< 0

Hence, ∂L
∂κi

is strictly decreasing in κi. This implies that, if κi > κj, then ∂L
∂κi

< ∂L
∂κj

; from

(119), this then implies that dB
dκi

< dB
dκj

. Now, suppose we have a vector of demand slopes
κ2 . . . κn, such there exists indices i, j such that κi, κj are strictly between 0 and κ1, with
κi > κj. Then, since dB

dκi
6 dB

dκj
, the following vector of demand slopes, for sufficiently

small δ, lowers the objective value in (116), while maintaining constraint satisfaction:

(
κ2 . . . κi + δ, . . . κj − δ, . . . κn

)
In words, this says that, since dB

dκi
is lower for higher κi, we can always lower the objective

by increasing high values of κi and decreasing lower values to keep the sum constant.
Thus, if κ2 . . . κn are optimal for problem (116), there cannot exist two indices i, j such
that κi and κj are both strictly between 0 and κ1; thus, the solution to (116) must have all
but one element of κ2 . . . κN equal to either κ1 or 0, proving claim 14.

The bound from claim 14 is not yet useful, as the optimal value from problem (116)
does not admit a simple analytical expression. However, the limit of a sequence of
relaxations of problem (116) does yield an analytically tractable solution. I construct a
sequence of relaxations of problem (116), parametrized by the integer h ∈ {1, 2, . . .∞}.
For any h, let κh (x) be a function defined on the interval [2,n+ 1], which is piecewise
constant on intervals of length 1

h . Define B (κh (x)) as:

B (κh (x)) =

B : −1 +
2κ1

2κ1 +B+
√
B2 + 4κ2

1

+

ˆ n

2

2κh (x)

2κh (x) +B+

√
B2 + 4 (κh (x))

2
dx = 0


(120)
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Define the hth minimization problem as:

min
κh(x)

B (κh (x))

s.t.
ˆ n

2
κh (x) = K (1 − smax) , 0 6 κi 6 κ1 ∀i (121)

Effectively, (120) splits each κ2 . . . κn value in the original problem (116) into h components,
which may have different values of κi. To see that problem (121) is a strict relaxation of
the original optimization problem (116), note that if we constrain κh (x) to be constant on
the intervals

[2, 3), [3, 4), . . . [n,n+ 1)

then both the objective and the constraints in problem (121) reduced to the original prob-
lem (116). Thus, any value attainable in the original optimization problem is attainable in
the relaxed optimization problem, so the optimal value from problem (121), for any h, is
a lower bound for the original problem.

The integral in the relaxed problem (120) is simply a weighted sum over a finite
number of values of κh (x); thus, as in the original problem, the objective function for
the relaxed problem is concave in the value of κh (x) on any interval. Thus, claim 14
characterizing the solution to the original problem applies to the relaxed problem for any
h: at any optimal solution, κh (x) must be equal to either 0 or κ1 on all intervals but one.
Taking the limit as h→∞, the constraint

ˆ n

2
κh (x) = K (1 − smax)

implies that κh (x) must be equal to κ1 on a set with measure arbitrarily close to

1
smax

− 1

and, κh (x) = 0 otherwise, except for an interval which has measure arbitrarily close to 0.
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Hence, in the limit as h→∞, any choice of κh (x) which minimizes B has:

ˆ n

2

2κh (x)

2κh (x) +B+

√
B2 + 4 (κh (x))

2
dx→

(
1

smax
− 1
)

2κ1

2κ1 +B+
√
B2 + 4κ2

1

Using (120), in the limit as h→∞, the minimized value of B thus satisfies:

−1 +
2κ1

2κ1 +B+
√
B2 + 4κ2

1

+

(
1

smax
− 1
)

2κ1

2κ1 +B+
√
B2 + 4κ2

1

= 0

=⇒ −1 +
1

smax

2κ1

2κ1 +B+
√
B2 + 4κ2

1

= 0

This can be analytically solved for B, to get:

B =
2smax − 1

smax (smax − 1)
κ1

This is thus a lower bound for the optimal value to the original optimization problem
(116), hence, this is a lower bound for B given κ1 and smax. It is a nontrivial lower bound
whenever smax < 1

2 ; otherwise, it is nonpositive. Since we assumed κ1 = κmax, this proves
claim 13. This lower bound is tight whenever smax = 1

n for some integer value of n, as
it is exactly the equilibrium value of B when there are n agents with identical demand
slopes, κi = κ.

D.1.2 Bounding bi

Now, we use claim 13 to prove the lower bound, (113), of claim 12. We have:

bi =
2κi +B−

√
B2 + 4κ2

i

2
(122)

This shows that bi is increasing in B. Thus, we can find a lower bound for the ratio b1
κ1

for
the largest agent by plugging in the lower bound for B from claim 13 and solving for bi.
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This gives:
b1

κ1
>

(
1 −

smax

1 − smax

)
(123)

To bound the ratio bi
κi

for all other i, I show that the ratio bi
κi

is decreasing in κi, for B
fixed. To see this, differentiate (122), fixing B, to get:

dbi
dκi

= 1 −
2κi√
B2 + 4κ2

i

This is decreasing in κi, so bi is a concave function of κi fixing B, and bi = 0 when κi = 0.
Now,

d

dx

bi (κi)

κi
=
κib
′
i (κi) − bi (κi)

κ2
i

This is negative if the numerator is negative; using that bi (0) = 0, write the numerator as:

κib
′
i (κi) − bi (κi) = κib

′
i (κi) −

ˆ κi

0
b′i (κ)dκ

=

ˆ κi

0
b′i (κi) − b

′
i (κ)dκ

Since b′i (κi) is a decreasing function, b′i (κi) > b
′
i (κ) for all κ 6 κi, hence the integrand

is everywhere nonpositive; hence d
dx
bi(κi)
κi

6 0 for all κi > 0. Thus, biκi is a decreasing
function of κi fixing bi. This gives us:

bi
κi

>
b1

κ1
>

(
1 −

smax

1 − smax

)
which is a nontrivial lower bound when smax < 1

2 . This proves the lower bound (113),
and thus proves claim 12.
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