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Abstract

This study quantifies bargaining power in supply-side negotiations with incomplete
information, where car dealers negotiate inventory prices with large wholesalers after
an auction. We measure an agent’s bargaining power by where the agent’s expected
surplus lies relative to a benchmark mechanism favoring the agent and one favoring the
opponent. We consider second-best benchmarks, which account for information con-
straints, and first-best benchmarks, which do not, as well as benchmarks that account
for the effect of competition on bargaining power. We propose a direct-mechanism
method for estimating a seller’s private value as the gradient of a menu from which
she chooses a secret reserve price. Bargaining power weights offer insights about inef-
ficiency, as bargaining is not a zero-sum game when agents have incomplete informa-
tion. On average, dealers (buyers) have less bargaining power than sellers relative to
a benchmark where dealers face no competition. Accounting for the direct effect of
competition, dealers have more bargaining power than sellers, achieving close to the
highest possible surplus given competition. This holds true when the seller is a man-
ufacturer, a finding that is consistent with manufacturers’ recent movement toward
direct-to-consumer used-car sales.
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1 Introduction

Surplus division between parties is of interest in many settings: business-to-consumer negoti-

ations, vertical contracting, divisions of cartel rents, estimation of patent violation damages.

The party taking home a larger share is traditionally referred to as having more bargaining

power. Studies over the past decade have demonstrated the importance of accounting for

bargaining power in counterfactual policies: ignoring bargaining power—or incorrectly mod-

eling a buyer-seller relationship as though one party has all of the power—yields misleading

welfare implications. In the existing literature, bargaining power is typically assumed to be

an exogenously given weight in a complete-information Nash bargaining framework.1 The

Nash solution (or other complete-information models), however, abstracts away from an im-

portant feature of real-world negotiations: private information, in which a negotiating party

does not know the willingness to pay or sell of other parties. Empirical analyses of bargaining

power in private/incomplete-information settings are almost nonexistent.2

We study bargaining power in the wholesale used-car industry, where parties in a vertical

supply relationship negotiate under incomplete information. In this market, used-car dealers

buy from large fleet-owning institutions, such as banks, rental car companies, or original

equipment manufacturers (OEMs). Each car trades through a mechanism of a secret reserve

price ascending auction followed by alternating-offer bargaining whenever the reserve price

exceeds the highest bid from the auction (which we refer to as the auction price). The

data consist of over 90,000 sale attempts. We observe actions taken by negotiating pairs

even for cases ending in disagreement. This feature not only makes the setting appropriate

for studying bargaining power under incomplete information, such data are necessary in

any setting if one hopes to distinguish between Nash bargaining and incomplete-information

bargaining. With these data, we address the question of how buyers’ bargaining power

compares to sellers’ and how it compares for OEM vs. non-OEM sellers. Accounting for

1This is the case in many empirical studies of multiple simultaneous bilateral negotiations in a Nash-in-
Nash framework, e.g., Crawford and Yurukoglu (2012) and subsequent studies.

2In patent violation damages, for example, courts’ standard for many years was to assume that, in the
absence of infringement, parties would split surplus according to a Nash bargaining solution (typically a
50/50 split). In recent years, courts (e.g., VirnetX, Inc. v. Cisco Systems, Inc., 2014) have criticized the
Nash solution as detached from reality, demanding better ways to identify bargaining power (rather than ad
hoc assumptions), but no standard approach exists.
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incomplete information is critical, as inventory is sold car-by-car, and agents frequently

engage in negotiations that later fail, a feature inconsistent with complete-information models

(e.g., Nash bargaining).

The term bargaining power has no formal (or informal) definition in incomplete-information

settings. Under Nash bargaining, in contrast, the term ubiquitously refers to an agent’s

weight in the joint product of common-knowledge surpluses. We propose new measures

of bargaining power under incomplete-information that quantify where an agent’s expected

surplus in the real world lies between her expected surplus under a benchmark mechanism

she would prefer and one her opponent would prefer. This extends a traditional (complete-

information, Nash bargaining) notion of power to the incomplete-information case. We con-

sider several sets of benchmarks, including first-best benchmarks, under which all efficient

trades succeed (cases where the buyer values the car more than the seller), and second-best

benchmarks, under which some efficient trades fail due to incomplete information. We also

consider benchmarks that parse out the effect of bidder competition, which forces the final

price to exceed the auction price; we refer to this as the competition constraint.

For each set of benchmarks, we consider one preferred by the seller and one preferred by

the buyer. For a given pair of benchmarks m, let αm
B be the buyer’s bargaining power and

αm
S the seller’s. In the seller’s preferred mechanism, αm

S = 1 and αm
B = 0, and vice versa.

Any intermediate values are possible, as are weights exceeding 1, which can arise from an

opponent not fully exploiting her information rent, or negative weights, which can arise for

the same reason or from an inefficient equilibrium.3 Unlike in Nash bargaining, the sum of

weights need not equal one.4

Bargaining theory shows that incomplete information gives rise to multiple equilibria,

delay, and inefficiency, complicating empirical work. Ausubel et al. (2002) highlighted that

3Bargaining games with incomplete information have a continuum of equilibria that are qualitatively
very different, with some being very inefficient (e.g., Ausubel and Deneckere 1992) and some very efficient
(Ausubel and Deneckere 1993), and with different surplus splits.

4When measured relative to second-best benchmarks, the sum can exceed 1: agents can collectively achieve
strictly greater expected utility than that available through any convex combination of agent-preferred
mechanisms. The sum can be less than one in inefficient equilibria. These weights are thus informative
about both the pie split and pie size. In tranferrable utility settings, any relationship between bargaining
power and pie size is ignored by Nash bargaining. Loertscher and Marx (2022) explained, “The complete
information approach with efficient bargaining has the downside that shifts of bargaining power ... only
affect the distribution of surplus and not its size since bargaining is, by assumption, efficient.”
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different equilibria can have quite different properties and outcomes, and that no complete

characterization of equilibria exists; this statement remains true two decades later. As such,

there is no off-the-shelf model for empiricists to bring to bargaining data to identify private

value distributions, unlike well-developed auction methods, e.g., Guerre et al. 2000 (GPV).5

In wholesale used-car markets, the primary identification challenge is the distribution of seller

values, FS. Every choice of sellers — even their choice of secret reserve price at the game’s

start — depends on the bargaining strategies, which are unknown to the econometrician.

In contrast, the buyer value distribution, FB, is identified from auction bids using existing

auction methods. These tools also allow us to handle game-level heterogeneity.

We propose to estimate seller values based on an empirical menu approach generalizing

GPV. We consider a seller of value vS choosing her secret reserve price, r, to maximize

her expected surplus vSPS(r) − TS(r), where PS(r) is the seller’s expected probability of

keeping the car and −TS(r) is the expected transfer. Our identification argument is that

the seller chooses r from a convex equilibrium menu of possible (PS, TS) pairs, and the

derivative of this menu, evaluated at the seller’s choice, corresponds precisely to vS. The data

requirements to identify a seller’s value are observations of (i) the secret reserve price, (ii) the

final allocation (i.e., an indicator for whether trade occurs), and (iii) the final payment. With

these variables in hand, PS(·) and TS(·) are essentially observed in the data, and derivatives

of this menu correspond to sellers’ values. Our model implies two restrictions that we impose

in estimation: the equilibrium menu must be convex and satisfy individual rationality (IR).

Applying these arguments to our data, we estimate the trade-transfer menu faced by

sellers in wholesale used-car markets. With the estimated menu and value distributions, we

compute average bargaining power for a seller in this market (a large fleet owner, such as

Ford, Bank of America, and Hertz) vs. the high-bidder (the buyer, a used-car dealer). Sellers,

on average, obtain a surplus that represents 52.5% of the first-best surplus and buyers obtain

41.4%. The shortfall relative to 100% represents inefficiency due to incomplete information

5Unlike auction theory, where clean equilibrium results exist for settings suitable for empirical work, such
as continuous values and incomplete information, bargaining theory is not immediately portable to empirical
analysis. Several previous theoretical bargaining papers analyze environments close to the one we study
— with continuous values, both parties having private values, and both parties making offers — but the
equilibria derived in these studies are not suitable for our setting. For example, in Perry (1986) the game
ends immediately and in Cramton (1992) at most two serious offers occur in equilibrium; neither of these
possibilities can fully explain our data.
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(Myerson and Satterthwaite (1983)).

Competition has a direct effect on bargaining outcomes, pushing up final prices. We

quantify this by considering as a benchmark a specific split of the first-best surplus in which

agents trade at the lowest price possible subject to the competition constraint: the price

must exceed both the highest bid from the auction and the seller’s value. We find that

buyers’ real-world surplus represents 93.6% of this first-best constrained benchmark. Sellers’

real-world surplus is worse than this benchmark, suggesting that, in the real-world outcome,

they are conceding some surplus to buyers. Together, these results imply that what can

be termed sellers’ residual or constrained bargaining power is quite low. In the language

of some antitrust experts (e.g., Peters 2014), our results imply that sellers in this market

have a high degree of bargaining leverage due to competition, but little residual bargaining

power after accounting for the direct effect of competition. We find similar results when

we compare agents’ real-world surplus to second-best benchmarks: overall, sellers’ surplus

is closer than buyers to their preferred second-best mechanism payoff, and this is driven by

bidder competition.

We then estimate bargaining power separately for cases where the seller is an OEM, such

as Ford or GM, vs. a non-OEM (banks, fleet companies, or rental companies). Since the

inception of the wholesale used-car market in the mid-twentieth century, OEMs have only

engaged in the used market by selling leased vehicles at the end of the leasing term (referred

to as off-lease vehicles) to dealers, not directly to consumers. In recent years, OEMs have

opened direct-to-consumer (DTC) channels. Whether OEMs will continue this trend may

depend in part on how they view their bargaining power in the traditional wholesale market.

We quantify this by estimating our model separately for OEM and non-OEM sellers.

We find that the total surplus available is higher for OEM sales, and OEM sellers achieve

a higher fraction of that surplus, implying that OEM sellers have more overall bargaining

power relative to buyers than do non-OEM sellers. The same is true relative to the seller’s

second-best benchmark: OEM sellers achieve a payoff that lies 91.8% (and non-OEM sellers

63.1%) of the way between their preferred second-best mechanism payoff and that of buyers.

As in the full data sample, however, we find that this effect is driven purely by bidder

competition: sellers are unable to push the price significantly higher than the auction price
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and are even conceding to buyers some of the surplus gained from bidder competition.

Our study relates to a growing body of structural work studying bargaining power in ver-

tical business-to-business settings, such as Crawford and Yurukoglu (2012), Grennan (2013),

Gowrisankaran et al. (2015), and Ho and Lee (2019). In contrast to most previous work on

vertical relationships, we allow for incomplete information and allow agents to be strategic

in their bargaining behavior.6 Previous work on vertical relationships between dealers and

OEMs has focused on new cars (Lafontaine and Scott Morton 2010; Murry and Zhou 2020),

whereas we offer insights into the used-car arm.7

As highlighted in Loertscher and Marx (2019), how competition and bargaining power

interact in settings with incomplete information is an open question of interest to competition

authorities. The empirical literature has studied related ideas under assumptions of Nash

bargaining (e.g. Capps et al. 2003; Gowrisankaran et al. 2015), but not under incomplete

information. One would expect increased competition among buyers to increase the sellers’

(and decrease buyers’) bargaining power, but it is unclear by how much, and whether sellers

have any additional bargaining power beyond that afforded them by competition. The

seminal result of Bulow and Klemperer (1996) suggests that a seller would prefer increased

competition to increased bargaining power, but this interpretation abstracts away from real-

world negotiations, in which buyers may have some power, and therefore the benefits to a

seller of increased competition may be even greater than suggested by Bulow and Klemperer

(1996).8 Our study contributes to this literature by studying a real-world setting in which

both parties potentially have bargaining power and quantifying the degree to which that

power is driven by competition.

6Relative to empirical work with complete-information, ours is not a strict generalization, and vice-versa.
For example, many studies using Nash bargaining, such as Crawford and Yurukoglu (2012), are more general
in the dimension of modeling non-transferable utility (allowing the downstream firm to have a willingness
to pay that depends on the price negotiated with the upstream firm). The model of Ho and Lee (2019)
(Nash-in-Nash with threat of replacement) is more general than ours in the dimension of endogenizing
agents’ outside options. In contrast, our model is more general than both in the dimension of allowing for
incomplete information, but we model transferable utility, and outside options are fixed: the seller’s private
value is her outside option and the buyer’s is her willingness to pay net of any outside option. See Section 4.

7Donna et al. (2024) studied vertical bargaining in advertising and the welfare effects of DTC sales.
8Consistent with this, Bulow and Klemperer (1996) stated, “No amount of bargaining power is as valuable

to the seller as attracting one extra bona fide bidder,” and then concluded, “Our analysis assumed that a
seller could negotiate optimally, making credible commitments of the sort that might not be possible in real
life, and we also assumed that bidders had no bargaining power in a negotiation. We therefore believe that
our basic result does not overstate the efficacy of auctions relative to negotiations.”
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Several empirical bargaining studies contain structural models of two-sided incomplete

information. Keniston (2011) studied welfare under bargaining vs. a posted price. Kong

et al. (2024) studied arbitration in union wage negotiations. Larsen (2021) analyzed empirical

implications of the Myerson-Satterthwaite Theorem using a superset of the data from our

paper. Freyberger and Larsen (2025) studied inefficient impasse in eBay bargaining. We see

our focus on equity — how the surplus is split — as a natural next question to address after

the efficiency questions of the latter two studies, which derived bounds on surplus or trade

probabilities but did not address the question of surplus division. Indeed, their bounds,

while informative about inefficiency, are too wide to be informative about the division of

surplus. In contrast, our paper derives point estimates of this split.9

Our contribution to the structural methodology literature can be seen as generalizing

GPV to bargaining games. In a related study, Kline (2023) focused on identification, but

not estimation, in a class of games that overlaps with the class we study: trading games

with monotone equilibria. Agarwal et al. (2023) derived results that nest a number of

related identification arguments, including ours.10 Our identification results largely only

require taking a stance on the structure of agents’ utility functions, not the specific rules

of the game being played, and thus may be particularly valuable for studying bargaining,

where researchers may observe negotiated prices without being able to fully characterize the

equilibrium of the game generating those prices. In this sense, our work is an empirical analog

of the theoretical mechanism design approach to bargaining (e.g., Myerson and Satterthwaite

1983; Williams 1987; Loertscher and Marx 2022), which abstracts away from extensive-forms.

2 Background: Supply-Side Bargaining for Used Cars

The U.S. wholesale used-car industry — with revenues above $110 billion annually — op-

erates through a network of several hundred auction house locations scattered throughout

9We borrow some straightforward steps of Larsen (2021), including how we control for game-level hetero-
geneity and estimate buyer values. Our identification of seller values differs from Larsen (2021): we exploit
optimality of the seller’s choice of secret reserve price, yielding point identification, whereas the former study
exploited the seller’s choice to accept or reject the auction price, yielding bounds.

10Related arguments also appear in Perrigne and Vuong (2011) and Luo et al. (2018). Pinkse and Schurter
(2019) introduced efficient estimation procedures for auctions and related games, which, like ours, exploit
convexity restrictions implied by incentive compatibility.
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the country (and operations are similar internationally).11 These auction houses have been

a part of the U.S. used-car market for over seventy years. Each year, over 12 million cars

pass through these auction houses, where used-car dealers buy from rental companies, banks

with repossessed vehicles, or manufacturers with off-lease vehicles.12

Several days before a weekly sale, a seller brings her car to the auction house and reports

a secret reserve price; this reserve price is typically never revealed to bidders, even after

the auction. On the sale day, buyers (dealers) arrive, with many traveling long distances

to attend. Remote bidders participate virtually. Cars are auctioned in their arrival order.

Multiple auctions run simultaneously in different lanes dividing the auction house. Each

car’s auction takes about 90 seconds (Lacetera et al. 2016), with bidding run by a human

auctioneer raising prices until one bidder remains. If the auction price (the highest bid)

exceeds the secret reserve price, the high bidder takes the car. If not, the high bidder

may opt out of bargaining. If he does not opt out, he and the seller enter alternating-offer

bargaining, mediated by an auction-house employee over the phone.13 Bargaining continues

until one party accepts or quits.

Our data consist of 91,743 realizations of this mechanism from six auction houses owned by

the same parent company spanning 2007–2010. For each realization, the key observables are

the auction price, secret reserve price, final transaction price, and an indicator for whether

the car sold. We also observe a large set of characteristics, including features of the car

and the auction house environment at the sale time. Our 91,743 observations are those

that remain after the data cleaning steps in Larsen (2021) as well as one additional step in

which we keep only the first appearance of a given vehicle at a given auction house: if the

sales attempt does not result in trade, the vehicle may appear at a future auction sale, and

we drop these future attempts. This drops 28% of sales attempts. Appendix B.1 discusses

additional data cleaning steps.

Table 1 shows descriptive statistics. The average car has a book value (an estimate pro-

11https://www.naaa.com/pdfs/auction_industry_surveys/2023_NAAA_Auction_IndustrySurvey.

pdf.
12Sellers can also be dealers, but not in the data we use herein. See Appendix B.8.
13Larsen et al. (2024) studied these mediators. If the auction price is far below the reserve price, the

auctioneer does not proceed to bargaining; we treat these cases as though the seller rejects the auction price
(because we have no data to distinguish the difference).
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Table 1: Descriptive Statistics (Sample Size = 91,743)

A. Mean Standard Deviation Seller Category Frac. of Sample

Book value ($) 11,030 6,284 OEM 0.2838
Age (years) 3.26 2.52 Bank 0.5027
Mileage 56,761 39,557 Fleet Company 0.0817
Good condition 0.73 0.44 Lease Company 0.0757
N |N ≥ 2 3.00 0.45 Rental 0.056
Agree 0.86 0.35

B. Conditional on Sale Cond. on No Sale

Frac. of Frac. Auction Reserve Final Auction Reserve
Sample Agree Price ($) Price ($) Price ($) Price ($) Price ($)

End at auction 0.43 0.99 11,053 10,197 11,053 5,402 7,547
Period 2 0.51 0.82 9,855 10,672 9,855 9,793 11,165
Period ≥ 3 0.06 0.18 7,465 8,724 7,929 6,411 8,266

Notes: In panel A, “Book value” is an estimate of the car’s book value, provided by the auction house. “Good condition”
indicates average or above average car condition, based on auction house inspection. “N |N ≥ 2” is an auction-by-auction lower
bound on the number of bidders, only observable in the bid log subsample, and limited to cases where this lower bound is at
least 2 (71,870 observations). “Seller Category” refers to type of company the seller is. Panel B shows statistics separately
for games ending at the auction (through the auction price exceeding the reserve, or the buyer refusing to negotiate), games
where the seller accepts or rejects the auction price (indicated by Period 2), or games ending after further bargaining (Period
≥ 3). Panel B shows average auction and reserve price separately for games ending in agreement/disagreement, and average
final price for those ending in agreement.

vided by the auction house) of $11,030, is 3.26 years old (relative to its model-year), and has

56,761 miles on the odometer. The auction house provides a condition report for most cars,

and 73% of cars are rated at average quality or above, which we indicate in panel A with

“Good condition.” Our data also contain detailed records (referred to as bid logs) of the

bidding during the auction stage for most observations (73,100, with 71,870 having a lower

bound of at least two). In this sample, we obtain bounds on the number of bidders (N)

in each auction, with an average lower bound of 3 bidders (see Section 5.1 and Appendix

B.3). The mean of the “Agree” variable (an indicator for whether trade occurs) is 0.86,

implying that 14% of sales attempts result in no trade. These failed trades are inconsistent

with a standard complete-information framework, where a buyer and seller do not engage in

a trading game knowing a priori that they will disagree. Failed negotiations, however, are

consistent with the presence of incomplete information (Myerson and Satterthwaite 1983;

Perry 1986). The final column in panel A shows that OEMs, such as Ford, represent 28.38%

of sales. Banks, such as Citibank or Bank of America, represent a slight majority, at 50.27%.

Fleet companies (such as Wheels) represent 8.17%, rental companies (such as Budget) 5.6%,
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and other lease companies 7.57%.

Panel B of Table 1 breaks down outcomes by how the game ends — with a sale (agree-

ment) or no sale (disagreement). We report the primary variables that are required for our

identification and estimation: agreement, and the auction, secret reserve, and final prices.

The first row shows outcomes for games ending without bargaining, which occurs in 43% of

cases. In these cases, the game either ends with the auction price exceeding the reserve price

or with the buyer opting out of bargaining (which occurs 1% of the time).14 The second

row, indicated by Period 2, refers to cases where the reserve price exceeds the auction price,

which the seller either accepts (51% of the time) or rejects (49%). The third row refers to

games that end at some later period (6% of observations).15 When the game ends with a

sale at the auction or in period 2, the final price naturally equals the auction price. When

the game ends in a sale at a later stage of the game, the average auction price is $7,465,

the average reserve price is $8,724, and the average final price is between the two, at $7,929.

When trade fails (the final two columns), the auction price is farther below the reserve price.

These final numbers in the preceding paragraph illustrate an important point: it is a priori

unclear how to think of bargaining power in this context. It may be tempting to interpret

the location of the final price relative to the auction and reserve prices as an indication

of bargaining power. But this logic is flawed: a buyer’s true value will be weakly higher

than the auction price and a seller’s weakly lower than the secret reserve price. These

bounds say nothing about how the pie is split or what its size is; they do not rule out the

possibility that the buyer’s value is ∞ and the seller’s is 0, for example, preventing inferences

about bargaining power from these bounds alone. Our identification argument infers the

distribution of buyer values from auction prices and seller values from reserve prices, trade

probabilities, and final prices. With these distributions, we then quantify bargaining power.

14The auction house attempts to prevent these opt-outs when the seller is a large fleet/lease institution,
as in our data, but we find that it still occurs in practice.

15Our identification and estimation use all observations — those that end at the auction or at a later
period.
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3 Defining Bargaining Power Under Incomplete Information

Our goal is to quantify bargaining power of a seller and buyer who potentially trade. The

seller’s private value is VS and the buyer’s is VB(1) . The wholesale used-car market game is

between one seller and many buyers, but, because the auction identifies the highest-value

bidder, it is only the seller and high bidder whose surpluses are affected by the game outcome.

As such, we use the terms buyer and high bidder interchangeably. We describe below the

role the auction plays in our bargaining power definition.

Incomplete-information bargaining games — where agents’ values are private information

— are complex to model theoretically, even for seemingly simple extensive forms like al-

ternating offers. Each offer can signal information to the opposing party, who can then

update beliefs about the opponent’s value. Under standard equilibrium concepts, belief up-

dating after off-path actions can sustain a large set of strategies in sequential bargaining

(see discussions in Gul and Sonnenschein 1988 and Ausubel et al. 2002). Rather than at-

tempting to characterize equilibria of a given extensive form, we take a mechanism design

approach. By the revelation principle (Myerson 1979), any equilibrium has a corresponding

direct mechanism. Let MRW be the mechanism corresponding to a real-world equilibrium.16

Let UB(M) and US(M) represent the expected surplus of the buyer and seller, respectively,

under an arbitrary mechanism M, where the expectation is taken over buyer and seller

values; thus, UB(M) and US(M) represent ex-ante surplus, in the terminology of Holmström

and Myerson 1983. We propose a two-dimensional measure that quantifies the power of the

buyer and seller in MRW relative to some reference or benchmark mechanisms: one that is

favored by the buyer (denoted Mm
B ) and the other by the seller (Mm

S ), where m indexes

different benchmarks.17 For any m, bargaining weights αm
B and αm

S describe where an agent’s

expected surplus under MRW lies between her expected surplus under Mm
B and Mm

S :

UB(MRW ) = αm
BUB(Mm

B ) + (1− αm
B )UB(Mm

S ), US(MRW ) = αm
S US(Mm

S ) + (1− αm
S )US(Mm

B )

16The term real-world mechanism is not synonymous with the game’s protocol — a secret reserve ascending
auction followed by alternating offers. Within that protocol are infinitely many equilibria, and a real-world
mechanism MRW refers to the direct mechanism corresponding to a specific equilibrium.

17Görlach and Motz (2024) proposed an axiomatic definition of bargaining power, measured for a given
agent as the change in outcomes that would arise if all agents were to adopt the preferences of that agent.
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⇒ αm
B =

UB(MRW )− UB(Mm
S )

UB(Mm
B )− UB(Mm

S )
, ⇒ αm

S =
US(MRW )− US(Mm

B )

US(Mm
S )− US(Mm

B )
(1)

We consider several candidate benchmarks. The first involves first-best, ex-post efficient

trade: trade occurs whenever VB(1) ≥ VS, at a price between the two. Among such mecha-

nisms, sellers prefer a price equal to VB(1) , giving sellers all of the surplus and buyers zero;

we denote this by M1st

S . Similarly, M1st

B denotes buyers receiving all the first-best surplus.

We also consider a benchmark that constitutes a specific split of the first-best surplus

subject to what we will refer to as the competition constraint : our setting involves multiple

buyers, leading the final transaction price to be weakly greater than the highest auction

bid, denoted PA. Let M1st,con
B denote first-best trade constrained by competition: trade

occurs whenever VB(1) ≥ VS, at a price equal to max{PA, VS}.18 For the seller, M1st,con
B

yields the same outcome she would achieve in a mechanism consisting of an auction followed

by the seller accepting or rejecting PA (but never countering). Benchmarking real-world

bargaining outcomes against M1st

B and separately against M1st,con
B allows us to quantify

how the overall division of surplus between the high bidder and the seller is driven by

the direct effect of competition. This speaks to the distinction in antitrust discussions

between bargaining leverage — the direct effect of competition on bargaining power — and

the additional advantage an agent possesses beyond that competitive effect.19

We also consider second-best versions of these benchmarks. Under incomplete information,

Myerson and Satterthwaite (1983) showed that first-best trade is generally infeasible and

derived the second-best, ex-ante efficient mechanism maximizing the gains from trade subject

to information constraints.20 Williams (1987) extended this analysis, deriving the full ex-

ante efficient Pareto frontier. Let M2nd

S and M2nd

B denote second-best mechanisms favoring

sellers and buyers, respectively.21 Under A1, these mechanisms are simple to characterize:

18This is the competition-constrained first-best mechanism preferred by the buyer. We could similarly

define M1st,con
S , but this will mechanically equal M1st

S , as M1st

S involves a price equal to the high bidder’s
value, VB(1) , and therefore satisfies the competition constraint.

19See, for example, Peters (2014), Asil et al. (2024), and https://www.justice.gov/atr/speech/

mergers-increase-bargaining-leverage. We thank Tom Wollmann for this point.
20Specifically, if the supports of buyer and seller values overlap, no mechanism achieves first-best trade

while satisfying incentive compatibility, individual rationality, and ex-ante budget balance.
21The term bargaining power is used similarly in other settings involving a combination of auctions and

bargaining, such as Bulow and Klemperer (1996) and Menezes and Ryan (2005), who described an agent with
all of the bargaining power as one who can implement her preferred second-best mechanism. In Loertscher
and Marx (2022), who extended the idea of Williams (1987) to cases with multiple agents on one or both
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(A1) (i) Agents are risk-neutral with independent, private values (IPV). (ii) Buyers are

symmetric. (iii) Agents have weakly increasing virtual values.

A1 enumerates the conditions imposed by Myerson (1981), Myerson and Satterthwaite

(1983), and Williams (1987).22 Under A1, M2nd

S can be implemented by an auction with

an optimal public reserve price (Myerson 1981).23 If the highest-value bidder were to ne-

gotiate with the seller absent competition from other buyers, M2nd

B would correspond to a

take-it-or-leave-it offer (TIOLIO). Similar toM1st,con
B , we letM2nd,con

B denote the second-best

mechanism favoring the buyer, subject to the competition constraint: a TIOLIO from the

high bidder to the seller where the price weakly exceeds PA.24 As in the first-best case, the

comparison between M2nd

B and M2nd,con
B allows us to speak to the direct effect of competition

(bargaining leverage) and parties’ residual bargaining power beyond this effect.

Thus, the four sets of benchmarks we consider areM ≡ {“1st”; “1st, con”; “2nd”; “2nd, con”}.

Figure 1 shows a geometric interpretation of these bargaining power measures, focusing for

simplicity on the unconstrained first- and second-best benchmarks (m = “1st” or “2nd”).25

The figure shows the expected surplus of buyers on the vertical axis and sellers on the

horizontal. The two green points represent expected payoffs under the second-best buyer-

and seller-optimal mechanisms, M2nd

B and M2nd

S . The green line illustrates the second-best

sides, bargaining power is defined as the weight an agent receives in a weighted welfare maximization problem.
22For seller values distributed according to FS (with density fS), virtual values are ψS(vS) ≡ vS + FS(vS)

fS(vS) .

Virtual values of buyers, with CDF FB and density fB , are ψB(vB) ≡ vB − 1−FB(vB)
fB(vB) .

23The seller-optimal, second-best outcome can equivalently be achieved by an auction with no reserve
price followed by a TIOLIO from the seller to the high bidder. We use the term public to refer to an auction
with a reserve price that the seller commits to before the auction (and that the bidders are aware of), where
trade occurs if the highest value exceeds the public reserve price. In contrast, in the secret-reserve auction
of used-car markets, trade occurs if the second-highest value exceeds the secret reserve price, and otherwise
bargaining ensues. While an optimal public reserve auction is the optimal mechanism for a seller (Myerson
1981), sellers cannot necessarily implement this mechanism in practice because it is the auction house that
chooses the mechanism. Elyakime et al. (1994) showed that an optimal public reserve price for a seller (who
has some value VS of keeping the car herself) will not necessarily be the optimal mechanism for an auction
house that only receives payment when trade occurs.

24Under A1, M2nd,con
B is optimal for the buyer among mechanisms with transfers weakly above PA. As in

the first-best case, we could also define M2nd,con
S ≡ M2nd

S , as M2nd

S automatically involves trading at a price
weakly higher than PA. Note that, if A1 is not satisfied, bargaining power measured relative to a buyer
TIOLIO (or competition-constrained TIOLIO) and a public reserve auction would still be interpretable as
describing where an agent’s expected surplus lies between two benchmark mechanisms, one that the agent
prefers over the other and one that the opponent prefers over the other.

25The competition-constrained benchmark cases look similar, with payoffs under buyer-preferred mecha-

nisms (M1st,con
B and M2nd,con

B ) shifted to the right, as competition ensures the seller a higher payoff.
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Figure 1: Illustration of Bargaining Power Measure

UB

US0
0

M2nd

B

M2nd

S

First-best frontier

Second-best frontierMRW

M1st

B

M1st

S

Notes: Visualization of bargaining power. Expected buyer surplus is on the vertical axis and expected seller surplus on the
horizontal. The two green points represent expected payoffs under the second-best buyer- and seller-optimal mechanisms,

M2nd

B and M2nd

S . The green line illustrates the second-best, ex-ante efficient Pareto frontier. The red dashed line illustrates
the first-best, ex-post efficient frontier. The orange point shows the location of a hypothetical real-world mechanism.

frontier derived by Williams (1987).26 The red dashed line illustrates the first-best, ex-post

efficient frontier — the maximum expected surplus if information were complete or if in-

formation constraints were relaxed. The orange point shows a hypothetical MRW . Under

complete information, the red and green lines would coincide, as would blue and black.

In Figure 1, the buyer’s expected surplus under MRW lies about one-fourth of the way

between the buyer’s expected surplus under M1st

S and M1st

B , while the seller’s lies about one-

third of the way between what she would expect under M1st

B and M1st

S , together implying

(α1st

B , α1st

S ) = (0.25, 0.33). Relative to the second-best benchmarks (M2nd

B and M2nd

S ), the

buyer’s and seller’s expected surplus under MRW implies (α2nd

B , α2nd

S ) = (0.33, 0.50).

These bargaining power metrics have several noteworthy properties. First, for eachm ∈ M,

αm
S and αm

B are extensions of Nash bargaining weights to incomplete-information bargaining.

In a transferable utility model like ours, if agents were to have complete information and

26The Pareto frontier is the highest combinations of buyer and seller expected surplus achievable by

incentive-compatible, individually rational, budget-balanced mechanisms. It consists of all mechanismsM2nd

η

that maximize the weighted sum of welfare, ηUS(M2nd

η )+(1−η)UB(M2nd

η ) for η ∈ [0, 1]. This welfare weight,
η, might itself be thought of as one notion of bargaining power among second-best mechanisms, but this notion
would not suffice for our purposes; we seek a notion of bargaining power applicable to real-world bargaining
situations, which are not guaranteed to achieve payoffs on the frontier.
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use Nash bargaining, we could define bargaining power in two equivalent ways: an agent’s

bargaining power describes (i) the fraction of the total first-best surplus she receives or

(ii) where her payoff lies between what she would achieve under her preferred mechanism

and under her opponent’s preferred mechanism. With incomplete information, the two

definitions are not equivalent due to inefficiency: the sum of buyer and seller surplus can fall

short of total first-best surplus (Myerson and Satterthwaite 1983). Furthermore, a trade-off

generally exists between efficiency and rent-extraction: as one agent gets a larger surplus

share, total surplus can shrink (i.e., incomplete-information bargaining is not zero-sum).

The sum αm
S + αm

B is informative about the extent of this inefficiency: for m = “1st” or

m =“1st, con”, αm
S + αm

B < 1 implies a deadweight loss, as suggested by the Myerson-

Satterthwaite Theorem. Nash bargaining, in contrast, requires αm
B + αm

S = 1, imposing

efficiency a priori. For second-best mechanisms, m = “2nd” or m = “2nd, con”, any convex

combination of Mm
B and Mm

S corresponds to a mechanism that randomly selects between the

buyer’s or seller’s preferred mechanisms. In Figure 1, these mechanisms lie along a straight

line from M2nd

B to M2nd

S . Thus, for second-best mechanisms m, examining whether αm
B +αm

S

is less than or greater than 1 sheds light on how efficient the real-world mechanism is relative

to this alternative random-proposer game.

Second, for some benchmarks, αm
i for some agent i may be negative because, among

infinitely many equilibria, some are inefficient. An α2nd

B < 0, for example, can reflect an

inefficient equilibrium in which the buyer’s expected payoff is even lower than under M2nd

S .

A negative αm
i does not necessarily reflect a negative utility for i, but rather that i’s real-

world utility lies in the gap between the black and blue axes in Figure 1. This gap exists

because second-best mechanisms provide an information rent : the buyer gets a strictly

positive expected payoff even under M2nd

S (and vice versa).

Similarly, for some benchmarks, αm
i can exceed 1 if, at some point in the game, i’s opponent

does not fully exploit her information rent, behaving non-strategically or more generously

to i than would be implied by incentive constraints.27 Saran (2011) provided an incomplete-

information bargaining model in which some agents (labeled naive) ask for or offer their true

value (rather than shading), which can lead to outcomes beyond the information-constrained

27In contrast, because first-best yields the maximum surplus, α1st

i ≤ 1 and α1st,con
i ≤ 1 for i ∈ {S,B}.
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second-best frontier. Valley et al. (2002) implemented incomplete-information bargaining in

a lab experiment, finding that communication among agents can lead to outcomes that lie

between the second- and first-best frontiers, a situation that can generate αm
i > 1. Valley

et al. (2002) attributed their findings to agents’ preferences for fairness or altruism; Keniston

et al. (2024) documented evidence consistent with such preferences in a variety of negotiation

settings including wholesale used-car auctions. If agent −i (i’s opponent) gives up even more

than her information rent, this could also lead to αm
−i < 0.

Third, as the number of buyers/bidders in the mechanism increases, α2nd,con
S and α2nd,con

B

become more difficult (and less useful) to measure because the gap between an agent’s

expected surplus under M2nd,con
B approaches her surplus under M2nd

S . For example, solving

for α2nd,con
S using (1) involves dividing by US(M2nd

S ) − US(M2nd,con
B ) and thus, when this

number is close to zero, α2nd,con
S grows large in magnitude.

Finally, variation in our measures of bargaining power can arise for similar reasons as in

empirical work with Nash bargaining. Consider a complete-information world, where VB(1)

and VS are known and VB(1) > VS. Let Z (with VS < Z < VB(1)) be a price at which agents

trade, where the seller receives Z if trade occurs and VS otherwise. The buyer receives

VB(1) −Z if trade occurs and 0 otherwise. Consider two datasets such that the analyst infers

a higher Nash weight for sellers in the first dataset than in the second. A number of channels

could lead to this inference. For example, the seller’s disagreement payoff (VS) may be lower

in the first dataset: fixing Z and VB(1) , a lower VS would imply that the seller receives a

larger share of the surplus, and hence has more bargaining power.28 Similarly, holding fixed

agents’ values, a higher Z in the first dataset would imply more seller bargaining power.

Unmodeled factors such as agents’ patience, bargaining costs, or negotiation expertise could

underlie such price differences, and, consequently, differences in inferred power. In empirical

work, Nash weights do not correspond to microfoundations of these factors, but instead serve

as a residual that allows the analyst to describe surplus split.29

Returning to incomplete information, the preceding statements about Nash weights still

apply: higher inferred seller bargaining power can be driven by lower seller values or higher

28All else equal, a lower VB(1) would lead an empirical analyst to infer more seller bargaining power.
29Binmore et al. (1986) showed that patience offers a partial microfoundation: as agents become infinitely

patient, the equilibrium of a complete-information alternating-offer game corresponds to the Nash outcome.
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prices, and higher prices can arise from unmodeled features such as patience, bargaining

costs, or skill. Additionally, in incomplete-information bargaining, differing equilibria across

two datasets, and the possibility of equilibrium disagreement, can lead to differences in

inferred bargaining power. For example, if two datasets involve the same value distributions

and equilibria that are similar in most respects but the first involves more trade for low-

value sellers, this could affect inference about seller bargaining power in the two datasets.

Bargaining power can also be affected by the negotiation protocol, such as who can make

offers and how many they can make; Nash bargaining abstracts away from protocol.30

4 Identifying Negotiators’ Private Value Distributions

Seller- and buyer-preferred benchmarks require several key inputs: distributions of buyer

values FB and seller values FS and the real-world mechanism MRW . These objects are the

primary goals of the identification and estimation results we now address in a model of the

wholesale used-car market game. The game involves 1 seller and N bidders, where N is

random and varies across instances of the game.31 We assume the following:

(A2) N ≥ 2 risk-neutral, symmetric bidders participate in an ascending button auction. For

i = 1, ..., N , each buyer i has a value Y ′β +W + VBi
, with VBi

∼ FB and W ∼ FW

(both with bounded support), and with {Y ,W ,N ,{VBi
}Ni=1} mutually independent.

(A3) A risk-neutral seller has a value Y ′β +W + VS, with VS ∼ FS (with bounded support)

and with VS independent of {Y ,W ,N ,{VBi
}Ni=1}.

(A4) The auction follows a button format, followed by a finite number of bargaining periods,

30In empirical work, Nash weights and our measures are both inferred based on how observed prices divide
the available surplus, but a key distinction is that, under incomplete information, there is no standard
definition of the “available surplus”: it could be defined as the total surplus achieved in a given equilibrium,
the total potential surplus that could be achieved by a second-best mechanism preferred by one party
or the other, or the total first-best surplus. Note also that, from a theoretical perspective, in a Nash
bargaining model, power is a primitive; it is not in our model. However, a researcher could use our measure
in counterfactual exercises in a similar fashion to how estimated Nash weights are used. For example,
in a counterfactual exercise in which the distribution of buyer values is altered, payoffs under benchmark

mechanisms M2nd

B and M2nd

S would change, and the corresponding surplus of the buyer and seller under

the counterfactual bargaining can be constructed holding α2nd

B and α2nd

S constant (just as Nash bargaining
weights are held constant in counterfactuals in practice; e.g. Crawford and Yurukoglu 2012).

31We generally follow the convention that, for random variables, upper case denotes a random variable
and lower case a realization or a specific observation in the data.
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ending at a final price weakly higher than PA.

(A5) Any buyer incurs a common cost ηB each time making an offer in bargaining.32

In our empirical analysis, Y is a vector observable to the econometrician and to players

(such as the make and model of the car), whereas W represents game-level heterogeneity

observed by the agents but not the econometrician, such as a dent or odor in the car. We

assume {Y,W,N, VBi
} are mutually independent for all i in a given instance of the game.

Thus, agents’ overall values are correlated through game-level heterogeneity terms Y and

W , but, conditional on these variables, values are independent.33 To simplify exposition,

we condition on N = n and return to this in Section 4.2. Likewise, our discussion largely

conditions on W = w and Y = y, omitting this dependence until Section 4.3. Note that,

When we order bidders’ values, we let VB(i) represent the ith-highest value.

The game begins with the seller choosing a secret reserve price, R. Bidders then participate

in the auction. If the auction price, PA, exceeds R, the high bidder (the buyer) and seller

trade at price PA. If PA < R, the buyer may choose to opt out of bargaining. If he does

not opt out, he incurs a cost ηB, and it is the seller’s turn to accept, counter, or quit (ending

negotiations) in response to PA. If the seller counters, it is the buyer’s turn. Turns alternate

until one party accepts or quits. If the game ends with the seller of type vS and a buyer type

vBi
trading at some price p, the buyer receives a payoff of vBi

− p and the seller receives a

payoff of p. If trade fails, the seller receives a payoff of vS (her value for keeping the car) and

the buyer receives a payoff of 0.34 The auction house enforces that the final price weakly

exceeds PA, the competition constraint (Assumption A4).35

We refer to VBi
and VS as values, but we could equivalently refer to them as “net values” or

“willingness to pay” and “willingness to sell.” Suppose bidder i gets V̄Bi
when trade occurs

and µBi
when it fails, where µBi

is a discounted continuation payoff of a broader game in

which the bidder can re-enter the market or give up. What we refer to as the bidder’s value

32It is unnecessary to (and convenient not to) model seller bargaining costs. See Appendix A.
33Our model is thus one of IPV with unobserved and observed game-level heterogeneity. The IPV as-

sumption in this market can be motivated by our discussions with industry participants, who tell us that
heterogeneity in willingness to pay across bidders arises from differences in dealers’ geographic locations,
inventory needs, and local demand. A2 and A3 nest A1.i–A1.ii.

34The buyer’s payoff would also include any bargaining costs she has incurred.
35This is more of an industry norm than an explicit requirement, but the auction house informs us that

violations are rare (and not looked on kindly). Larsen (2021) drops 9 observations violating this norm.
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is VBi
≡ V̄Bi

− µBi
. Similarly, VS is the seller’s discounted continuation payoff in a broader

dynamic game.36 For our research question, we do not need to model this broader game.

Our aim is to quantify average bargaining power given agents’ net private values. See also

Freyberger and Larsen (2025).

We introduce some additional notation to define a pure-strategy Bayes Nash Equilibrium

(PSBNE) of this game. Let ζi be the price at which bidder i drops out of the auction. Let

DB
t ∈ {a, c, q} represent the buyer’s decision to accept, counter, or quit in odd periods t. At

t = 1, let DB
1 = q represent the buyer choosing to opt-out of bargaining when informed that

PA < R (and DB
1 ̸= q represents not opting out). Let PB

t represent the buyer’s counteroffer

(if the buyer counters) in period t; at t = 1, PB
1 = PA. Let DS

t and P S
t be defined similarly

for even periods t. Let Ht represent the history of publicly observed actions up through

period t − 1 of the game, including all offers in bargaining. The strategy of a bidder of

type vBi
is a history-contingent set of actions σB

i (vBi
) = {ζi, {DB

t |Ht}todd}, {PB
t |Ht}todd}.

The strategy of a seller of type vS is σS(vS) = {ρ, {DS
t |Ht}t>1,even, {P S

t |Ht}t>1,even}, where

ρ(vS) = r is the seller’s reserve price strategy. These constitute a PSBNE if, for each player,

her strategy is a best response to opponents’ strategies and players update their beliefs about

opponent values using Bayes rule at each history reached by some types.37

A wide array of behavior can be sustained in equilibrium. Below we offer several examples

of behavior, beginning at the t = 2 , that could be sustained in equilibrium:

Example 1: At t = 2, sellers counter at the optimal TIOLIO Z∗
S facing VB(1) ≥ PA. At

t = 3, buyers accept (if VB(1) ≥ Z∗
S) or quit. At t = 4, (only reached off path) sellers quit.

Example 2: At t = 2, sellers accept (if VS ≤ PA) or counter at b (denoting the upper bound

of buyer types, an uninformative offer). At t = 3, buyers quit if facing any (off-path) offer

36For example, when trade fails, the seller can attempt to sell the car on a future date (through the same
auction house or through a different outlet). In a broader continuation game, FS and FB would not be
primitives. Also, our exercise of computing benchmarks should not be considered a counterfactual in which
the benchmark is adopted in all future interactions, as this would alter FB and FS in broader continuation
game. Instead, the exercise quantifies where surplus lies relative to a one-time switch to a benchmark.

37We do not impose refinements, such as Perfect Bayes Equilibrium (PBE). Gul and Sonnenschein (1988)
and Ausubel et al. (2002) showed these refinements do little or nothing to restrict the set of equilibria in
sequential incomplete-information bargaining because, in a BNE, behavior can be sustained by specifying
actions that, though only occurring off the equilibrium path, incentivize agents to take certain actions on
the path to avoid unappealing off-equilibrium outcomes. Similarly, in a PBE, behavior can be sustained
by carefully chosen beliefs following off-equilibrium actions. Importantly, however, all of our identification
arguments apply regardless of whether we focus on BNE or a refinement such as PBE.
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other than b; otherwise, they counter at the optimal TIOLIO Z∗
B facing VS > PA. At t = 4,

sellers accept (if VS ≤ Z∗
B) or quit. At t = 5 (off path), buyers quit.

Example 3: At t = 2, sellers accept if VS ≤ PA and quit otherwise. At t = 3 (off path),

buyers quit.

Example 4: At t = 2, sellers either accept PA, quit, or counter at a price of γPA (with

γ > 1 fixed and known to all parties), whichever yields a higher expected payoff. At t = 3,

buyers accept if VB(1) ≥ γPA and quit otherwise. At t = 3, buyers quit if facing any (off-path)

price other than γPA. At t = 4 (off path), sellers quit.

In Example 1, seller behavior at t = 4 disciplines buyers to only accept or quit (never

counter) at t = 3. The t = 5 behavior of buyers in Example 2 has a similar role. Example 1

is similar to what occurs in M2nd

S , Example 2 is similar to M2nd,con
B , and Example 3 is similar

(in terms of the seller payoff) to M1st,con
B . Example 4 gives the seller a payoff between what

she receives in Examples 1 and 3. Example 4 involves strategies conditioning on PA: both

the buyer and seller observe PA, and any seller counteroffer at t = 2 other than γPA prompts

the buyer to quit at t = 3.38 These are only four of infinitely many possibilities.

The following proposition includes several properties used in Larsen (2021) and Larsen

et al. (2024), relying on a technical assumption that aids in proving monotonicity of ρ(·):

(A6) The seller’s expected payoff conditional on bargaining occurring is continuous in PA.

Proposition 1. (i) In any PSBNE, holding fixed any post-auction path of play reached by

some types on the equilibrium path and the reserve price strategy of the seller, the following

is a weak best response for each bidder: bid truthfully in the auction and enter post-auction

bargaining only doing so yields a non-negative expected payoff. Moreover, under A2–A5, in

any PSBNE in which bidders follow the strategy in (i) and in which A6 holds, (ii) ρ(·) is

strictly increasing and (iii) PA, R, and final prices are additively separable in (and the trade

probability is invariant to) game-level heterogeneity Y ′β +W .

We assume bidders follow the strategy in (i). The intuition for (i) is that remaining in

38Our definition of equilibrium allows agents to condition strategies on PA but not on payoff-irrelevant
variables, such as N or losing bids below PA. For example, our equilibrium definition rules out behavior
such as agents coordinating on the Example 1 equilibrium when the third-highest-value buyer has a bid of δ
and coordinating on a distinct equilibrium when that bid is δ′ ̸= δ. As we show in Proposition 1, the game
is location invariant, so W and Y are also not payoff relevant.
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the bidding beyond one’s value cannot yield a positive payoff given that the final price is

constrained to exceed PA, and dropping out below one’s value is unnecessary, even to avoid

facing bargaining costs, because these costs are only incurred if the buyer enters bargaining

(A5). Buyers opting out also drives (ii): too high of a reserve price is unappealing to the

seller as it triggers the buyer opting out more often. Part (iii) is a common result in empirical

auction models (e.g., Haile et al. 2003).

PSBNE behavior is sufficient but not necessary for Proposition 1 to hold.39 For example,

suppose agents’ actions align with M1st,con
B : sellers choose ρ(VS) = VS and, whenever PA <

VS, counter at a price of VS. Such behavior, while not a BNE, would still satisfy properties

(i)–(iii) in Proposition 1.40 We will use the term equilibrium throughout the paper to denote

a PSBNE satisfying A6. At some points, for clarity of exposition, we will use the term

behavioral equilibrium to denote a strategy set involving some agents taking actions that

appear to be suboptimal at some nodes of the game reached with positive probability by

some types (which should not occur in a BNE).

As highlighted in Section 3, the key objects to identify to evaluate bargaining power are

FS, FB, and MRW . With these objects, we can compute the expected payoff for each player

under benchmark mechanisms and determine what fraction of these quantities each player

receives in practice. The novel part of our identification is that of FS. We dedicate Section

4.1 to this endeavor. Identification of FB, MRW , and game-level heterogeneity rely largely

on Proposition 1 or prior results from the literature. Sections 4.2–4.4 discuss these. In

summary, our identification results in Sections 4.1–4.4 rely on joint variation among four key

variables: an indicator for whether trade occurs, and noisy measures (i.e., those including

W ) of auction, secret reserve, and final prices.

4.1 Equilibrium Menus. Rather than working with the full, complex set of equilibrium

strategies, we follow the mechanism design literature and analyze the game as a direct

mechanism. In a direct mechanismM, each agent, i ∈ {S,B1, ..., Bn}, reports (or potentially

misreports) her private value to a designer, who assigns allocations according to a function

39Mixed strategy equilibria also exist, but limiting to pure strategies is sufficient and useful. Strictly
speaking, our identification results hold under some degree of mixing: a seller of type vS can mix over
reserve prices r in some set R(vS) as long as R(vS) and R(v′S) are disjoint for any vS ̸= v′S . Larsen and
Zhang (2018) derive results for the case where mixing can lead to different vS choosing the same r.

40This behavior is not a BNE because offering VS is not incentive compatible for sellers.
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xi (vS . . . vBn). For a mechanism corresponding to a pure strategy equilibrium, the allocation

is equal to 1 if the agent is allocated the car and zero otherwise. The designer allocates net

payments made by i according to the transfer function ti (vS . . . vBn).

An agent’s expected outcome is described by a menu of probability-transfer pairs. If player

i behaves as if she is a type v′i (potentially misreporting her type), she attains

Pi (v
′
i) ≡ E [xi (v

′
i, V−i)] , Ti (v

′
i) ≡ E [ti (v

′
i, V−i)] .

Pi (v
′
i) and Ti (v

′
i) are, respectively, the expectation of i’s allocation xi (v

′
i, V−i) and trans-

fer ti (v
′
i, V−i), over values V−i (of other players −i), which are random variables from i’s

perspective. The expected utility of i when she has value vi but plays as if it were v′i is

viPi (v
′
i)− Ti (v

′
i). In any incentive compatible (IC) mechanism, vi maximizes this payoff:

viPi (vi)− Ti (vi) ≥ viPi (v
′
i)− Ti (v

′
i)∀v′i. (2)

This implies bounds on agent i’s value, the proof of which follows immediately from (2):

Theorem 1. Under A2–A3, for any agent i, vi must satisfy

vi ≥
Ti (vi)− Ti (v

′
i)

Pi (vi)− Pi (v′i)
∀v′i : Pi (v

′
i) < Pi (vi)

vi ≤
Ti (v

′
i)− Ti (vi)

Pi (v′i)− Pi (vi)
∀v′i : Pi (v

′
i) > Pi (vi) .

In any setting in which i’s strategy involves an action that is one-to-one with her value,

vi, Theorem 1 can be restated in terms of that action, rather than in terms of types v′i that

i could mimic. In our game, by Proposition 1, the seller’s secret reserve price is such an

action. We combine Theorem 1 with this property to obtain the following corollary specific

to the seller’s value; as such, we state it only for i = S:

Corollary 1. Under A2–A6, for a seller vS picking r, vS satisfies (i) vS ≥ TS(r)−TS(r
′)

PS(r)−PS(r′)
for

all r′ with PS (r
′) < PS (r) and (ii) vS ≤ TS(r

′)−TS(r)
PS(r′)−PS(r)

for all r′ with PS (r
′) > PS (r).

Corollary 1 modifies notation slightly, with PS and TS as functions of r directly rather than

vS. This is without loss of generality, as r is one-to-one with vS, and is less cumbersome than

writing PS and TS as functions of vS = ρ−1(r). We maintain this change moving forward.

We also write the seller’s allocation and transfer functions as xS (r, V−S) and tS (r, V−S).
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Figure 2: Hypothetical Equilibrium Menu

(A) Equilibrium Menu

TS (r)

PS (r)

r1 r2
r3
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v (r3)

v̄ (r3)

(B) Probability-Revenue Menu

Exp. Revenue

Sale Prob
r1

r2

r3

r4
r5

v̄ (r3)
v (r3)

Notes: Panel A shows a hypothetical equilibrium menu. The slopes of the blue lines are upper and lower bounds for the value
of an agent choosing action r3. Panel B shows the menu in terms of the probability of sale, 1− PS(r), and expected revenue,
−TS(r). Again, the slopes of the blue lines bound the value of a seller choosing action r3.

Figure 2.A illustrates a hypothetical equilibrium menu facing the seller. We consider a

case where the seller’s possible choices of secret reserve prices are r′ ∈ {r1, ..., r5}. Indiffer-

ence curves in this figure are straight lines, with the seller’s utility being higher toward the

southeast of the figure. To interpret, consider a seller choosing r3. Compared to r3, points

r4 and r5 have higher probability PS (r) of the seller keeping the good and higher transfer

TS (r) from the seller to buyer.41 If the seller prefers r3 to r4 or r5, her value must be lower

than the average cost of purchasing this additional probability. That is, vS ≤ TS(r
′)−TS(r3)

PS(r′)−PS(r3)
for

items r′ ∈ {r4, r5}. Similarly, compared to point r3, r1 and r2 have lower transfers and lower

probability of keeping the good. If the seller prefers r3, her value must be higher than the

average cost of purchasing the additional probability offered by r3. That is, vS ≥ TS(r3)−TS(r
′)

PS(r3)−PS(r′)

for items r′ ∈ {r1, r2}. Thus, Corollary 1 implies that the value of any seller type choosing

r3 must lie between the slopes of the blue lines labeled v (r3) and v̄ (r3) in Figure 2.A.

The equilibrium menu can alternatively be thought of in terms of the sale probability

(1−PS(r)) and expected revenue (−TS(r)), shown in Figure 2.B. Sellers choose a probability-

revenue pair from this menu: when sellers set lower r, they sell more often and get higher

41Here we follow the mechanism design literature in modeling the expected transfer an agent makes, rather
than receives. For the seller, this can be counterintuitive: a higher transfer from the seller to the buyer is in
fact a lower payment received by the seller, as all payments flow from buyer to seller in practice. The second
panel of Figure 2 provides an alternative illustration.
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expected revenues, but marginal revenue from selling with higher probability is lower with

lower r. If a seller chooses r3, the secant lines at r3 bound her value for the car.

This leads to our main (and most powerful) result: for a sufficiently smooth and continuous

game, the Theorem 1 bounds yield point identification. A7 states these conditions:42

(A7) (i) PS (r) is continuous and strictly monotone with derivative bounded away from 0;

(ii) PS (r) , TS (r) are both continuously differentiable; and (iii) ρ (vS) is continuous

and strictly monotone in vS.

Corollary 2. Under A3 and A7, vS (r), the inverse of ρ (vS), satisfies vS (r) =
T ′
S(r)

P ′
S(r)

for all

reserve prices r played by some type vS in equilibrium.

Corollary 2 is the smooth, continuous-action analog of what is illustrated in Figure 2. The

required smoothness conditions are that different types of sellers choose different reserve

prices, different reserve prices lead to different probabilities of the seller keeping the car, and

all functions are differentiable. Under these conditions, the upper and lower bound slopes in

Figure 2 collapse to a line, and the seller’s value is exactly the slope of that line—the tangent

line at the point the seller chooses.43 This can be considered a generalization of GPV.44 The

GPV argument is specific to a first-price auction (FPA). In contrast, our approach applies

to any game where the econometrician observes whether trade is successful, transfers, and

some variable that is one-to-one with agents’ types. This feature may be advantageous in

other bargaining settings as well, where equilibria may be difficult to characterize, and game

rules differ from well-studied auction formats.

42A7 is assumed directly on equilibrium objects (the menu and ρ (vS)) rather than on primitives.
43Corollary 2 applies only to strictly separating equilibria in the sense that no two distinct vS choose the

same r, and each r leads to a different PS(r). In some bargaining games, equilibria feature partial-pooling
regions where, for example, all sellers with values above some cutoff never trade. In such settings, values
for agents who pool would not be point identified; however, the arguments in Theorem 1 would still yield a
one-sided bound on these agents’ values by considering deviations to the nearest interior action.

44To see this, consider an n-bidder FPA in a symmetric IPV environment. Let the distribution of bids be
G(·), with density g(·). In an FPA, the expected probability of winning, (Pi), and expected transfer (Ti) for

bidder i with bid bi are known transformations of G, given by Pi (bi) = G (bi)
n−1

and Ti (bi) = biG (bi)
n−1

.
Differentiating Pi and Ti, as in Corollary 2, player i’s value is given by

vBi =

dTi(bi)
dbi

dPi(bi)
dbi

=
bi(n− 1)G(bi)

n−2g(bi) +G(bi)
n−1

(n− 1)G(bi)n−2g(bi)
= bi +

G(bi)

(n− 1)g(bi)
.

This last term equals GPV’s, but is derived without exploiting any knowledge that the game is a FPA.
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Corollary 2 only requires optimality (or equivalently, IC) of the seller’s secret reserve choice;

it does not require optimality of buyers’ actions or of the seller’s own actions at later stages

of the game (e.g., in bargaining). Thus, maintaining the assumption of optimality of seller’s

secret reserve choices, Corollary 2 provides identification of seller values even if other parts of

agents’ strategies belong to a behavioral equilibrium. Optimality of the seller’s secret reserve

choice implies two additional restrictions on the equilibrium menus. First, equilibrium menus

must satisfy individual rationality (IR), implying that the seller’s expected payoff under the

optimal r must exceed vS, her value of keeping the car herself:

max
r′

vSPS (r
′)− TS (r

′) ≥ vS ∀vS (3)

Second, equilibrium menus must be convex:

Theorem 2. Under A3 and A7, the graph of {(PS (r) , TS (r))} is convex.

The intuition for Theorem 2 can be seen in the left panel of Figure 2. Every action played

in equilibrium must be optimal for some type, so the upper and lower bounds in Theorem 1

must intersect. Points interior to the menu’s convex hull are dominated: no type would find

it optimal to play such actions. We impose convexity and IR on our estimated menu.

One key point about this identification argument is that it relies on variation in the

probability that a game ends in agreement; the argument is not useful if the researcher

observes no cases where parties disagree. Indeed, in bilateral bargaining, if the researcher

only observes successful trades, the researcher cannot reject the possibility that complete

information (e.g. Nash bargaining) is actually the correct model. Data on failed attempts

to trade that are essential for rejecting a complete-information environment.

4.2 Identification of FB. Identification of FB is relatively standard. By Proposition 1.i, the

auction price equals the second-highest bidder’s value. Let Pr(N = n) denote the probability

mass function of N . FB is identified via an order statistics inversion using Pr(N = n) and

the distribution of auction prices FPA(·). For any y, the following holds:

FPA(y) =
∑
n

Pr(N = n)
[
nFB(y)

n−1 − (n− 1)FB(y)
n
]
. (4)

The right-hand side of (4) is monotonic in y, and thus FB is identified.45 The distribution

45This approach requires N being independent of bidders’ values (A2). Appendix B.4 shows evidence
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of the highest-value bidder (the maximum order statistic, which we denote VB(1)) is then

FB(1)(y) =
∑
n

Pr(N = n)FB(y)
n (5)

Appendix B.3 discusses how we specify Pr(N = n) and shows that the estimate of FB(1) is

not sensitive to this choice.

4.3 Game-Level Heterogeneity. We now incorporate game-level heterogeneity Y β +W ,

where the econometrician observes Y but not W . Proposition 1.iii implies location invari-

ance: auction, reserve, and final prices shift additively in Y ′β +W , and trade probability is

invariant. This applies to W and Y ′β, but the two forms of heterogeneity require different

identification arguments. Let Rraw ≡ Y ′β+ R̃ and PA,raw ≡ Y ′β+ P̃A represent reserve and

auction prices with both heterogeneity terms included, where R̃ ≡ R+W and P̃A ≡ PA+W

(with joint density fR̃,P̃A). Proposition 1 implies mutual independence of {Y,W,R, PA}, and

thus an estimate of β can be obtained from a linear regression of observations of Rraw and

PA,raw on Y , with residuals corresponding to estimates of R̃ and P̃A.

Evdokimov and White (2012), Lemma 1, yields the following.46 For ω ∈ {R,PA,W}, let

fω be a density and ϕω a characteristic function (with derivative ϕ′
ω).

(A8) (i) ϕR and ϕW have only isolated real zeros; (ii) the real zeros of ϕPA and ϕ′
PA are

disjoint; (iii) E[W]=0.

Proposition 2. Under A2–A8, fW , fPA, and fR are identified from fR̃,P̃A.

The intuition behind Proposition 2 is that, due to independence, correlation between R̃

and P̃A is driven by W . Means of R, PA, and W are not identified without a location

normalization; we impose E[W ] = 0. fP̃A,R̃ can be written as a convolution of marginals:

fR̃,P̃A(r̃, p̃A) =

∫
fPA(p̃A − w)fR(r̃ − w)fW (w)dw (6)

Proposition 2 yields identification of FPA , and then we apply (4) and (5) to identify

FB and FB(1) . We now describe identification of the (PS, TS) menu under game-level het-

erogeneity. Consider a realization of game-level heterogeneity Y β + W = τ . We re-

consistent with this assumption. Appendix B.4 also analyzes the correlation of N with other variables.
46By Evdokimov and White (2012), standard distributions satisfy A8, which is weaker than the conditions

of Krasnokutskaya (2011), who first applied a similar result to unobserved game-level heterogeneity.
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quire that agents’ strategies constitute an equilibrium conditional on any such realiza-

tion. Define the seller’s expected allocation and transfer when playing reserve price r +

τ in equilibrium as P τ
S (r + τ) ≡ E [xS (r + τ, V−S + τ) | Y ′β +W = τ ] and T τ

S (r + τ) ≡

E [tS (r + τ, V−S + τ) | Y ′β +W = τ ], with expectations taken over other agents’ values (and

hence their equilibrium actions). By Proposition 1.iii, adding τ to values shifts prices by τ :

priceτ (r + τ) = price0 (r) + τ ∀τ, r (7)

where priceτ (r + τ) is the expected final price conditional on trade when game-level hetero-

geneity equals τ . The expected transfer can be written T τ
S (r + τ) = priceτ (r) (P τ

S (r + τ)− 1),

which, combined with (7) and with P 0
S(r) = P τ

S (r + τ) (another implication of Proposition

1.iii), becomes

T τ
S (r + τ) =

(
price0 (r) + τ

) (
P 0
S (r)− 1

)
= T 0

S (r) + τ
(
P 0
S (r)− 1

)
∀τ, r (8)

Thus, relative to a case where game-level heterogeneity is zero, a case where τ ̸= 0 shifts the

argument inside the probability function by τ , and shifts and rotates the expected transfer

function: (8) implies that
dT τ

S

dP τ
S

∣∣
r+τ

=
dT 0

S

dP 0
S

∣∣
r
+ τ . This also implies that equilibrium menus are

fully characterized by probabilities and transfers at τ = 0, P 0
S (r) , T

0
S (r).

(P 0
S , T

0
S) are not immediately identified from conditional expectations in the data because

we only observe realizations of noisy reserve prices R̃ ≡ R+W , which are confounded with

unobserved heterogeneity W . Rather, we can identify probabilities and transfers conditional

on realizations of R̃ = r̃, which we denote P̃S (r̃) and T̃S (r̃), and then identify P 0
S (·) and

T 0
S (·) from these objects.

Theorem 3. Under A2–A8, P 0
S (·) , T 0

S (·) are identified (on the support of R that occur in

equilibrium for at least some realizations of VS) from P̃S (r̃) , T̃S (r̃), fR, and fW .

The proof of Theorem 3 demonstrates that P 0
S (·) and T 0

S (r), the underlying expected

allocation and transfer functions purged of unobserved heterogeneity, solve

P̃S (r̃) =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

(9)

T̃S (r̃)− E [W∆PS | r̃] =
∫
T 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

(10)

E [W∆PS | r̃] ≡
∫
(r̃ − r) (P 0

S (r)− 1) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

(11)
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We describe in Section 5 how we exploit (9)–(11) to estimate P 0
S (·) and T 0

S (·).

4.4 Allocation Function for MRW . We assume the following:

(A9) Conditional on PA = pA and VS = vS, trade occurs for a buyer VB(1) = vB(1) if vB(1) is

greater than a function gS(vS, p
A).

We do not believe A9 is overly strong for our setting: A9 holds in many bargaining models

(e.g., Myerson and Satterthwaite 1983, Williams 1987), and Theorem 1 of Storms (2015)

implies that it holds in any PSBNE of our game when VB(1) and VS have finite type spaces,

including arbitrarily fine type spaces.47 Behavior in Examples 1–4 does not violate A9, and

non-BNE behavior can also satisfy A9 (e.g., M2nd,con
B ).

Under A9, the allocation function for MRW is 1{v(1)B ≥ gS(vS, p
A)}. Because ρ(vS) is

strictly increasing, we can re-write this as a function of r rather than vS. Let gR(ρ(vS), p
A) ≡

gS(vS, p
A). The function gR is related to the trade probability at a realization of P̃A and R̃:

Pr(A|R̃ = r̃, P̃A = p̃A) =

∫
FB(1)|PA

(
gR(r̃ − w, p̃A − w) | p̃A − w

)
Ig(r̃, p̃

A, w)∫
Ig(r̃, p̃A, z)dz

dw (12)

where Ig(r̃, p̃
A, w) ≡ fR(r̃−w)fPA(p̃A−w)fW (w) is the joint density of (R,PA,W ), and A is

the event that trade occurs. FB(1)|PA

(
vB(1) | pA

)
≡ 1−FB(v

B(1) )

1−FB(pA)
is the CDF of VB(1) conditional

on VB(1) ≥ PA. FB and the densities in (12) are identified, and thus gR(·) is as well, by a

similar convolution theorem argument as in the proof of Theorem 3.

5 Estimation of Menus and Private Values

5.1 Estimation Details. Estimation follows identification closely. Let j denote an obser-

vation, consisting of the allocation (an indicator for the seller keeping the car), the transfer

(the final price if the car sells and zero otherwise), the secret reserve price, and the auction

price. Let yj be a vector of controls. Estimation requires two additional assumptions:

(A10) Random variables {VS, {VBi
}Ni=1,W,N} are independently and identically distributed

across instances of the game.

47Ausubel and Deneckere (1993) referred to A9 as the “northwestern criterion,” as it implies a function of
seller types such that, in a plot with sellers’ types on the horizontal axis and buyers’ on the vertical, all buyer
and seller types northwest of the function will trade. In our model, the property is most straightforward to
prove for finite type spaces, as this restriction permits conditioning on elements of finite sets rather than
positive probability subsets of infinite sets.
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(A11) Observations in the data arise from the same equilibrium.

A10 andA11 are common in structural work and allow us to apply the model’s properties to

the data. They can be relaxed somewhat by performing estimation separately in subsamples

of the data, which we do below. We describe each estimation step in turn.

Step 1) Observable Heterogeneity. Let rrawj ≡ y′jβ + r̃j and pA,raw
j ≡ y′jβ + p̃Aj be the

reserve and auction prices for observation j before removing game-level heterogeneity, where

r̃j ≡ rj + wj, p̃
A
j ≡ pAj + wj. We estimate β with the following stacked regression: rrawj

pA,raw
j

 =

 y′jβ

y′jβ

+

 r̃j

p̃Aj

 , (13)

This is the bid homogenization approach of Haile et al. (2003). To control for as much

variation as possible, yj includes a rich set of observables: dummies for each make-model-

year-trim-age combination (the age of the vehicle in years), dummies for the interaction of

mileage with car-make dummies, dummies for 32 vehicle damage categories, and more.48 To

aid in estimating this large number of categorical dummies, we use an augmented dataset

that includes our main sample plus 39,700 observations in which cars that failed to sell were

later re-auctioned and 80,213 observations for which we observe only a reserve or auction

price but not both. The adjusted R2 is 0.95, suggesting that most of the variation in these

prices arises from observable differences across cars.49 We refer to the predicted value y′jβ̂

as the market value of the car. The average estimated market value is $10,255. Let p̃ricej

be given by pricerawj − y′jβ̂ when trade occurs and 0 otherwise.50

Step 2) Unobserved Heterogeneity. We estimate fW , fR, and fPA and their corre-

sponding CDFs via maximum likelihood, where (6), evaluated at the Step 1 residuals, is the

48Other controls are fifth-order polynomials in the auction house’s book value estimate and the odometer
reading; the number of previous attempts to sell the car; the number of pictures of the car on the auction
house’s website; a dummy for whether the odometer reading is considered accurate, and the interaction of
this dummy with the odometer reading; dummies for condition report grade (ranging from 1–5); dummies
for the year-month combination of the sale date and for auction house location interacted with hour of sale;
dummies for each seller appearing in at least 500 observations; dummies for discrete odometer bins; and
several measures of the thickness of the market during a given sale and of the order the cars were run (see
Larsen 2021 for details on their construction).

49Estimating (13) with outcomes in logs instead of levels (consistent with a model of multiplicative rather
than additive separability) yields a lower adjusted R2 (0.88) and more residual variance across the range of
predicted values of the regression (i.e., greater heteroskedasticity).

50Appendix B.1 offers more discussion of the augmented dataset and Appendix B.2 illustrates what vari-
ation in these residuals aids in the menu identification approach.
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contribution of j to the likelihood. We model each ω ∈ {PA, R,W} as N(µω, σω).
51

Step 3) Buyer Value CDF. We estimate FB by solving (4) on a grid. This requires an

estimate of FPA , which comes from Step 2, and an estimate of Pr(N = n), which we obtain

from the data subsample with bid logs, from which an auction-by-auction lower bound on

the number of bidders, N , can be imputed.52 We replace N in (4) and (5) with N . We

construct the value distribution for the winning bidder, FB(1) , using (5).

Step 4) P̃S (r̃) and T̃S (r̃). We estimate the noisy expected allocation function P̃S (r̃)

through a local linear regression of an indicator for the seller keeping the car on r̃j. We

estimate the noisy expected transfer T̃S (r̃) analogously through a local linear regression of

−p̃ricej on r̃j. These regressions use a Gaussian kernel and $500 bandwidth. For comparison,

the mean and standard deviation of reserve prices in the data are $10,368 and $5,929.

Step 5) Estimating P 0
S (r) via Splines. We parameterize the function P 0

S (r) as a

quadratic I-spline (Ramsay 1988) with 5 knots, constrained to be nondecreasing in r.53

Denote this P 0
S (r; θP ). We estimate the spline coefficients θP as the solution to

min
θP

∫ [(∫
P 0
S (r; θP ) f̂R (r) f̂W (r̃ − r) dr

ĥ(r̃)

)
− ˆ̃PS (r̃)

]2
ĥ(r̃)dr̃ (14)

In words, (14) numerically solves (9) by minimizing the distance between the estimated

function ˆ̃PS (r̃) and the convolution of P 0
S (r; θP ) and f̂R(r)f̂W (r̃−r)dr

ĥ(r̃)
, weighting by ĥ(r̃) ≡∫

f̂R (r) f̂W (r̃ − r) dr, the estimated density function of r̃.54 For brevity, we sometimes

denote P 0
S

(
r; θ̂P

)
by P̂ 0

S (r). The square root of the value of (14) at the optimum constitutes

51A likelihood ratio test comparing this model to one with fifth-degree Hermite polynomials for densities
(as in Gallant and Nychka 1987) fails to reject the more parsimonious model.

52This lower bound is the number of unique bidders who placed a bid online (bidder identities are observed
for online bidders) plus 1 if the bid log records any physically present bidders (bidder identities are not
recorded for these bidders) or plus 2 if the log records two consecutive physical bids. This attributes all
physical bids to a single bidder unless there are two such bids in a row, motivated by the intuition that no
bidder bids against herself and so two consecutive physical bids correspond to an auction with at least two
physical bidders. Appendix B.3 discusses alternative choices for Pr(N = n).

53These knots are placed at evenly spaced quantiles of the reserve price distribution. The choice of 5 as
the number of knots for P 0

S was driven by an attempt to remain flexible while avoiding over-fitting, which
required some degree of experimentation. Avoiding over-fitting at this stage of the estimation is important,
as these objects are inputs in the subsequent stage where we differentiate to obtain estimates of FS . See
Appendix B.5 for additional discussion of estimates from Steps 5–6. Appendix B.6 shows how our estimates
differ if we ignore unobserved heterogeneity.

54Weighting by ĥ(r̃) does not matter asymptotically. In finite samples it has the effect of down-weighting

estimation where r̃ has low density—where ˆ̃PS (r̃) may be less accurately estimated.
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one measure of fit — a root weighted mean squared error (RMSE). Because we estimate a

probability in this step, the RMSE lies in [0,1]. We find a RMSE of 0.0021, suggesting that

the convolution differs from the local linear fit by 0.21 percentage points on average.

Step 6) Estimating T 0
S (r) via Splines. Using the estimated probability P 0

S

(
r; θ̂P

)
func-

tion, we parameterize the expected transfer function as a convex regression spline (C-spline;

see Meyer 2008) in the probability rather than as a function of r directly. We denote this

composition by T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θT

)
.55 This spline approximation allows us to directly im-

pose convexity of the transfer-probability menu. We estimate

min
θT

∫ [(∫
T̆ 0
S (P

0
S (r; θP ) ; θT ) f̂R (r) f̂W (r̃ − r) dr

ĥ(r̃)

)
−
(
T̃S (r̃)− Ê [W∆PS | r̃]

] ]2
ĥ(r̃)dr̃

subject to the constraint that T̆ 0
S (p) is weakly convex. This requires an estimate ofE [W∆PS | r̃],

which we construct using (11). We denote the value of T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θ̂T

)
at the estimated

parameters, when written as a function of r, by T̂ 0
S (r). The RMSE from this step represents

the amount in dollars by which our fit is off; we find this number to be quite low ($4.08)

relative to prices in this market, indicating a good fit.

Step 7) IR constraint, ρ(·), and FS. We construct, for a grid of values for r, an estimate

of the type vS that would choose each r, equal to
dT̆ 0

S

dp
, the derivative of the outer spline

function T̆ 0
S (p; θT ) with respect to p, evaluated at the point P̂ 0

S (r). This derivative has a

closed form given our parametrization of T̆ 0
S (p; θT ). We then impose IR as follows: For any

implied vS choosing r such that (3) does not hold, we replace vS with the marginal seller

type receiving zero utility and, holding P̂ 0
S(r) fixed, set T̂

0
S(r) to the value making (3) hold

with equality.56 This step affects only 2.44% of sellers. From the vS corresponding to each

r we obtain an estimate of the mapping ρ(vS). FS is then given by FS(vS) = FR(ρ(vS)) for

any vS. Simulating independent draws from our estimates of Y ′β, FW , and FS, we find that

97.37% of sellers are estimated to have total values (Y ′β +W + VS) that are positive.

Step 8) Trade Cutoff Function, gR(·). We minimize the distance between the left- and

right-hand sides of (12), plugging in FB from Step 3 and fR, fPA , and fW from Step 2, as

55For T̆ 0
S , we use 4 knots uniformly spaced from 0 to 5% above the highest predicted value of P 0

S

(
r; θ̂P

)
on our grid of r-values. We choose 4 knots for this step to ensure some undersmoothing in the earlier step.

56This treats these sellers as though trading with probability P̂ 0
S(r) but having zero expected surplus,

making them exactly indifferent to participating.
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well as an estimate of Pr(A|R̃ = r̃, P̃A = p̃A).
57 We parameterize hg(r, p

A) ≡ 1−FB(g(r,pA))
1−FB(pA)

using a flexible bilinear spline and then invert the estimate of hg(·) to obtain ĝR(r, p
A) =

F̂−1
B (1− (1− F̂B(p

A))ĥg(r, p
A)).58

5.2 Estimated Menu and CDFs. Figure 3.A shows the menu, with the estimate of P 0
S (r)

on the horizontal axis and T 0
S (r) on the vertical. Each point on the menu corresponds to

the seller’s expected payoff from choosing a given secret reserve price. The units for the

vertical axis are $1,000. We make several remarks before discussing the estimates. First, our

formulation for payoffs, vSP
0
S(r)− T 0

S(r), means P 0
S(r) is the probability the seller keeps the

good, so 1−P 0
S(r) is the sale probability, and −T 0

S(r) is the expected payment received by the

seller. Second, recall that seller (and buyer) values are additive in game-level heterogeneity,

with a seller’s total value for the car given by VS + Y ′β + W . Therefore, for a car with

Y ′β +W = $10,000, VS = -$1,000 (a negative value) would imply the seller’s total value for

the car is $9,000, and VS = $1,000 would mean her total value is $11,000. VS < 0 are types

whose optimal action lies on the downward-sloping portion of the menu in Figure 3.A.

With these remarks in mind, we compare several points along the menu, rA, ..., rD, where

rA < rB < rC < rD, in Figure 3.A. Points A and B lie along the downward-sloping portion

of the menu. Choice rA yields a lower probability of keeping the car and a lower expected

transfer (i.e. a less negative T 0
S) than would choice rB. Therefore, a seller who chooses rA

wants to get rid of the car more than a seller who chooses rB, implying that the former

seller has a lower value (lower vs) than the latter. This is precisely what Figure 3.A shows:

the derivative of the menu at rA is more negative than at rB, and these derivatives (by

Corollary 2) reveal sellers’ values, so a seller choosing rA must therefore have a value that

is farther below the market value of the car than does a seller choosing rB. Points C and

D lie along the upward-sloping portion of the menu. Choice rC yields a lower probability

57We estimate this conditional probability by regressing an indicator for trade occurring on a tensor
product of cubic b-spline functions with fifteen uniformly spaced knots in each dimension.

58Parameterizing and estimating hg(r, p
A) rather than gR(·) is useful because the former is bounded on

[0, 1]. Our parameterization of hg(·) uses 25 knots in each dimension, uniformly spaced between the 0.001

and 0.999 quantiles of R̃ and P̃A. We impose several constraints in estimation: (i) hg(r, p
A) ∈ [0, 1]; (ii)

hg(r, p
A) decreasing in r; (iii) hg(r, p

A) = 1 if r ≤ pA; (iv) gR(r, p
A) ≥ g(r, pA) ≡ max{pA, ρ−1(r)} ⇒ hg ≤

1−FB(g(r,pA))

1−FB(pA)
; (v) ER,PA [hg(r, p

A)g(r, pA)] ≤ E[p̃rice|A] Pr(A). Condition (iv) ensures that the estimated

g does not allow trade when vS > vB . Condition (v) follows from the fact that the observed average price
must exceed the lowest possible price, which is max{pA, ρ−1(r)}.
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Figure 3: Estimated Menu
(A) Estimated Menu (B) Sales/Revenue Menu

Notes: Panel A displays the final estimated menu, (P̂ 0
S , T̂

0
S). Dashed lines show pointwise 95% confidence bands a nonparametric

percentile bootstrap with 200 replications. Units on the vertical axis are $1,000 relative to the market value estimate. The
points marked A–D are discussed in the body of the paper. Panel B shows an alternative version of the menu, as in Figure 2,
with the mean game-level heterogeneity term added to all values and prices: τ = E[Y ′β̂ + W ] = E[Y ′β̂] = $10,255. Panel B
thus shows sale probabilities, 1− P τ

S (r + τ), and expected revenues, (−T τ
S (r + τ)), computed as described in (7)–(8).

of keeping the good but a higher expected transfer to the seller (i.e. a more negative T 0
S).

Therefore, a seller choosing rD wants to keep the good more (i.e. has a higher vS) than a

seller choosing rC , manifest by a derivative that is more positive at D than at C. Figure 3.B

offers an alternative version of this menu in terms of expected revenues and sale probabilities,

analogous to Figure 2.B. To improve readability, we adjust expected revenues by adding an

amount τ = E[Y ′β̂ +W ] = E[Y ′β̂] = $10,255 to all agents’ values and, consequently (by

Proposition 1.iii), to all prices, shifting upward and rotating the menu as in (7)–(8).

From the menu derivatives, we obtain vS = ρ−1(r). We display this mapping with a

solid blue line in Figure 4.A, with reserve prices on the horizontal axis and values on the

vertical axis. The units for each axis are $1,000. The dashed lines indicate a pointwise

bootstrapped 95% confidence band. The yellow line shows the 45-degree line (the reserve

price itself). For a seller who chooses a reserve price equal to the heterogeneity value of the

car (Y β̂+W ), represented by 0 on horizontal axis, Figure 4.A implies that the seller’s value

vS was substantially below the car’s market value. Consider a car with market value equal

to the mean, τ = $10,255. A seller who chooses a reserve price of $10,000 for this car has

a value of $8,533.2; one who chooses $11,000 has a value of $9,765.7; and one who chooses

$12,000 has a value of $9,966.9. Taking into account the distribution of reserve prices, the

average difference between reserve prices and seller values is $1,569.4.
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Figure 4: Value Mapping and Value CDFs

(A) Mapping from Reserve to Value (B) Value CDF

Notes: Left panel shows the estimated mapping from reserve prices to values (blue line) and the reserve price (yellow line,
y = x). Right panel displays estimated CDF of seller values, FS (blue line), and estimated CDF of maximum order statistic of
buyer values, FB(1) (green line). Dashed lines show 95% confidence bands from bootstrapping with 200 replications. Units on
horizontal axes (and on vertical axis of panel A) are $1,000 relative to market value estimate.

The estimated ρ−1(r) mapping, combined with FR, gives us an estimate of FS, which we

plot in Figure 4.B.59 We also plot the estimate of FB(1) , which lies to the right, suggesting

gains from trade exist in this market, which is to be expected given that auction houses

have been functioning well as market makers in this industry for three quarters of a century.

Figure 4.B also reveals overlap between FS and FB(1) , which, by the Myerson-Satterthwaite

Theorem, can lead to inefficiency, with some trades failing even when VB(1) > VS.

6 Quantifying Bargaining Power

Computing αm
S and αm

B using (1) requires computing buyer and seller surplus under a given

benchmark mechanism m ∈ M and under the real-world mechanism, MRW .60 In this section

59The convexity constraint imposed on the menu binds over a region of secret reserve prices, implying an
atom in FS where 28.90% of sellers have the same value.

60Game-level heterogeneity is irrelevant for calculating surplus because buyer and seller surplus are in-
variant to it. Specifically, by Proposition 1.iii, a shift in game-level heterogeneity Y ′β + W = τ has no
effect on the trade probability and shifts buyer values, seller values, and prices by the same amount, τ ,
leaving surplus unchanged. For example, consider two cases: case (i) τ = $10,000, the seller’s total value
(i.e., including τ) is $9,000, the buyer’s is $12,000, and the price is $11,000; and case (ii) τ = $5,000, the
seller’s total value is $4,000, the buyer’s is $7,000, and the price is $6,000. In both cases, the realized surplus
is $2,000 for sellers and $1,000 for buyers; the level of τ is irrelevant as it appears in seller values, buyer
values, and prices, and thus it differences out. This can also be seen mathematically. By Proposition 1.iii,
if a seller of value vS would have chosen a reserve price of r when Y ′β +W = 0, then, when Y ′β +W is
equal to some τ ̸= 0, her value and reserve price shift additively by τ . Then, by (7)–(8), her surplus is
(vS + τ)P τ

S (r + τ) + priceτ (r + τ)(1− P τ
S (r + τ)) = vSP

0
S(r)− T 0

S(r), where τ falls out of the expression.
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we first describe how we compute these expected surplus measures using the objects esti-

mated in Section 5. We report and discuss bargaining power estimates relative to first-best

benchmarks, then second-best benchmarks, then separately for OEM vs. non-OEM sellers.

6.1 Computing Expected Surplus and Bargaining Power. Total expected surplus

under any mechanism can be described by an allocation and transfer. For mechanism M

and any realizations of (VS, VB(1) , PA), let xM(vS, vB(1) , pA) be a dummy denoting whether

trade occurs. Total expected surplus under M is∫ [∫ ∫
(vB(1) − vS)x

M(vS, vB(1) , pA)dFS (vS) dFB(1)|PA

(
vB | pA

)]
dFpA

(
pA
)

(15)

UB(M) is given by replacing vB(1) − vS in (15) with vB(1) and then subtracting the expected

buyer payment under M. US(M) is given by replacing vB(1) − vS in (15) with vS and then

subtracting that quantity from the expected buyer payment.

We now describe the allocation and expected buyer payment for the real-world and

benchmark mechanisms. Under MRW , xMRW = 1
{
vB(1) ≥ g

(
ρ(vS), p

A
)}

, where gR(·) is

the function described in Section 4.4 and estimation Step 8. The expected payment is∫
−T 0

S (ρ (vS)) dFS(vS).
61 For any first-best M (M1st

S , M1st

B , or M1st,con
B ), xM = 1{vB(1) ≥

vS}. The expected payment is given by replacing vB(1) − vS in (15) with vB(1) for M1st

S ; with

vS for M1st

B ; and with max{pA, vS} for M1st,con
B . M2nd

S involves an optimal public reserve

price, given by z∗S (vS) = argmaxzS
∫
max

{
zS, p

A
}
dFPA

(
pA
)
− vS − FB(1) (zS) (zS − vS).

62

The allocation function is xM
2nd

S = 1{vB(1) ≥ z∗S (vS)} and the expected payment is given

by replacing vB(1) − vS in (15) with max{z∗S (vS) , pA}. M2nd

B involves a buyer TIOLIO

z∗B (vB(1)) = argmaxzB (vB(1) − zB)FS (zB). The allocation function is xM
2nd

B = 1{vS ≤

z∗B (vB(1))} and the expected payment is given by replacing vB(1) − vS in (15) with z∗B (vB(1)).

Finally, M2nd,con
B involves a buyer TIOLIO z∗B (vB(1) , pA) maximizing (vB(1) − zB)FS (zB) sub-

ject to zB (vB(1) , pA) ≥ pA. The allocation function is xM
2nd,con
B = 1{vS ≤ z∗B (vB(1) , pA)} and

the expected payment is given by replacing vB(1) − vS in (15) with z∗B (vB(1) , pA).

6.2 Bargaining Power Relative to First-Best Benchmarks. We now discuss the esti-

mated expected levels of surplus for sellers and buyers under the real-world and benchmark

61We do not incorporate bargaining costs into this welfare calculation; Larsen (2021) estimated that the
total expected loss due to bargaining costs is below $33.60 for buyers and below $5.20 for sellers.

62This particular formulation for the optimal reserve price comes from Aradillas-López et al. (2013).
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mechanisms, beginning with first-best benchmarks. Note that all statements in the discus-

sion of our results are statements that hold on average. Table 2.A shows surplus estimates

and Table 2.B shows the implied bargaining power weights. The real-world mechanism,

MRW , gives an expected surplus of $1,353 to the seller and $1,068 to the buyer, with a

total surplus of $2,420. M1st

S gives all of this surplus to the seller and none to the buyer,

while M1st

B does the opposite. The seller’s bargaining power implied by comparing expected

surplus under MRW to these benchmarks is α1st

S = 0.525, meaning that, on average, sellers

achieve 52.5% of the first-best surplus. The corresponding number for buyers is 41.4%.

Table 2: Expected Surplus and Bargaining Power – Full Sample

A. Surplus and Trade Probability B. Bargaining Power

US UB Total Surplus Trade Seller Buyer
($1,000s) ($1,000s) ($1,000s) Prob

MRW 1.353 1.068 2.420 0.841
(0.227) (0.015) (0.233) (0.005)

M1st

S 2.576 0 2.576 0.977 α1st 0.525 0.414
(0.234) – (0.234) (0.006) (0.045) (0.038)

M1st

B 0 2.576 2.576 0.977
– (0.234) (0.234) (0.006)

M1st,con
B 1.435 1.141 2.576 0.977 α1st,con -0.072 0.936

(0.224) (0.019) (0.234) (0.006) (0.012) (0.006)

M2nd

S 1.618 0.776 2.394 0.792 α2nd
0.755 0.280

(0.206) (0.042) (0.247) (0.024) (0.026) (0.044)

M2nd

B 0.535 1.819 2.354 0.818
(0.245) (0.161) (0.258) (0.073)

M2nd,con
B 1.470 1.055 2.525 0.926 α2nd,con -0.787 1.044

(0.233) (0.041) (0.239) (0.027) (0.197) (0.101)

Notes: Panel A shows estimated expected seller and buyer surplus, total surplus, and trade probability in the real-world and
benchmark mechanisms. Panel B shows estimates of αm

S and αm
B for four combinations of benchmark mechanisms: first-best,

first-best constrained, second-best, and second-best constrained. Standard errors from 200 bootstrap samples are in parentheses.

These first-best bargaining power weights, α1st

S and α1st

B , suggest that sellers achieve a

greater fraction of the first-best surplus than buyers. To assess how much of this bargaining

power is driven by bidder competition, we now consider the benchmark M1st,con
B , in which

the buyer receives the most surplus possible subject to the constraint that the price weakly

exceeds the auction price — and in which the seller’s surplus is entirely due to competition.
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This mechanism gives expected surplus of $1,141 to the buyer, implying a competition-

constrained bargaining power for the buyer of α1st,con

B = 0.936. In other words, buyers receive

93.6% of the surplus they would under a first-best outcome constrained only by competition,

not by any information constraints (M1st,con
B , like the other first-best benchmarks, is not

subject to information constraints).

The seller, in contrast, does worse in the real-world mechanism than under M1st,con
B . As

noted in Section 3, the seller’s expected surplus in M1st,con
B equals what she would receive in

an equilibrium in which she chooses r = vS and never counters (i.e., running an auction and

then accepting or rejecting PA). Our finding that US(M1st,con
B ) > US(MRW ) suggests the

seller is giving up some surplus to the buyer. While such behavior would violate rationality

for a seller who only cares about her own surplus, it is consistent with recent evidence from

Yu (2024) (studying Amazon) and Rosaia (2025) (studying Uber/Lyft), who found that

empirical behavior of these firms is captured well by a model in which firms place weight

not just on their own profits but also on consumer surplus, potentially due to long-term,

dynamic concerns.63 Sellers in our data are large firms, such as Ford, Bank of America, or

Hertz, and may have motivation to concede some surplus to buyers in hopes of incentivizing

buyers to return for future sales.64

The story that emerges from the comparison of MRW to first-best benchmarks is that,

while sellers achieve a higher overall surplus level than buyers, this is entirely driven by

sellers’ bargaining leverage from competition among buyers. Sellers are doing no better than

they would with only an auction plus an accept/reject stage, and buyers are achieving a

surplus close to their most favorable outcome given the competition constraint. We thus

find no evidence that sellers have more residual bargaining power (due to skill, patience, or

lower costs) than buyers; they only enjoy the power conveyed by competition.

63As highlighted in Section 4, our identification of a seller’s value relies on optimality of the seller’s choice
of secret reserve price (i.e., a choice of r maximizing her own surplus) and not on optimality of her choices
at later stages of the game. If a seller is indeed yielding some surplus to buyers, our identification strategy
for seller values treats the seller as choosing r optimally in a broader behavioral equilibrium in which she
takes as given the behavior of her future self (i.e., her behavior at the post-auction stage).

64Consistent with this view, Steve Lang — who has participated in the wholesale used-car market as a
buyer, seller, auctioneer, and part owner of an auction house — explained, in a personal communication,
that large sellers tend to prioritize achieving a high probability of sale in the current auction in hopes of
encouraging buyers to attend future sales of these sellers.
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Table 2 also demonstrates that the total first-best surplus ($2,576) is higher than the

real-world surplus, evidence of the inefficiency inherent in incomplete-information bargain-

ing settings when type distributions have overlapping supports (Myerson and Satterthwaite

1983); α1st

S + α1st

B < 1 reflects this same point. Inefficiency can also be seen by the trade

probability in the real-world (0.841) falling short of the first-best (0.977).

6.3 Bargaining Power Relative to Second-Best Benchmarks. The final three rows of

Table 2.A show expected surplus estimates under second-best benchmarks — benchmarks

that require IC, IR, and ex-ante budget balance. Under the seller’s preferred second-best

mechanism, M2nd

S , the seller’s expected surplus is $1,618 and the buyer’s is $776. In con-

trast, under the buyer’s preferred second-best mechanism without the competition constraint,

M2nd

B , the seller would achieve only $535 and the buyer $1,819. Imposing the competition

constraint — that the transaction price must exceed PA — M2nd,con

B yields $1,470 for the

seller and $1,055 for the buyer. Under the first two of these mechanisms, the trade probability

and total surplus is lower than in the first-best, reflective of the trade-off between efficiency

and rent extraction inherent in mechanisms that must satisfy information constraints. The

total surplus and trade probability are much higher under M2nd,con

B (but still lower than in

the first-best), suggesting that competition in the auction goes a long way toward removing

inefficiency.65

Table 2.B shows the bargaining power weights implied by comparing the Ui(MRW ) to

Ui(M2nd

S ) and Ui(M2nd

B ) for i ∈ {S,B}—yielding our estimates of (α2nd

S , α2nd

B ) = (0.755, 0.280).

Thus, the real-world mechanism yields a surplus to the seller that lies 75.5% of the way

— and buyer’s lies 28.0% of the way — between what she would achieve under M2nd

S and

M2nd

B . As with the bargaining weights constructed using first-best benchmarks, these weights

imply that, ignoring the competition constraint, sellers are doing better than buyers rela-

tive to their preferred second-best outcomes. The final row of Table 2.B shows estimates

of (α2nd,con
S , α2nd,con

B ), which account for the competition constraint by replacing the buyer-

preferred benchmark withM2nd,con

B . Here we find a negative estimate of α2nd,con

S . This reflects,

in part, the same possibility of the seller conceding some surplus to the buyer, as discussed in

65This result is consistent with Williams (1999), who showed that, for a single seller facing N buyers, it is
theoretically possible for outcomes to approach the first-best as N increases.
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Section 6.2, but here the negative result can also be driven by inefficiency in the equilibrium

played, which can lead to US(MRW ) < US(M2nd,con

B ).

The buyer, in contrast, has α2nd,con
B above 1 (1.044), with the standard errors suggesting

we cannot rule out α2nd,con
B = 1. As highlighted in Section 3, bargaining weights constructed

with second-best benchmarks can exceed 1 if, in the real-world mechanism, some agents are

not fully exploiting their information rents, consistent with the naive agents in the theoretical

model of Saran (2011) or the laboratory participants in Valley et al. (2002). The finding

that α2nd,con
B is near 1 is closely intertwined with α2nd,con

S < 0 and α1st,con
S < 0: sellers appear

to be conceding some surplus to buyers to the extent that buyers achieve a payoff close to

or potentially higher than UB(α
2nd,con
B ).

6.4 OEM Bargaining Power. Bargaining power is of particular interest between dealers

and original equipment manufacturers (OEMs). For decades, OEMs, such as Ford and

GM, have been involved in the used-car market only in a wholesale role, without directly

interacting with consumers: OEMs buy back leased vehicles at the end of the lease term

and sell these to used-car dealers (through wholesale auction houses), who in turn sell to

end consumers. In the past three years, OEMs have taken small steps in the U.S. toward

direct-to-consumer (DTC) used-car sales. In February 2021, Ford launched a website, Ford

Blue Advantage, that allows consumers to directly search and purchase from Ford’s used-car

stock.66 GM followed in 2022 with its version, CarBravo.

This U.S. trend has been accelerated by changes in Europe, where OEMs are adopting

what is referred to as an agency model, in which consumers search for and purchase vehicles

directly from OEM websites. OEMs argue that an agency model retains a role for dealers

(one of product support rather than sales) while avoiding downstream price competition

between dealers, giving OEMs control over prices, and also giving OEMs market insights

from customer data. The shifting European landscape applies to both new and used cars.

Industry discussions highlight that the agency model is unlikely to be implemented in the

U.S. new-car market because of state-level laws preventing DTC sales for new cars.67 For

66See https://media.ford.com/content/fordmedia/fna/us/en/news/2021/02/11/ford-blue-

advantage-used-vehicle-marketplace.html and https://investor.gm.com/news-releases/news-

release-details/general-motors-introduces-carbravotm-new-way-shop-used-vehicles.
67See recent discussions in https://www.forbes.com/sites/michaeltaylor/2022/10/28/bmw-still-
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used cars, however, no such restrictions exist.68

OEMs’ motives to transition to used-car DTC sales in the U.S. may depend to some extent

on how much of their potential surplus OEMs receive in the traditional wholesale model,

a question to which our bargaining power metrics can speak. We divide our sample into

cars sold by OEMs vs. non-OEMs and estimate bargaining power in the two samples.69

Table 3 shows buyer and seller expected surplus and bargaining power for non-OEM sellers

in panels A and B and for OEM sellers in panels C and D. We find that the total expected

surplus in the real-world mechanism is higher when the seller is an OEM: $3,602 as opposed

to $2,137. This higher total surplus for OEMs is driven by sellers’ surplus being higher

for OEMs ($2,538 vs. $1,101); buyers’ real-world surplus is nearly equivalent in the two

cases. The total first-best surplus is also higher for OEM sales than non-OEM sales. The

first row of panels B and D shows the bargaining weights relative to first–best benchmarks

constructed without enforcing the competition constraint: (α1st

S , α1st

B ) = (0.671, 0.281) in

the OEM sample vs. (0.472,0.444) in the non-OEM sample. Thus, the potential surplus is

higher in OEM sales, and OEM sellers appear to capture more of that surplus than buyers

and more than non-OEM sellers.

We find similar results comparing to the unconstrained second-best benchmark, with

(α2nd

S , α2nd

B ) = (0.918, 0.048) in the OEM sample vs. (0.631,0.318) in the non-OEM sam-

ple. This low α2nd

B (0.048) in the OEM sample is evidence that competition drives the overall

result: it suggests that the buyer’s real-world payoff ($1,064) lies only 4.8% of the way be-

tween what he receives under M2nd

S ($938) and the vastly larger expected payoff ($3,574) if

he could make a TIOLIO offer to the seller without facing any competition.

We now compare the real-world outcomes to benchmarks that account for the competition

wants-an-agency-model--but-not-for-the-us/ and https://www.am-online.com/news/market-

insight/2023/08/21/dealers-troubled-by-agency-model-impact-on-used-car-supply. Lafontaine
and Scott Morton (2010) discussed the economics of state-level laws governing the U.S. new-car market.

68One industry expert commented in September 2022, “The scary part is that if any manufacturer wanted
to exert more force and control in the used-car market for late-model used cars, I’m not sure any state
franchise laws governing new-car sales would hinder them. Again, the OEMs are the largest ‘manufacturers’ of
used cars, financing and owning hundreds of thousands of off-lease, off-fleet and off-rental vehicles. At the end
of the term, these are used cars, so any controls or retailing dictates are fair game, as I believe state franchise
laws only focus on new-vehicle sales protections.” See https://www.wardsauto.com/financials/will-

oems-compete-with-dealers-for-used-car-sales-, which also describes Europe/Africa shift to DTC
used-car sales, with the prime example being Spoticar, the DTC website of Stellantis, the parent of Chrysler.

69Appendix B.7 discusses model fit in these subsamples and the data variation driving our results.
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Table 3: Expected Surplus and Bargaining Power – OEM vs. Non-OEM

A. Non-OEM Sample: Surplus and Trade Probability B. Non-OEM Sample: Barg. Power
US UB Total Surplus Trade Seller Buyer

($1,000s) ($1,000s) ($1,000s) Prob

MRW 1.101 1.036 2.137 0.828
(0.178) (0.025) (0.180) (0.019)

M1st

S 2.333 0 2.333 0.965 α1st 0.472 0.444
(0.183) – (0.183) (0.005) (0.045) (0.043)

M1st

B 0 2.333 2.333 0.965
– (0.183) (0.183) (0.005)

M1st,con
B 1.201 1.132 2.333 0.965 α1st,con -0.089 0.915

(0.173) (0.019) (0.183) (0.005) (0.009) (0.025)

M2nd

S 1.415 0.719 2.134 0.741 α2nd
0.631 0.318

(0.156) (0.037) (0.193) (0.021) (0.026) (0.038)

M2nd

B 0.564 1.713 2.277 0.873
(0.181) (0.086) (0.169) (0.049)

M2nd,con
B 1.259 1.063 2.322 0.935 α2nd,con -1.017 0.920

(0.184) (0.028) (0.182) (0.017) (0.179) (0.069)

C. OEM Sample: Surplus and Trade Probability D. OEM Sample: Barg. Power

MRW 2.538 1.064 3.602 0.912
(0.325) (0.024) (0.324) (0.006)

M1st

S 3.784 0 3.784 0.990 α1st 0.671 0.281
(0.346) – (0.346) (0.005) (0.029) (0.029)

M1st

B 0 3.784 3.784 0.990
– (0.346) (0.346) (0.005)

M1st,con
B 2.702 1.082 3.784 0.990 α1st,con -0.152 0.983

(0.348) (0.025) (0.346) (0.005) (0.030) (0.003)

M2nd

S 2.763 0.938 3.700 0.934 α2nd
0.918 0.048

(0.331) (0.036) (0.364) (0.018) (0.013) (0.020)

M2nd

B 0.009 3.574 3.582 0.906
(0.035) (0.361) (0.354) (0.049)

M2nd,con
B 2.745 1.021 3.765 0.973 α2nd,con -11.705 1.525

(0.370) (0.060) (0.342) (0.014) (109.969) (7.588)

Notes: Panels A and C show estimated expected seller and buyer surplus, total surplus, and trade probability in the real-world
and benchmark mechanisms. Panels B and D show estimates of αm

S and αm
B for four combinations of benchmark mechanisms:

first-best, first-best constrained, second-best, and second-best constrained. Panels A and B use non-OEM sales and panels C
and D use OEM sales. Standard errors from 200 bootstrap samples are in parentheses.

40



constraint. Our finding is that bargaining power of OEMs — as well as that of non-OEMs —

is driven purely by bargaining leverage from bidder competition: as in the full sample, both

the non-OEM and OEM sales show an expected buyer surplus quite close to what buyers

would achieve under the competition-constrained first-best. Indeed, this finding that leverage

drives sellers’ bargaining power is most salient in the OEM sample, where α1st,con
B = 0.983

(compared to 0.915 in the non-OEM sample). A similar story emerges from the seller’s first-

best constrained bargaining weight: α1st,con
S = −0.152 in the OEM sample and -0.089 in the

non-OEM sample, implying that the seller’s payoff is even farther below the competition-only

payoff, US(M1st,con
B ), for OEM sellers than for non-OEM sellers.

The final rows of panels B and D tell a similar qualitative story: sellers’ real-world out-

comes are worse than in the second-best buyer-preferred mechanism constrained by compe-

tition (M2nd,con
B ), reflecting an inefficient equilibrium. Buyers’ outcomes in the real-world

for non-OEM sales are only slightly below their expected payoff under M2nd,con
B . For OEM

sales, buyers in the real world do even better than under M2nd,con
B , with an α2nd,con

B > 1 (with

standard errors suggesting we cannot rule out α2nd,con
B < 1), reflecting a real-world outcome

that potentially lies between the first- and second-best frontiers, consistent with OEM sellers

not fully exploiting their information rent (or in some other fashion conceding some surplus

to buyers). Note that, for the OEM sample, the point estimates of α2nd,con
S and α2nd,con

B are

larger in magnitude and more noisily estimated. This reflects a point raised in Section 3: a

bargaining weight constructed from benchmarks M2nd

S and M2nd,con
B is less likely to be useful

if the degree of competition is sufficiently high that there is little difference between the two

benchmarks, as the construction of the bargaining weight involves dividing by a small num-

ber in such cases. Table 3 shows that this is indeed the case, where the point estimates of

seller surplus under these two mechanisms are only $18 apart in the OEM sample, whereas

they are much farther apart in the full sample and non-OEM sample.

Together, these results suggest that, while OEMs achieve an overall surplus close to the

seller-optimal level, this is due to dealer competition: OEMs, like non-OEMs, achieve little or

no price increases above the auction price. This lack of OEM bargaining power beyond that

granted by competition, along with the apparent inefficiency of the real-world bargaining

equilibrium, is consistent with the idea that OEMs in the traditional wholesale market may
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indeed benefit from attempting a different sales model, such as DTC sales.70

7 Conclusion

This study analyzes bargaining power under incomplete information. We focus on negotia-

tions between buyers (car dealers) and sellers (large institutions, such as manufacturers or

fleet-owning companies) in the supply side of the U.S. used-car market. These negotiations

are facilitated by wholesale used-car auction houses, which run a secret-reserve-price ascend-

ing auction and facilitate offers and counteroffers between the seller and highest bidder.

The private value distribution of the buyer can be estimated from data on auction prices.

The distribution for the seller is much more complex to identify and estimate, but we show

how this can be achieved by applying a revelation-principle-like argument, interpreting the

seller’s choice of secret reserve price as a choice from a menu of expected probabilities of

keeping the car and expected transfers. The derivative of this menu evaluated at the point

chosen by the seller corresponds to the seller’s privately known value.

As bargaining power is not a well-studied concept in incomplete-information bargaining, we

propose a new definition: an agent’s bargaining power describes where the agent’s surplus lies

between two benchmark mechanisms: one preferred by the seller and one by the buyer. This

extends a traditional (complete-information, Nash bargaining) notion of bargaining power

to an incomplete-information setting. We consider both first- and second-best benchmarks,

as well as benchmarks that explicitly account for the bargaining leverage a seller achieves

through competition among bidders.

We find that, on average, car dealers (buyers) achieve a lower level of surplus than sellers

70The success of this attempt may depend on whether OEMs can reach consumers whose willingness-to-
pay distribution rivals that of FV

B(1) |PA , the distribution OEMs face at auctions. Bose and Deltas (2002)

provided a model in which sellers prefer sales to resellers (analogous to dealers at our auctions) rather than
DTC sales if dealers have access to a stronger buyer market downstream than what the original sellers can
access. Thus, OEMs’ steps toward DTC sales may be experimental attempts to learn whether they have
the marketing and technological capability to reach consumers willing to pay as much as auction bidders.
Other explanations for OEMs’ movement toward DTC used-car sales include the COVID-19 pandemic (with
its accompanying decrease of in-person interactions at dealerships) and supply-chain shortages (discussed in
the industry articles cited herein). Note that if we had instead found that OEMs have strong bargaining
power even after accounting for the competition effect, and simultaneously found that the equilibrium in the
wholesale market is relatively efficient, we would instead infer that OEMs’ shift to DTC sales is less likely
to be motivated by a desire to overcome low bargaining power in the wholesale market.
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(large companies), suggesting buyers have less bargaining power than buyers relative to first-

or second-best benchmarks. However, we find that this higher bargaining power of sellers is

driven by competition among buyers: sellers do not achieve more expected surplus than they

would if all of their bargaining power were to derive only from buyer competition, and buyers

achieve an expected surplus level that is only slightly below what they would achieve in the

most favorable outcome for buyers in a first-best world subject to competition. Competition

among buyers thus gives seller’s substantial bargaining leverage but little residual bargaining

power to raise prices above the auction price.

We examine the relationship between manufacturers (OEMs) and dealers in used-car mar-

kets. While OEMs achieve a surplus level close to their optimal payoff, this is again driven

by dealer competition, just as with non-OEM sales. OEMs are unable to push prices much

beyond the auction price. This lack of power may be one motivation for recent moves by

major OEMs (Ford and GM) toward selling used-cars directly to consumers rather than to

dealers at wholesale auto auctions. We see these results as a first step toward understanding

bargaining power in the supply side of used-car markets, and, more broadly, in quantifying

bargaining power in industries where incomplete information plays a role.
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Appendix for Online Publication

A Model Discussion and Proofs

The models in Larsen (2021) and Larsen et al. (2024) incorporated an additive per-offer

bargaining cost for sellers (in addition to buyers); we do not incorporate this feature here

for several reasons. First, the properties of Proposition 1 do not rely on the existence of

seller bargaining costs. A bargaining cost for buyers, on the other hand, is important in the

model to rationalize why some buyers opt out of bargaining, and this opt-out possibility is

important for the property that the seller’s secret reserve price strategy is strictly increasing.

Second, Larsen (2021) estimated an upper bound on the total expected seller surplus lost due

to bargaining costs that is very small (less than $5.2). Third, appropriately incorporating

such seller bargaining costs requires modifying the menu approach, for example, to account

for the seller’s expected probability of trading in each period of the game, not just her

expected probability of trading overall. While theoretically feasible, such a model would be

cumbersome and add little benefit over the current model (given the first and second points

highlighted in this paragraph).

Proof of Proposition 1. Part (i) of Proposition 1 follows from Proposition 1 of Larsen

(2021). Part (ii) follows from Larsen (2021) Proposition 3. Part (iii) follows from Larsen

et al. (2024) Proposition 5.

Proof of Corollary 2. By A7, ρ (vS) is strictly increasing and PS (r) is strictly monotone.

Without loss of generality, suppose PS (r) is strictly increasing; the argument when PS (r) is

decreasing is analogous.

Note that the support of R can be treated as bounded given that the support of VB is

assumed to be bounded. To see this, let
[
b, b
]
denote the support of VB. Choosing any secret

reserve price r below b is a dominated action for the seller given that every buyer has a value

of at least b. Moreover, the seller is indifferent between a secret reserve price of b and any

secret reserve price higher than this because no buyer would ever be willing to pay more

than b. Thus, the support of R can be treated as being bounded within
[
b, b
]
.

Consider some value vS strictly in the interior of the interval
[
b, b
]
. First, we apply the
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upper bound from Corollary 1, comparing ρ (vS), the reserve price chosen by vS, to ρ (vS + δ),

the reserve price chosen by type vS + δ. We have, for any δ,

vS ≤ TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
(16)

where the right-hand side of (16) always exists, because by assumption both ρ (·) and PS (·)

are strictly monotone. Now, let δ → 0. Because ρ is strictly monotone and TS (·) and PS (·)

are differentiable, we have

lim
δ→0

TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
=
T ′
S (ρ (vS))

P ′
S (ρ (vS))

(17)

The ratio of derivatives on the right-hand side of (17) always exists, because by assumption

TS (·) is differentiable, and PS (·) is strictly monotone and differentiable, so P ′
S (ρ (vS)) ̸= 0

for all vS. Thus, the bound in (16) becomes:

vS ≤ T ′
S (ρ (vS))

P ′
S (ρ (vS))

(18)

Next, applying the lower bound from Corollary 1, we also have, for any δ,

vS ≥ TS (ρ (vS))− TS (ρ (vS − δ))

PS (ρ (vS))− PS (ρ (vS − δ))

Analogously, taking the limit as δ → 0, we have:

vS ≥ T ′
S (ρ (vS))

P ′
S (ρ (vS))

(19)

Combining (18) and (19), along with the fact that vS (r) is the inverse of ρ (vS), yields the

desired result for any vS in the interior of
[
b, M̄

]
.

Now, for vS = M̄ , we have:

vS
(
M̄
)
= lim

ϵ→0
vS
(
M̄ − ϵ

)
= lim

ϵ→0

T ′
S

(
ρ
(
M̄ − ϵ

))
P ′
S

(
ρ
(
M̄ − ϵ

)) =
T ′
S

(
ρ
(
M̄
))

P ′
S

(
ρ
(
M̄
))

where the last equality follows by continuous differentiability of TS and PS (A7). The proof

that vS (b) =
T ′
S(b)

P ′
S(b)

is analogous.

Proof of Theorem 2. We prove the result by contradiction. Suppose the graph of

{(PS (r) , TS (r))} is not convex. Then there exists a triple (r, r′, r′′), all of which are played

in equilibrium for some types, such that

γPS (r
′) + (1− γ)PS (r

′′) = PS (r) (20)
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for 0 ≤ γ ≤ 1, and
TS (r) > γTS (r

′) + (1− γ)TS (r
′′) (21)

Consider the type vS whose optimal action is r. By playing r, her expected utility is

vSPS (r)− TS (r) (22)

Playing r′ with probability γ and r′′ otherwise would yield instead

vS [γPS (r
′) + (1− γ)PS (r

′′)]− [γTS (r
′) + (1− γ)TS (r

′′)] (23)

Plugging (20) into (23) yields vSPS (r)−[γTS (r
′) + (1− γ)TS (r

′′)], which, by (21), is strictly

greater than (22). Because r is optimal for type vS, this yields a contradiction.

Proof of Theorem 3. We describe identification separately for probabilities and transfers.

Probabilities. The probability contaminated with W , P̃S (r̃), can be written as:

P̃S (r̃) = ER,V−S ,W [xS (R +W,V−S +W ) | R +W = r̃] (24)

= ER,V−S ,W

[
EV−S

[xS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(25)

= ER,W

[
PW
S (R +W ) | R +W = r̃

]
(26)

= ER,W

[
P 0
S(R) | R = r̃ −W

]
(27)

Expression (25) follows from applying the law of iterated expectations to (24). (26) follows

from taking the expectation over V−S, and using the definition of Pw
S (·) in Section 4.3, and

using that R and W are constant after conditioning on W and R +W = r̃. The equality

between (26) and (27) follows because of location invariance in Proposition 1.iii, which

implies Pw
S (r + w) = P 0

S(r) ∀w, r. That is, the probability attained by setting reserve price

r + w when unobserved heterogeneity is W = w, is the same as the probability attained by

setting reserve price r when unobserved heterogeneity is W = 0. This allows us to replace

PW
S (R+W ) in (26) with P 0

S(R) in (27). In integral form, expression (27) corresponds to (9)

in the main text. In words, (9) shows that P̃S (r̃) is essentially a noisier version of P 0
S (r): it

is a combination of values of P 0
S (r), for r̃ close to r. To show that P 0

S (r) is identified, note

that we can write (9) as:

P̃S (r̃)

∫
fR (r) fW (r̃ − r) dr =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr (28)

The left-hand side of (28) involves P̃S (r̃), fR (·), and fW (·), all of which are identified.
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The right-hand side is the convolution of P 0
S (r) fR (r) against fW (r). fR (·) and fW (·) are

known. Note that the distribution of W has bounded support and, as shown in the proof of

Corollary 2, R will as well. Therefore, P 0
S (r) fR (r) is 0 for all r outside the support of R.

Thus, both P 0
S (r) fR (r) and fW (r) are in L1 and the convolution theorem applies, meaning

that the convolution of P 0
S (r) fR (r) and fW (r) is invertible. Thus, P 0

S (r) fR (r) is identified.

Therefore, at any realization of R that occurs in equilibrium for some seller type (and hence,

where fR(r) is positive), P
0
S (r) is identified.

Transfers. The transfer function contaminated with W , T̃S (r̃), can be written as

T̃S (r̃) = ER,V−S ,W [tS (R +W,V−S +W ) | R +W = r̃] (29)

= ER,V−S ,W

[
EV−S

[tS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(30)

= ER,W

[
TW
S (R +W ) | R +W = r̃

]
(31)

= ER,W

[
T 0
S (R) + (r̃ −R)

(
P 0
S (R)− 1

)
| W = r̃ −R

]
(32)

These equations are similar to expressions (24) to (27) above. (30) follows from applying

the law of iterated expectations to (29). (31) then follows from the definitions of Tw
S (·) and

Pw
S (·), noting again that R and W are constant after conditioning on W and R +W = r̃.

Finally, (32) follows from applying (8) to (31). In integral form, (32) corresponds to (10)

from the main text. We can then write:(
T̃S (r̃)− E [W∆PS | r̃]

)(∫
fR (r) fW (r̃ − r) dr

)
=

∫
T 0
S (r) fR (r) fW (r̃ − r) dr, (33)

In the left-hand side of (33), the term T̃S (r̃) is identified in the data and the termE [W∆PS | r̃]

can be calculated for any r̃ using (11) because P 0
S (r) is identified. Also, fR (·) and fW (·) are

identified. Thus, the left-hand side of (33) is identified. The right-hand side of (33) is the

convolution of T 0
S (r) fR (r) against fW (r). By the convolution theorem, this convolution is

invertible, and thus T 0
S (r) fR (r) is identified, hence T 0

S (r) is identified at any realization of

R that occurs in equilibrium for some seller type.
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B Additional Estimation Results and Discussion

B.1 Data Cleaning

We use the data of Larsen (2021), with the additional restriction that we limit to the first

instance of a given car being offered for sale at a given auction house; here we refer to this as

the first run restriction. Some of the data cleaning steps in Larsen (2021) include dropping

observations with missing variables, incoherent bargaining sequences, extreme prices (those

outside the 0.01 or 0.99 quantiles of a given price variable), or car types (a make-model-year-

trim-age combination) that are sold less than ten times in the data. A total of 9 observations

are dropped due to cases where the recorded final price lies below the recorded auction price.

See Table A5 of Larsen (2021) for a full set of restrictions and the number of observations

dropped from each.

As described in Section 5.1, our estimation Step 1 uses an augmented dataset to aid in

controlling for as much observable variation as possible and, in particular, to help with

estimation of our many category dummies (e.g., make-model-year-trim-age dummies). The

augmented dataset includes 39,700 observations corresponding to repeat attempts to sell a

given car, 15,034 observations in which a reserve price is recorded but not an auction price,

and 65,179 observations in which an auction price is recorded but not a reserve price. A

missing auction price corresponds to a case where a scheduled auction sale did not occur

or where an auctioneer attempted to run the sale but there was insufficient activity from

bidders. A missing reserve price corresponds to a case where the seller, rather than reporting

a secret reserve price, requests that the auction house call her post-auction to let her accept

the auction price or bargain further (effectively reporting a very high reserve price). The

identification of our structural model requires observing both auction prices and secret reserve

prices, and thus we cannot use these observations in our main estimation steps (Steps 2–8).

Our results should thus be interpreted as quantifying bargaining power conditional on the

types of cases that appear in our final sample.

To explore whether differences in these distinct types of observations in the augmented

dataset drive any of our results, we estimate an alternative version of (13) — the stacked

regression in estimation Step 1 — with a fully saturated set of dummy interactions for
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these distinct types of observations. Specifically, we include a dummy for whether a stacked

observation corresponds a reserve vs. auction price, a dummy for whether the observation

corresponds to an instance where only a reserve or auction price is observed for a given car,

and a dummy for whether the observation is a repeat sales attempt, and all interactions

of the preceding three dummies. Within our final sample, the predicted values from this

alternative regression have a correlation of 0.999 with those from (13).

We now analyze differences between cases reserve prices are recorded vs. missing. For this

exercise, we still impose the first run restriction on our sample. For three different outcomes

— p̃ricej, p̃
A
j , and a trade indicator — we regress the outcome on an indicator for whether

reserve prices are recorded. The results indicate that, in observations with missing secret

reserve prices, the trade probability is lower by 1.1 percentage points, p̃Aj is higher by $88,

and p̃ricej (conditional on trade) is higher by $53. We also perform a similar regression

comparing cases where auction prices are recorded vs. missing, regressing r̃j on a dummy for

the auction price being missing. The estimated coefficient suggests that reserve prices are

$428 higher in observations with missing auction prices. These results are each statistically

significant, but are not large relative to the means in Table 1 (average trade probability is

0.86, and average book value is $11,030) or relative to the standard deviations of p̃Aj , p̃ricej,

or r̃j (which all exceed $1,100).

B.2 Residuals From Observable Heterogeneity Regression

This section examines the residuals from the first-step regression. In Figure A.1.A we show

the probability of sale as a function of sellers’ residualized reserve prices, R̃, estimated via a

local linear regression. This probability corresponds to 1− P̃S (r̃), as P̃S (r̃) is the probability

of the seller keeping the good. The units for the horizontal axis are $1,000, and these numbers

can be negative because they are the result of subtracting off the market value estimate y′jβ̂;

these numbers can thus be thought of as indicating where the noisy reserve price lies relative

to the market value estimate of the car. Figure A.1.B displays, on the vertical axis, E[P̃A|R̃]

and E[p̃rice|R̃], again from local linear regressions.71 Here we observe that higher reserve

71The regressions in each panel use observations with noisy reserve prices lying between the 0.01 and 0.99
quantiles of empirical noisy reserve prices.
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Figure A.1: Sale Probability, Auction Price, and Final Price by Reserve Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold regressed on observations of
R̃. Panel B contains similar local linear regression estimates where the outcome is observations of P̃A (the high bid from the

auction) in yellow and observations of p̃rice (conditional on a sale occurring) in black. Units are in terms of $1,000, relative to
the market value estimate. Uses main sample from the body of the paper.

prices are associated with expected final prices that represent a higher markup over the

auction price.

The objects P̃A and R̃ represent the components of auction prices and reserve prices af-

ter controlling for observable heterogeneity. Figure A.1.B demonstrates that these objects

are correlated with one another, underscoring the importance of accounting for unobserved

heterogeneity in our setting. Sellers who choose higher reserve prices sell with lower prob-

abilities (panel A) but attain higher prices conditional on sale (panel B). Importantly, the

difference between the average final price conditional on sale and the average auction price

is increasing in the reserve price. Note that the average auction price roughly measures the

value of unobserved car-level heterogeneity conditional on the reserve price.72 The fact that

the difference between the final price and the auction price is increasing in the reserve price

suggests that sellers who choose high reserve prices are forgoing some sale probability in

72To see this, note that (i) P̃A = PA +W ; (ii) R̃ = R +W ; and (iii) {PA, R,W} mutually independent
together imply

E
[
P̃A | R̃

]
= E

[
PA +W | R+W

]
= E

[
PA | R+W

]
+ E [W | R+W ] = E

[
PA
]
+ E

[
W | R̃

]
That is, E

[
P̃A | R̃

]
is equal to E

[
W | R̃

]
, the conditional expectation of unobserved heterogeneity W given

R̃, plus the constant E
[
PA
]
.
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Figure A.2: Results Relating to Pr(N = n)

(A) Estimated FB (B) Estimated FB(1)

Notes: Panels A and B show the estimated FB and FB(1) , respectively, obtained used different specifications for Pr(N = n):
four Poisson specifications, with the Poisson parameter λ given by 3, 7, 10, or 20, and an auction-by-auction lower or upper
bound on N , denoted N and N , respectively. Similar figures appear as online appendix Figures A6.B and A6.D in Larsen
(2021) for the samples used in that study. Units on horizontal axes are $1,000.

order to obtain a higher sale price, as the menu approach requires.

B.3 Robustness to Specification of Pr(N = n)

As shown in (4), identification and estimation of the underlying distribution of buyer values,

FB, relies on identification of FPA (the distribution of the second-highest value) and Pr(N =

n), the probability mass function (PMF) of N . The construction of FB(1) , the maximum

order statistic distribution, in turn relies on FB and that same PMF, as shown in (5). It

turns out that the implied FB(1) from this procedure is not sensitive to the choice of the PMF

for N ; FB is sensitive to this choice, but FB(1) is not.

To see this, Figure A.2 shows estimates of FB (in panel A) and FB(1) (in panel B) under

different specifications for Pr(N = n): four Poisson specifications, with the Poisson parame-

ter given by 3, 7, 10, or 20, and an auction-by-auction lower or upper bound on N , denoted

N and N , respectively.73 Panel A shows that the underlying estimate of FB is naturally

73N is explained in Section 5.1. N is the sum of two objects: (i) the number of in-person bids and (ii)
the number of bidders registered to bid online. Not all online bidders necessarily submit bids; by registering
online, they have gained permission to access the online portal where video for a specific physical auction
lane will be live-streamed. Thus, the number of bidders registered to bid online is an upper bound on the
number of bidders actually participating online. Note that, anywhere in the paper where observations of N
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sensitive to the choice of Pr(N = n): treating the auction price distribution as though it

represents a draw from a distribution with more bidders leads to the inference that the un-

derlying FB has more mass at low VB. However, the estimate of FB(1) , constructed using the

estimated FB and Pr(N = n), varies little — even across widely different specifications for

Pr(N = n) — as shown in panel B.

The insensitivity of the implied FB(1) to the specification of Pr(N = n) is not just an

empirical artifact: Larsen (2021) Proposition 10 demonstrated that, for any Poisson spec-

ification for Pr(N = n), the implied CDF FB(1)(y) is completely insensitive to the Poisson

parameter. Specifically, consider the following procedure: for a given Poisson specification

of Pr(N = n) with mean λ (i) use Pr(N = n) in the process of inverting FPA to obtain FB

by solving (4) and then (ii) use FB and Pr(N = n) to construct FB(1) using (5). Proposition

10 of Larsen (2021) showed that the derivative of the implied FB(1)(y) at any point y with

respect to λ is identically zero. Panel B shows that this robustness holds even for the lower

and upper bound PMFs, which are not necessarily Poisson.

This lack of sensitivity is important for our analysis because the inputs for our bargaining

power metrics all rely on FB(1) , not FB directly. This can be seen in the expressions for

surplus in Section 6.1. Note that in some of the surplus expressions in Section 6.1, the

integral against the maximum order statistic of buyer values takes the form of the density

of the maximum order statistic conditional on the second-highest, dFB(1)|PA , which is then

integrated against the density of the auction price, dFPA , yielding again the density of the

maximum order statistic.

This relates to a general property of button-like auctions with symmetric IPV: the den-

sity of a higher order statistic of bids conditional on a lower order statistic does not de-

pend on N . Song (2004) proves this result generally. In our case, it takes the form of

FB(1)|PA

(
vB(1) | pA

)
≡ 1−FB(v

B(1) )

1−FB(pA)
, presented in Section 4.4, showing that the conditional

density of the highest bidder’s value conditional on the auction price is independent of the

number of bidders. This is also related to the well-known point (e.g., Riley and Samuelson

1981) that, with symmetric IPV bidders, the optimal reserve price is independent of N .

is used, we limit to cases where N ≥ 2, and anytime N is used, we limit to cases where N ≥ 2.
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B.4 Analysis of Assumptions Involving N Independence

B.4.1 Test of Bidders’ Values Independent of N . Our estimation of the underlying

distribution of buyer values FB relies on the assumption that bidders’ values are independent

of N (A2). This assumption is common in empirical auction studies, and the assumption

has several names: Athey and Haile (2007) referred to the assumption as one of exogenous

participation, while Aradillas-López et al. (2016) (AGQ) referred to it as valuations being

independent of N . We adopt the latter terminology.

AGQ demonstrated the following (their Proposition 2): For any k ≤ n and any v, let

ψk:n(v) ≡ n!
(n−k)!(k−1)!

∫ v

0
tk−1(1 − t)n−kdt. In settings where bidders have private value B̃i =

W + Bi, where Bi are IPV and W is unobserved game-level heterogeneity, then, for any v

and any n < n′, values being independent of N implies

ψ−1
n−1:n(FB̃n−1:n(v)) ≤ ψ−1

n′−1:n′(FB̃n′−1:n′ (v)) (34)

where, for any n, FB̃n−1:n represents the distribution of the auction price including the un-

observable heterogeneity when n bidders are present. If values are independent of N , (34)

would hold with equality if there were no unobserved heterogeneity (i.e., W = 0); in that

case, then both the left- and right-hand sides of (34) would yield the underlying distribution

of buyer values, FB. With unobserved heterogeneity (W ̸= 0), the inequality in (34) holds.

In words, the AGQ result shows that, if valuations are independent of N , using noisy auc-

tion prices (P̃A) and applying the second-order statistic inversion to a sample of n-bidder

auctions will lead to an implied underlying distribution that stochastically dominates the

distribution implied by repeating the exercise with data from n′-bidder auctions (for n < n′).

Importantly, in addition to deriving this result, AGQ demonstrated that the canonical mod-

els of endogenous entry analyzed in Samuelson (1985) and Levin and Smith (1994) lead to

violations of (34), and thus the condition is testable against these models of endogenous N .

We apply this result by evaluating the inequality in (34), where we perform the auction

price distribution inversion at different values of N observed in our bid log subsample. For

this exercise, we treat realizations of N as realizations n of the number of bidders. As

described in Section 5, the lower bound N varies auction-by-auction; for the sake of this

exercise, it captures variation in the degree of competition in different auctions.
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Figure A.3: Test of Independence between N and Buyer Values

Notes: Figure shows the value of test statistic Ψ(n, n′) from (35) at different values of n and n′, with two-sided 90% confidence
intervals constructed from 200 bootstrap replications shown with dashed lines.

We construct the following statistic that summarizes violations of (34) for n < n′:

Ψ(n, n′) ≡
∫

[ψ−1
n−1:n(FB̃n−1:n(v))− ψ−1

n′−1:n′(FB̃n′−1:n′ (v))]dFB̃n−1:n(v)dv (35)

(35) computes the amount by which (34) is violated and then integrates this amount against

the density of the second order statistic of bids to incorporate the fact that estimates of the

underlying value distribution will be more precise where we have more data.

We compute this statistic using all values of n ≥ 2 for which we have at least 100 auctions,

which corresponds to auctions with 2 to 6 bidders. Figure A.3 displays the estimate of Ψ

for all of these values of n′ and for various gaps between n and n′. In blue, the statistic is

constructed by comparing values of Ψ for n′ and for n = n′− 1; in red, n = n′− 2; in yellow,

n = n′ − 3; and, in purple, n = n′ − 4. The solid point shows the test statistic at each

value of n′. The dashed lines show two-sided 90% confidence intervals constructed from 200

bootstrap replications. Our test of interest is a one-sided test — the null hypothesis is that

Ψ(n, n′) < 0 — and thus the lower confidence bound is of particular interest. The lower 90%

confidence bound from a two-sided confidence interval corresponds to the 95% confidence

bound from a one-sided test of the null Ψ(n, n′).

Figure A.3 demonstrates that, at all values of n and n′, the point estimate and the lower
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confidence bound of the statistic are negative. We thus reject the null that the AGQ in-

equality is violated, a finding consistent with values being independent of N and inconsistent

with traditional models of endogenous N .74

B.4.2 Relationship Between N and Other Variables. Assumptions A2–A3 impose

that N is independent of (Y,W, VS). Maintaining the other assumptions of the model, the

correlation between N and Y β̂ should therefore be zero if N is independent of Y . To test

this, we use the lower bound on the number of bidders, N , as our proxy for N . We regress

observations of Y β̂ on dummies for N , with the omitted dummy being the one corresponding

to N = 3, which is the realization of our lower bound in 84% of observations.75 Figure A.4.A

shows the estimated coefficients, with 95% confidence intervals surrounding each estimate.76

We find that all of the estimates are statistically different from the omitted category (auctions

with N = 3). Interestingly, the average Y β̂ at a given value of N is non-monotonic in N : at

both N = 2 and N = 4 the point estimate is greater than at N = 3, suggesting that it is not

the case that an increase in N always corresponds to an increase in the predicted market

value (Y β̂) of a car.

We repeat this exercise with the regression outcome being the estimate of the noisy reserve

price R̃. Independence of N and R̃ should hold if N is independent of (VS,W ), maintaining

the other assumptions of the model. The estimated coefficients on the dummies for values

of N are shown in Figure A.4.B. We find that some (although not all) values of N have

an average estimated R̃ that is statistically significantly different from that of N = 3 (the

omitted category). However, the relationship is quite scattered, with some point estimates

above zero and some below, and the differences in point estimates are smaller in magnitude

than in Figure A.4.A.

The results in Figure A.4 suggest that the assumption of N being independent of (VS,W )

may not be overly strong in our data, but independence of Y and N may be. We maintain

the assumption despite these findings for two reasons. First, our results in Figure A.3 lead

us to fail to reject N being independent of buyer values, and our results in Appendix B.3

74A similar (but abbreviated) analysis appears in Appendix D.3.2 of Larsen (2021).
75We omit from this analysis a realization of N that only occurs once in the data (N = 12).
76These confidence intervals are constructed using homoskedastic standard errors, which is consistent with

the independence assumptions of the model.
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Figure A.4: Correlation Between N and Other Variables

(A) Correlation of N and Y β̂ (B) Correlation of N and R̃

Notes: Panel A shows regression estimates from a regression of Y β̂ (the predicted market value from Step 1 of our estimation)
on dummies for N (the lower bound on the number of bidders at the auction). On the vertical axis, N represents N . N = 3 is
the omitted category. Confidence intervals constructed under homoskedasticity surround each estimate. Panel B repeats this
exercise with the outcome being R̃. Units on the horizontal axis are dollars.

offer reassurance that variation in N has only minimal effects on our estimates of FB(1) ,

the only channel through which N enters our estimates of bargaining power directly. The

second reason is one of practicality: allowing for correlation between N and Y β̂ would require

conditioning nearly all of our estimation steps on this index, which would be computationally

quite challenging.

B.5 Local Linear Regressions and Spline Steps

We next examine the local linear regression and spline estimation steps. In Figure A.5, we

show the local linear estimates of P̃S (r̃) and T̃S (r̃), as well as the heterogeneity-corrected

estimates of P 0
S (r) and T 0

S (r). We also display intermediate steps in this unobserved het-

erogeneity correction to illustrate the procedure. For probabilities, the P̃S (r̃) function is

essentially a noisy version of the P 0
S (r) function; thus, correcting for unobserved hetero-

geneity yields an estimate of P 0
S (r) that is steeper than P̃S (r̃). This can be seen in panel

A by comparing the P 0
S (r) line to the P̃S (r̃) line. For transfers, unobserved heterogeneity

necessitates two corrections to the T̃S (r̃) function. First, we subtract from the estimate of

T̃S (r̃) the estimate of E [W∆PS | r̃], which represents the expected value of the unobserved
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Figure A.5: Removing Unobserved Heterogeneity from Allocation/Transfer Functions

(A) Allocation function (B) Transfer function

Notes: Figure displays heterogeneity correction for allocation function (Panel A) and transfer function (Panel B). Yellow
lines display the original uncorrected estimates of P̃S(r̃) and T̃S(r̃) from local linear regressions, and green lines display final,

corrected estimates, P̂ 0
S(r) and T̂ 0

S (r). In panel B, the black line (which is very close to the blue line) displays estimates from

intermediate step subtracting off mean of unobserved heterogeneity, T̃S(r̃)−E [W∆PS | r̃]. In each panel, the blue line displays
the fitted value for comparison. Units on the horizontal axis (and vertical axis of panel B) are $1,000, relative to the market
value estimate.

heterogeneity conditional on r̃. Intuitively, for higher values of r̃, we will observe that trades

tend to happen at higher prices, but much of this is due to the unobserved heterogeneity

term W being higher on average rather than the transfer T 0
S (r) being higher. In panel B,

comparing the T̃S (r̃) line to the T̃S (r̃)−E [W∆PS | r̃] line shows that this correction makes

the slope of the expected transfer function significantly less negative. Secondly, the estimate

of T 0
S (r) is essentially a noise-corrected version of the estimated T̃S (r̃)−E [W∆PS | r̃], and

thus the slope and convexity of the estimated T 0
S (r) are both larger in absolute value than the

noisy version. The net effect is that the estimated T 0
S (r) is much less negatively sloped—and

somewhat more convex—than the original nonparametric estimate of T̃S (r̃). In each panel,

the blue line displays the fitted estimates, constructed by the convolution of the estimated

allocation or transfer function against FW ; in each case, the estimate aligns closely with the

local linear estimates. Quantitatively, the RMSE of the fitted P̃S (r̃) function is 0.0021, and

the RMSE of the T̃S(r̃)− E [W∆PS | r̃] function is $4.08.
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B.6 Evaluating the Impact of the Unobserved Heterogeneity Correction

In this section we evaluate the importance of the unobserved heterogeneity correction for our

analysis. First, recall that Figure A.1.B demonstrates that, after accounting for observable

heterogeneity, auction prices are still highly correlated with reserve prices, suggesting that it

is important to account for unobserved heterogeneity in our setting. To analyze this in more

depth, we repeat our full analysis ignoring unobserved heterogeneity, treating the estimates

of the expected allocation and transfer functions, P̃S (r̃) , T̃S (r̃), as if they constitute the

true menu. We then proceed as in the main estimation steps, numerically differentiating this

menu to estimate the distribution of seller values (without enforcing IR). Figure A.6 shows

results analogous to those from Figures 3.A, 4.A, and 4.B, comparing estimates accounting

for and ignoring unobserved heterogeneity.

Figure A.6.A shows how the unobserved heterogeneity correction affects the seller menu.

The menu is much steeper without the unobserved heterogeneity correction. The intuition

behind this result is as follows. If unobserved heterogeneity is present, a positive relationship

between sale prices and reserve prices is driven by both R and W , but without incorporat-

ing the unobserved heterogeneity correction, our menu approach misattributes all of this

relationship to R, implying that sellers could achieve higher prices by setting higher reserve

prices. Through the lens of the no-heterogeneity-correction model, cases where sellers do not

choose higher reserve prices are then interpreted as being cases of sellers necessarily having

very low values, equivalent to a steeper menu.

Panel B of Figure A.6 shows the implied mappings from reserve prices to sellers’ values,

and panel C shows the implied distributions of seller values. Because sellers’ values are

simply derivatives of the seller menu, without the unobserved heterogeneity correction, we

infer that sellers’ values are much lower. Without the unobserved heterogeneity correction,

we estimate that a nontrivial fraction of sellers have values from -$30,000 to -$10,000 below

the estimated market value of the car (unrealistically far below the market value). Thus,

the unobserved heterogeneity correction appears to be important to account for in order to

obtain reasonable estimates of sellers’ values.
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Figure A.6: Estimation With and Without Unobserved Heterogeneity Correction

(A) Estimated Menu (B) Reserve-Value Relationship

(C) Seller Value CDF

Notes: Estimates of the menu, reserve-value mapping, and FS , with and without the unobserved heterogeneity correction.
Panel A shows the baseline menu estimate (blue) and the menu estimate using the local polynomial estimates of allocation and
transfer functions, P̃S (r̃) , T̃S (r̃), without the unobserved heterogeneity correction (green). Panel B shows the mapping from
reserve prices to seller values implied by the two menus, and panel C shows the two implied seller value CDFs.
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B.7 OEM vs. Non-OEM Sales

In this section we include additional analysis of OEM vs. non-OEM sales. In our estimation

using these subsamples, we find a strong fit in terms of RMSE, just as in the full sample.

The RMSE from the spline estimation for the probability function (estimation Step 5) is

0.0009 for OEM sales and 0.0013 for non-OEM sales. The RMSE for the spline estimation

of the transfer function (Step 6) is $14.71 for OEM sales and $17.61 for non-OEM sales. The

convexity constraint binds more in these subsamples than in the overall sample — especially

for OEM sellers — implying that, through the lens of our menu model, sellers behave as

though 90.11% of them have the same value in the OEM sample; the corresponding number

is 45.04% in the non-OEM sample and 28.90% in the full sample (as reported in Section 5.2).

IR constraints are binding for only a small fraction of sellers in the OEM sample (3.54%)

and for zero sellers in the non-OEM sample.

We now explore what variation in the data leads to our conclusions in Section 6.4 regard-

ing bargaining power in transactions involving OEMs vs. non-OEMs. Recall from Section

4 that all of our key identification arguments come from the joint distribution of four ob-

jects that are observable in our data: an indicator for the whether trade occurs (A below)

and three noisy price variables (“noisy” meaning they are contaminated with unobserved

heterogeneity): auction prices (p̃A), secret reserve prices (r̃), and final prices (p̃rice). There-

fore, any differences we find between OEM and non-OEM bargaining power must arise from

differences in these variables between the two subsamples.

In Table A.1, we first consider the variation in the data that leads to the finding that

OEMs have more unconstrained bargaining power than non-OEMs. Columns 1–4 of panel

A show results from separate regressions of each of these four variables on an indicator

for whether the seller was an OEM.77 Columns 1 and 2 show that OEMs achieve a higher

trade probability than non-OEMs (by 9.5 percentage points), with no significant reduction

in final prices: an increase in sale probability would typically be associated with a decrease

in sale price, but here we observe OEMs receiving a price that is $40.86 higher on average.

Together, this leads to higher revenue for OEMs, pushing their surplus closer to the revenue

77For any regression involving p̃rice as an outcome, we use only observations in which trade occurs; for all
others, we use the full sample.
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Table A.1: Variation in Data Underlying OEM Bargaining Power

A. (1) (2) (3) (4) (5) (6)

A p̃rice r̃ p̃A N N

OEM 0.0954*** 40.86*** -80.58*** 150.9*** 0.0109*** 16.18***
(0.00255) (8.809) (8.647) (8.765) (0.00371) (0.103)

Constant 0.829*** 0.184 136.3*** -146.6*** 3.000*** 23.08***
(0.00136) (4.877) (4.607) (4.670) (0.00197) (0.0556)

B. (1) (2) (3) (4) (5) (6)

A p̃rice r̃ p̃rice− p̃A p̃rice− p̃A p̃rice
OEM 0.0716∗∗∗ -8.201∗∗∗ -134.4∗∗∗ -8.495∗∗∗ -8.201∗∗∗

(0.00234) (0.615) (8.075) (0.620) (0.615)

p̃A 0.000102∗∗∗ 0.990∗∗∗ 0.357∗∗∗ -0.00952∗∗∗ 0.993∗∗∗

(0.000000943) (0.000275) (0.00304) (0.000275) (0.000249)

r̃ -0.000106∗∗∗ 0.00612∗∗∗ 0.00612∗∗∗

(0.000000956) (0.000274) (0.000274)

Constant 0.859∗∗∗ 8.467∗∗∗ 188.6∗∗∗ 8.495∗∗∗ 8.467∗∗∗ 5.939∗∗∗

(0.00126) (0.340) (4.318) (0.343) (0.340) (0.285)

Notes: Results from regressions of various outcomes (shown above each column) on a dummy for the seller being an OEM and
other controls. N is the lower bound on the number of bidders and N is the upper bound (both of these bounds vary at the
auction level, and are described in Appendix B.3). Homoskedastic standard errors (consistent with the model’s independence
assumptions) are in parentheses. Prices are in units of dollars.

under M1st

S or M2nd

S .

Table A.1 also reveals the underlying sources for these findings: OEMs set lower reserve

prices (column 3), consistent with them having lower private values for the cars they sell.

OEMs having lower private values and yet receiving similar final prices that are higher than

non-OEMs— and a higher trade probability — implies that the seller surplus for OEM sellers

is larger (and Table 3 shows that they are garnering more of that surplus). The higher trade

probability is also driven by OEMs facing higher auction prices (column 4).78 Consistent

78Note that our empirical analysis the OEM and non-OEM subsamples separately can be considered a
relaxation of the assumptions (A2–A3) that other random variables in the model are independent of Y , the
observable heterogeneity vector, because this vector includes fixed effects for large sellers such as OEMs. It
can also be considered a relaxation of the assumption that all data are generated by the same equilibrium
(A11). The OEM status of a seller can be considered a variable that is correlated with a seller’s private value,
VS . Under this interpretation, our finding in Table A.1.A that noisy reserve prices differ between OEMs
and non-OEMs is consistent with these independence and single-equilibrium assumptions holding in the full
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with auction prices being higher for OEM sellers, column 6 shows that, for OEM sellers,

the upper bound on the number of bidders (N) is higher by 16.18 bidders and the lower

bound (N , column 5) is higher by 0.011 bidders. The combination of these features, through

the lens of our model, implies higher bargaining power for OEMs absent the competition

constraint.

We now consider the variation in the data that leads us to infer that, after accounting for

the competition constraint, OEM bargaining power is low, and is not better than that of

non-OEMs. The key result in this regard is found in column 4 of panel B, which shows that

OEMs are no better than non-OEMs at pushing the final price above the auction price, and

they may even be worse, as the point estimate is negative (albeit quite small, suggesting a

difference of only $8.50 for OEM vs. non-OEM sellers). Column 5 shows that this result

holds even after controlling for the (noisy) reserve and auction price. These data features

drive our finding that OEMs have little or no competition-constrained bargaining power.

Other results in panel B confirm points from panel A. The higher trade probability expe-

rienced by OEMs is evident even after controlling for noisy auction prices and reserve prices

(column 1). After including these controls, we find that prices are slightly lower for OEMs

than non-OEMs (by $8.20). Column 3 shows that OEMs choose lower reserve prices even

conditional on the (noisy) auction price; as explained in Appendix B.2, the noisy auction

price can be considered a proxy for unobserved heterogeneity. Other relationships in panel

B move in sensible directions: higher auction prices and lower reserve prices increase trade

(column 1); noisy auction prices and noisy reserve prices are correlated, as would be ex-

pected in the presence of unobserved heterogeneity (column 3); and final prices are higher

when auction prices increase, as implied by Assumption A4 (column 2). This last result is

also shown in column 6 of panel A, unconditional on OEM status.

sample, as is the finding that agreements rates are higher, as this can follow from lower reserve prices, all
else equal. However, the finding that noisy auction prices and the number of bidders differs across the two
subsamples suggests that the distribution of buyer values or Pr(N = n) may differ in OEM vs. non-OEM
sales, and hence the assumption of independence of Y and buyer values, or the assumption of independence
of Y and N , is at best an approximation in the full sample.
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Figure A.7: Dealer Sellers: Sale Prob., Auction Price, and Final Price by Reserve Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Figure shows results as in Figure A.1 but using observations in which sellers are used-car dealers.

B.8 Dealers vs. Fleet/Lease Sellers

Our study focuses on cars sold by large fleet/lease sellers because we are particularly inter-

ested in bargaining power between dealers and OEMs or other large institutional sellers. In

Figure A.7, we replicate Figure A.1 but using a sample of cars sold by dealer sellers rather

than fleet/lease sellers. Recall that Figure A.1 provided some descriptive evidence that, in

our main sample, the menu approach is indeed appropriate in this setting, i.e., different

reserve prices yield different payoffs for sellers, and hence can serve to help separate seller

types as our method requires. In Figure A.7, however, we observe a relatively flat trade

probability and an expected final price that represents roughly a constant markup over the

auction price, regardless of the seller’s reserve price. These results suggest that it would be

challenging to use our menu approach to identify seller values in this dealer sellers sample, as

the approach requires that sellers face a trade-off between trade probabilities and transfers

at different reserve prices — a trade-off that does not jump out from Figure A.7, unlike

Figure A.1.

Consistent with this evidence, when we estimate our model on the dealer sellers sample,

we find that, prior to enforcing the IR constraint, the constraint is violated for 56.36% of

observations, unlike in the fleet/lease sample, where only a small fraction of observations

(2.44%) require the IR-enforcement step of our estimation. This suggests that it may be
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challenging to infer seller values based on an assumption of optimally chosen secret reserve

prices in the dealer sellers sample. Larsen (2021) took a different approach, only partially

identifying seller values by imposing a weak rationality assumption on the seller’s choice to

accept or reject the auction price in the first stage of the bargaining game. The assumptions

in Larsen (2021) yield bounds on the distribution of seller valuations that are, unfortunately,

too wide to be informative about bargaining power. As highlighted above, we focus only on

large fleet/lease sellers in this paper.
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