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1 Introduction

The division of the gains from trade between negotiating parties is of interest in many

settings, such as business-to-consumer negotiations, vertical contracting relationships,

the division of rents among cartel members, or estimation of patent violation dam-

ages. The party taking home a larger share is traditionally referred to as having more

bargaining power. A number of studies over the past decade have demonstrated the

importance of accounting for bargaining power when examining counterfactual poli-

cies: ignoring bargaining power—or incorrectly modeling a buyer-seller relationship

as though one party has all of the power—yields misleading welfare implications. In

the existing literature, bargaining power is typically assumed to be an exogenously

given weight in a complete-information Nash bargaining framework.1 The Nash bar-

gaining solution, however, abstracts away from an important feature of real-world

negotiations: private information, in which a negotiating party does not know the

willingness to pay or sell of other parties. Empirical analyses of bargaining power in

private/incomplete-information settings are almost nonexistent.2

In this paper we study bargaining power in the wholesale used-car industry, where

parties in a vertical supply relationship negotiate under incomplete information. In

this market, large fleet-owning institutions (such as banks, rental car companies, or car

manufacturers) sell cars to used-car dealers. Each car trades through a mechanism

of a secret reserve price ascending auction followed by alternating-offer bargaining

whenever the reserve prices exceeds the auction price. The data consists of over

130,000 cars offered for sale through this mechanism. We observe actions taken by

negotiating pairs even for cases where bargaining ends in disagreement. This feature

1This is the case in many empirical studies of multiple simultaneous bilateral negotiations in a
Nash-in-Nash framework, e.g., Crawford and Yurukoglu (2012) and subsequent studies.

2In the case of patent violation damages, for example, the standard in the courts for many years
was to assume that, in the absence of infringement, parties would have split surplus according to a
Nash bargaining solution (typically with a 50/50 split). In recent years, courts (e.g. VirnetX, Inc.
v. Cisco Systems, Inc., 2014) have criticized the Nash bargaining solution as detached from reality
and have demanded better ways to identify bargaining power (rather than assuming it in an ad hoc
fashion), but no standard approach exists.
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not only makes the setting ideal for studying bargaining power in the presence of

incomplete information, but, as we discuss below, this feature is necessary in any

setting if a practitioner hopes to distinguish between Nash bargaining and incomplete-

information bargaining. With this data, we address the question of how bargaining

power of buyers compares to that of sellers in the wholesale used-car market, and how

this depends on seller types and competition.

Bargaining power is of particular interest in the supply side of the U.S. car market.

State laws have, for decades, prohibited manufacturers from distributing new cars

directly to consumers, as well as from shutting down existing dealers. The effect of

these laws on the manufacturer-dealer bargaining power has been a subject of debate;

the bulk of economic theory and evidence suggests these restrictions give dealers more

bargaining power (see Lafontaine and Scott Morton 2010 for a review). In this paper

we study an aspect of this vertical relationship that involves these same key players

but is not subject to these same laws: the secondhand car market. Our data and

methodology allow us to quantify the bargaining power of dealers and wholesalers in

the supply side of the secondhand market, taking into account the private information

of agents in this bargaining process. Accounting for incomplete information in this

analysis is critical, as inventory is sold car-by-car, and agents frequently engage in

negotiations that later fail.

The term bargaining power has no formal (or informal) definition in incomplete-

information settings. Under Nash bargaining, in contrast, the term ubiquitously

refers to an agent’s share of a commonly known total surplus. To remedy this, we

propose a new measure of bargaining power under incomplete-information. Our bar-

gaining power metric is the share of an agent’s best-case—i.e., take-it-or-leave-it-offer

(TIOLIO)—surplus the agent achieves relative to what the agent would achieve under

the opponent’s best-case scenario. This extends a traditional (complete-information,

Nash bargaining) notion of power to the incomplete-information case.3 We denote a

3In Nash bargaining, an agent’s share of the total surplus and share of her TIOLIO payoff are
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buyer’s bargaining power by αB and seller’s by αS. In the seller TIOLIO mechanism,

αS = 1 and αB = 0, and in the buyer TIOLIO mechanism, αB = 1 and αS = 0.

Any intermediate values are possible, as are negative weights. Unlike in Nash bar-

gaining, under incomplete information the sum of these weights can be greater than

1: sellers and buyers can collectively achieve strictly greater expected utility than

that available through any convex combination of TIOLIO mechanisms. The sum

of αB and αS is informative about the efficiency of trade. These weights are thus a

natural generalization of bargaining power to asymmetric information settings, giving

information both about how the pie is split and also the size of the pie itself. This

relationship between bargaining power and the size of the pie is a key point ignored

by Nash bargaining.4

Next, we show how to estimate bargaining power under incomplete information.

The bargaining theory literature shows that incomplete information gives rise to com-

plications, such as multiple equilibria, delay, and inefficiency. Ausubel et al. (2002)

highlight that different equilibria can have quite different properties and outcomes,

and that no complete characterization of equilibria exists; this statement remains

true twenty years later. As such, there is no off-the-shelf model for empiricists to

bring to bargaining data to identify players’ private value distributions, unlike the

now well-developed empirical literature on auctions (e.g. Guerre et al. 2000).5 Our

paper offers a first step to addressing bargaining power empirically under incomplete

equivalent notions. Under incomplete information, however, these two notions are distinct. When
both parties have private values on overlapping supports, the surplus available to the pair is unknown
to both parties, and neither is able to extract the full surplus (Myerson and Satterthwaite 1983).

4Loertscher and Marx (2021) state this point as follows: “The complete information approach
with efficient bargaining has the downside that shifts of bargaining power ... only affect the distri-
bution of surplus and not its size since bargaining is, by assumption, efficient.”

5Unlike auction theory, where clean equilibrium results exist for settings suitable for empirical
work, such as continuous values and incomplete information, bargaining theory is not immediately
portable to empirical analysis. Several previous theoretical bargaining papers analyze an environ-
ment close to the environment we study—with continuous values, two-sided offers, and two-sided
incomplete information about players’ values—but the equilibria derived in these studies are not
suitable for structural estimation in our setting. For example, in Perry (1986) the game ends im-
mediately and in Cramton (1992) at most two serious offers occur in equilibrium; neither of these
possibilities can fully explain observations in our data.
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information, focusing on the supply side of the U.S. used-car market.

In the wholesale used-car market, the primary challenge to identification is the

distribution of seller values, FS. Every choice of the seller—even the seller’s choice

of secret reserve price in the pre-bargaining stage of the game—depends on the equi-

librium of the post-auction bargaining subgame, and these equilibrium strategies are

unknown to the econometrician. In contrast, the distribution of buyer values, FB,

can be identified from buyers’ auction bids using existing tools from the auction lit-

erature. These tools also allow us to handle game-level observable and unobservable

heterogeneity.

We propose to estimate seller values based on an empirical menu approach. We

show that the analyst can think of a seller of value vS as choosing her secret reserve

price, r, to maximize her expected payoff vSPS(r)− TS(r), where PS(r) is the seller’s

expected probability of keeping the car and TS(r) is the expected transfer. Our

identification argument is simple: a seller’s choice of reserve price is a choice from a

convex equilibrium menu of possible (PS, TS) pairs, and the derivative of this menu,

evaluated at the seller’s choice, corresponds precisely to that seller’s value. The data

requirements to identify a seller’s value are observations of (i) the secret reserve price,

(ii) the final allocation (i.e. an indicator for whether trade occurs), and (iii) the final

payment. With these variables in hand, the objects PS(·) and TS(·) are essentially

observed in the data, and derivatives of this menu correspond to agents’ values.

We apply these arguments to our data by estimating the trade-transfer menu

faced by sellers in the wholesale used-car market. Our model implies two testable

restrictions. First, the equilibrium menu must be convex. Second, the menu must

satisfy individual rationality constraints for all agent types who participate. We

impose both restrictions and find that they are not overly strong in our setting. With

the estimated menu and distribution of values, we compute bargaining power. We find

that car dealers (who are buyers in this supply-side market) exert a similar level of

bargaining power as the large institutional sellers they purchase from: buyers achieve
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a level of surplus that is 64% of the way between their TIOLIO payoff and what they

would receive under the seller’s TIOLIO mechanism, whereas sellers’ surplus is only

62% of the way along their corresponding continuum.

We then decompose our results according to different seller categories, such as

manufacturers (e.g., Ford, GM, or Chrysler), banks, fleet companies, or rental com-

panies. We find that manufacturer sellers have substantially more bargaining power

than buyers, achieving an outcome that is over 90% of what they would receive if

they were to have all the bargaining power, and buyers at these sales have near-zero

bargaining power (only 4% of their maximal payoff). At least part of this difference

is explained by the fact that competition among dealerships (buyers) is much higher

at manufacturer sales.

As highlighted in Loertscher and Marx (2019), how competition and bargaining

power interact in settings with incomplete information is an open question of interest

to antitrust and competition authorities. The empirical literature has studied the

relationship of bargaining power to competition under assumptions of Nash bargaining

(e.g. Gowrisankaran et al. 2015), but not under incomplete information. One would

expect increased competition among buyers to increase the seller’s bargaining power,

but it is unclear by how much. The seminal results of Bulow and Klemperer (1996)

suggest that a seller would prefer increased competition to increased bargaining power,

but this interpretation abstracts away from real-world negotiations, in which buyers

may have some power. Our results suggest that, on average, buyers have a similar

level of power to sellers in supply-side negotiations for used cars, but seller bargaining

power increases drastically at high levels of buyer competition.

Our study relates to a growing body of structural work studying bargaining power

in business-to-business settings, such as Crawford and Yurukoglu (2012), Grennan

(2013), Gowrisankaran et al. (2015), and Ho and Lee (2019). We also contribute

to the literature analyzing aspects of the vertical relationship between dealers and

wholesalers in the automotive industry. Lafontaine and Scott Morton (2010) summa-
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rize this literature and point to evidence that the current sea of state laws governing

dealer-manufacturer relationships benefits dealers at the expense of manufacturers

(and ultimately consumers). The implications of these laws is a key topic of interest

for the Federal Trade Commission in recent years.6 Murry and Zhou (2020) ana-

lyze the effects in this market of manufacturers terminating dealer locations. Donna

et al. (2021) study bargaining in vertical relationships in a separate industry (outdoor

advertising), but discuss how direct-to-consumer sales in the auto industry, such as

Tesla’s, could alter welfare in this market.

In contrast to previous work on vertical relationships, we study bargaining power

without assuming complete information. We allow for agents to have private infor-

mation about their willingness to pay and sell (and hence, incomplete information

about their opponent’s value) and to be strategic in their bargaining behavior.7 Sev-

eral structural studies of bargaining do allow for incomplete information.8 Keniston

(2011) studies the question of whether welfare is higher under bargaining or a posted-

price mechanism. Larsen (2021) analyzes some of the same used-car data we study,

but focuses on the empirical implications of the main theorem of Myerson and Sat-

terthwaite 1983 and how efficient bargaining is relative to the theoretical second-best.

Freyberger and Larsen (2021) study efficiency and impasse in bargaining on eBay.

We see our focus on equity—how the surplus is split—as a natural next question

to address after efficiency. Larsen (2021) and Freyberger and Larsen (2021) derive

partial identification results that yield bounds on surplus or trade probabilities, but do

not address the question of surplus division. Indeed, these bounds, while informative

6See https://www.ftc.gov/news-events/blogs/competition-matters/2015/12/

ftc-opens-hood-automobile-distribution.
7It is important to note that our approach is not a strict generalization of many complete-

information (Nash or Nash-in-Nash) bargaining approaches. In particular, we specify agents’ bar-
gaining surplus as quasilinear in price, whereas some complete-information studies of vertical bar-
gaining allow the downstream firm to have a willingness to pay that depends on the price negotiated
with the upstream firm, for example.

8A related theoretical study to ours is Loertscher and Marx (2021). The authors allow for
incomplete information and propose measuring bargaining power as an agent’s weight in a weighted
welfare maximization problem. Our definition instead quantifies an agent’s payoff relative to her
TIOLIO payoff.
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about inefficiency, are too wide to be informative about surplus division. In contrast,

in this paper we obtain point estimates of this split. In doing so, we borrow some of

the straightforward steps of Larsen (2021), including how we control for game-level

heterogeneity and how we estimate the distribution of buyer values from auction

prices, which are both tools from the auction literature. Our identification argument

for seller valuations differs from that of Larsen (2021): we exploit optimality of the

seller’s choice of secret reserve price, yielding point identification of the seller value

CDF, whereas the former study exploits the seller’s choice to accept or reject the

auction price, yielding only partial identification.

Our contribution to the structural methodology literature can be seen as gener-

alizing the Guerre et al. (2000) first-price-auction method to bargaining games. In

a related, contemporaneous study complementary to ours, Kline (2017) focuses on

identification, but not estimation, in a class of games that overlaps with the class we

study: trading games with monotone equilibria.9 As we emphasize in Section 4, our

identification results largely only require taking a stance on the structure of agents’

utility functions, not the specific rules of the game being played, and thus may be par-

ticularly valuable for studying bargaining, where researchers may observe negotiated

prices without being able to fully characterize the equilibrium of the game generating

those prices. In this sense, our work is an empirical analog of the theoretical mecha-

nism design approach to bilateral bargaining (e.g. Myerson and Satterthwaite 1983;

Williams 1987; Loertscher and Marx 2021), which abstracts away from extensive-form

details.

9Related arguments are also used in Perrigne and Vuong (2011) and Luo et al. (2018). Pinkse
and Schurter (2019) introduce efficient estimation procedures for auctions and related games, which,
like ours, exploits convexity restrictions implied by bidders’ incentive compatibility conditions.
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2 Background: Supply-Side Bargaining for Used Cars

The wholesale used-car industry—an industry with revenues above $100 billion an-

nually in the United States—operates through a network of several hundred auction

house locations scattered throughout the country (and operations are similar inter-

nationally).10 These auction houses have been a part of the US used-car market for

over seventy years. Over 15 million cars pass through auto auction houses annually.

At each auction house, used-car dealers buy cars from large fleet companies, such

as rental companies, banks with repossessed vehicles, or manufacturers with lease-

buyback vehicles.11 Sales at a given auction house typically take place once a week.

A seller brings her car to the auction house several days before the sale and reports

a secret reserve price to the auctioneer. On the day of the sale, buyers (used-car

dealers) arrive, with many traveling long distances to attend. Remote bidders also

participate virtually, watching the auction and bidding online. Cars are auctioned

in the order they arrive, with multiple auctions running simultaneously in different

lanes that divide the building where sales occur.

The mechanism proceeds as follows: buyers participate in an ascending auction,

indicating their willingness to pay the current price, with the bidding controlled by

a human auctioneer who raises the price until only one bidder remains. The auction

itself takes about 90 seconds (Lacetera et al. 2016). If the final auction price exceeds

the secret reserve price (observed by the auctioneer but not the buyers), the high bid-

der takes the car. If not, the high bidder and seller enter alternating-offer bargaining,

mediated by an auction-house employee over the phone.12 If she chooses, the high

bidder may opt out of bargaining before it begins.

Our data consists of 131,443 realizations of this mechanism from six auction houses

10https://www.naaa.com/pages/Auction_Industry_Survey/2021_Survey_Mtls/NAAA_2020_

Industry_Survey_Slides.pdf.
11Used-car dealers also operate as sellers in this marketplace. The data we use in this study comes

only from sales of large fleet and lease companies. See Appendix B.4, as well as Larsen (2021), for
an analysis of data from used-car dealer sales.

12For an analysis of these mediators, see Larsen et al. (2021).
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Table 1: Descriptive Statistics (Sample Size = 131,443)

A. Mean Standard Deviation Seller Category Fraction of Sample

Blue Book ($) 10,951 6,144 Manufacturer 0.1958
Age (years) 3.18 2.55 Bank 0.5423
Mileage 57,481 40,389 Fleet Company 0.0751
Good Condition 0.72 0.45 Lease Company 0.1143
Num. Bidders 25.99 14.71 Rental Company 0.0725

B. Conditional on Sale Cond. on No Sale

Frac. of Frac. Auction Reserve Final Auction Reserve
Sample Agree Price ($) Price ($) Price ($) Price ($) Price ($)

End at Auction 0.34 0.98 11,063 10,246 11,063 5,367 7,622
Period 2 0.56 0.74 9,683 10,586 9,683 9,547 11,002
Period ≥ 3 0.10 0.16 7,416 8,763 7,869 6,352 8,338

Notes: In panel A, “Blue Book” is an estimate of the car’s market value, provided by the auction house. “Good
Condition” indicates average or above average car condition, based on auction house inspection. “Number of bidders”
is an upper bound on the number of bidders, only observable in the bid log subsample (102,186 observations). “Seller
Category” refers to type of company the seller is. Panel B shows statistics separately for games ending at the auction
(through the auction price exceeding the reserve, or the buyer refusing to negotiate), games where the seller accepts
or rejects the auction price (indicated by Period 2), or games ending after further bargaining (Period ≥ 3). Panel B
shows average auction and reserve price separately for games ending in agreement/disagreement, and average final
price for those ending in agreement.

from 2007–2010. For each realization, the primary variables we observe are the secret

reserve price, final transaction price, final allocation (i.e. an indicator for whether the

car sold), and auction price. We also observe a large set of characteristics, including

features of the car and the auction house environment at the sale time.

Table 1 shows descriptive statistics. The average car has a blue book value (an

estimate provided by the auction house) of $10,951, is 3.18 years old (relative to its

model-year), and has 57,481 miles on the odometer. The auction house provides a

condition report for most cars, and 72% of cars are rated at average quality or above,

which we indicate in panel A with “Good Condition.” Manufacturers, such as Ford,

GM, and Chrysler, represent 20% of sellers in our data. Banks, such as Citibank

or Bank of America, represent a slight majority, at 54%. Fleet companies (such as

Wheels) represent 7.5%, rental companies (such as Budget Rental Car) represent

a similar percentage, and lease companies represent 11%. Our data also contains

detailed records (referred to as bid logs) of the bidding during the auction stage for
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most observations (102,186). In this sample, we obtain bounds on the number bidders

(N) in each auction, with an average upper bound of 26; see Section 5.1 and Appendix

B.1 for details.

Approximately 30% of attempts to sell cars result in no trade. This large portion

is inconsistent with a standard complete-information framework: under complete

information, a buyer and seller would not engage in a trading game knowing a priori

that they will disagree. Failed negotiations, however, are completely consistent with

the presence of incomplete information (Myerson and Satterthwaite 1983; Perry 1986).

Panel B of Table 1 breaks down outcomes by how the game ends—with a sale

(agreement) or no sale (disagreement). We report the primary variables that are

required for our identification and estimation: the seller’s secret reserve price, final

transaction price, final allocation, and auction price. The first row shows outcomes

for games that end with no bargaining, which occurs in 34% of cases. In these

cases the game either ends with the auction price exceeding the reserve price or

with the buyer opting out of bargaining (which occurs 2% of the time). The second

row, indicated by Period 2, refers to cases where the first action occurs that can be

considered bargaining : the auction price falls below the reserve price, and the seller

either accepts (74% of the time) or rejects (26% of the time) the auction price.13

The third row refers to games that end at some later period of the bargaining game,

which occurs in 10% of the sample. When the game ends with a sale at the auction

or in period 2, the final price naturally equals the auction price. When the game

ends in a sale at a later stage of the game, the average auction price is $7,416, the

average reserve price is $8,763, and the average final price is between the two, at

$7,869. When trade fails (the final two columns), the auction price is farther below

the reserve price.

These final numbers illustrate an important point: it is a priori unclear how

13In this paper, we do not explicitly address the puzzle that sellers who end up accepting auction
prices below their reserve prices could have potentially achieved that outcome by simply setting a
lower reserve price upfront. Larsen (2021) and Goke (2021) offer some explanations for this puzzle.
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to think of bargaining power in this context. It may be tempting to interpret the

location of the final price relative to the auction and reserve prices as an indication

of bargaining power. But this logic is flawed: a buyer’s true value will be weakly

higher than the auction price and a seller’s weakly lower than the secret reserve price.

These bounds say nothing about how the pie is split or what its size is; they do not

rule out the possibility that the buyer’s value is ∞ and the seller’s is 0, for example,

making it impossible to make inferences about bargaining power from these bounds

alone. Our identification argument allows us to infer the distribution of buyer values

from auction prices and seller values from reserve prices. From these primitives and

trade outcomes we then quantify bargaining power.

3 Defining Bargaining Power Under Incomplete Information

Here we introduce our notion of bargaining power. Consider a seller with value vS

and buyer with value vB who bargain over an indivisible good. The game in the

wholesale used-car market is in fact a game between one seller and many buyers,

but the mechanism boils down to bilateral trade between the seller and just the high

bidder, as the auction serves to identify the highest-value buyer. We describe the full

auction-plus-bargaining game in more detail in Section 4.

Equilibria of a bilateral bargaining game under incomplete information can be

complex to characterize theoretically, even for simple extensive forms such as alter-

nating offers. This is because each offer signals information to the opposing party,

who can then update her beliefs about the opponent’s value. Belief updating follow-

ing off-equilibrium offers can be used to sustain a large set of strategies in bargaining

(see discussions in Gul and Sonnenschein 1988 and Ausubel et al. 2002).

Rather than attempting to characterize equilibria of a given extensive form, we

take a mechanism design approach. By the revelation principle (Myerson 1979),

any equilibrium of a bilateral bargaining game has a corresponding direct revelation
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mechanism made up of an allocation function describing the probability with which

types vS and vB trade in equilibrium and a transfer function describing the expected

transfer from the buyer to the seller. LetM(vS, vB) represent a particular mechanism.

Let UB(M) and US(M) represent the expected surplus of the buyer and seller, re-

spectively, under bargaining mechanismM, where the expectation is taken over buyer

and seller values; thus, UB(M) and US(M) represent ex-ante surplus, in the terminol-

ogy of Holmström and Myerson 1983). Williams (1987), building on Myerson and Sat-

terthwaite (1983), derives the Pareto frontier of bargaining mechanisms: the set of the

highest possible combinations of buyer and seller surplus achievable by an incentive-

compatible, individually rational, budget-balanced mechanism. This frontier is a

convex function maximizing the weighted sum of welfare, ηUS(M) + (1 − η)UB(M)

for η ∈ [0, 1]. We illustrate this with the concave green line in Figure 1. This welfare

weight, η, might reasonably be thought of as one notion of bargaining power among

ex-ante efficient mechanisms, but this notion would not be sufficient for our purposes;

we seek a notion of bargaining power that can be applied to real-world bargaining

situations, which will not necessarily correspond to points on the frontier.

Indeed, the endpoints (η = 1 or η = 0) are the only points on frontier known to be

achievable by practical mechanisms in a general two-sided-uncertainty game. These

endpoints consist of a TIOLIO by one party or the other. All other mechanisms

along the frontier are, from a practitioner’s perspective, complicated black boxes,

and are not necessarily achieved by any practical bargaining protocol, including the

alternating-offer protocol of used-car markets.

Any real-world bargaining mechanism yields an expected buyer and seller surplus

somewhere within this frontier, such as the point labeled “∗” in Figure 1. Our notion

of bargaining power describes how good this outcome is for agents relative to what

they would achieve if they could instead make a TIOLIO to the opposing party. We

define the buyer’s bargaining power, αB, in a given mechanism to be the fraction

of the buyer’s TIOLIO surplus she receives relative to what she would receive if the
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Figure 1: Illustration of Bargaining Power Measure

UB

US

αB = 1

αS = 1
0

0

1

1

∗
αB = 0.333

αS = 0.5

Notes: Visualization of bargaining power measures. The x-axis and y-axis are, respectively, the ex-ante expected
utility of sellers and buyers. Our measures of bargaining power, αB and αS , represent points on a coordinate system
where (US(M1), UB(M1)) corresponds to (αS = 1, αB = 0) (the seller’s and buyer’s expected payoff when the seller
makes a TIOLIO), and (US(M0), UB(M0)) corresponds to αS = 0, αB = 1. The point labeled “∗” is an example of
an arbitrary mechanism, mapping to αS = 0.5, αB = 0.333. The green line represents the second-best frontier. The
red dashed line traces out mechanisms that are convex combinations of the seller- or buyer-optimal mechanisms.

seller were to instead make a TIOLIO. For the seller, αS is defined similarly.

To define this more precisely, let Mη for η ∈ [0, 1] be a mechanism along the

Pareto frontier. The mechanismM0 corresponds to the buyer TIOLIO case andM1

to the seller TIOLIO case. The buyer’s payoff if the buyer makes a TIOLIO is then

UB(M0), and the buyer’s payoff if instead the seller makes a TIOLIO is UB(M1). We

define the buyer’s bargaining power αB for any arbitrary bilateral trade mechanism

M as the weight in the convex combination UB(M) = αBUB(M0)+(1−αB)UB(M1).

Similarly, αS is the weight in US(M) = αSUS(M1) + (1− αS)US(M0).

The weights αB and αS are conveniently analogous to standard Nash bargaining

weights applied in an incomplete-information world. Specifically, in Nash bargaining,

a player with bargaining power 1 would receive her payoff from making a TIOLIO, and

a player with bargaining power 0 would receive her payoff from the opponent making

the TIOLIO, just as in our incomplete-information notion of bargaining power. How-

ever, unlike a complete-information setting, under incomplete information, a party’s
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TIOLIO payoff does not correspond to getting all of the surplus; some information

rent is left for the player receiving the TIOLIO; this is the well-known efficiency/rent-

extraction trade-off occurring in settings with incomplete information.

The set of mechanisms for which αB + αS = 1, illustrated with the red dashed

line in Figure 1, is of particular interest. The surplus divisions implemented by these

mechanisms can be achieved by randomly selecting one party to make a TIOLIO

(what may be termed a random ultimatum game).14 For example, if αB = 0.6 and

αS = 0.4, the utility outcomes are equal in expectation to what would arise in an

ultimatum game that selects the buyer as the proposer with probability 0.6. The

reason this mechanism is of interest is that it is simple to implement: the market

designer simply randomly selects the buyer or seller as a TIOLIO proposer.

Unlike Nash bargaining, we do not require αB+αS = 1, as incomplete-information

bargaining can yield combinations of buyer and seller surplus above or below the

dashed line. The sum αB + αS, relative to 1, gives us some information about the

efficiency of bargaining. Any mechanism for which αS +αB < 1—those to the south-

west of the red dashed line—are Pareto dominated in expectation by points lying

on the αB + αS = 1 line. Relative to such a mechanism, a simple random ultima-

tum mechanism would achieve higher ex-ante expected utility for both players. Any

mechanism with αS + αB > 1 is one that works relatively well compared to this set

of simple-to-characterize mechanisms.

Computing αB and αS and making corresponding statements about bargaining

power in a given real-world market requires knowledge of two key objects: the distri-

butions of buyer values FB and seller values FS. These two primitives are therefore

the primary goals of the identification and estimation results we describe below.

14This mechanism is also known as final offer arbitration or baseball arbitration, as it is used in
salary negotiations of Major League Baseball contracts.
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4 Identifying Negotiators’ Private Value Distributions

We now offer a general model of the wholesale used-car market game. The game

involves 1 seller and N potential buyers, where N is a random variable varying across

instances of the game. For a given realization of N = n, we index the seller and

buyers by i ∈ {S,B1, ..., Bn}. Agents are risk neutral and have values Vi + Y β +W ,

where W ∼ FW , VS ∼ FS, and Vi ∼ FB for all i ∈ {B1, ..., Bn}; thus, we impose

bidder symmetry. Random variables W and Vi have bounded support.

The random variables Vi for i ∈ {S,B1, ..., Bn} are players’ private values.15 In

our empirical analysis, Y is a vector observable to the econometrician and to players

(such as the make and model of the car), whereas W represents game-level hetero-

geneity observed by the agents but not the econometrician, such as a dent or odor

in the car. We assume {Y,W,N, Vi} are mutually independent for all i in a given in-

stance of the game.16 Thus, agents’ overall values are correlated through game-level

heterogeneity terms Y and W , but, conditional on the realizations of these terms,

values are independent. To simplify exposition, we now condition on a realization of

N = n and return to this in Section 4.2. Likewise, we condition on a realization of

W = w and Y = y, omitting these variables from the discussion until Section 4.3.

The used-car auction/bargaining game begins with the seller choosing a secret

reserve price, R. The bidders then participate in an ascending (button) auction. If

the auction price, PA, exceeds the reserve price, the high bidder and seller trade at

price PA. If PA < R, the high bidder is given the opportunity to exit the game. If he

chooses not to exit, the high bidder and seller engage in alternating-offer bargaining

for up to τ periods, where we assume τ is finite but may be large. If the game ends

with the seller and bidder i trading at some price P , the buyer receives a payoff of

15In our setting, heterogeneity in agents’ private values arises from differences in location and
inventory needs.

16To see the importance of this assumption, note that if we were to instead assume independence
of N conditional W , this would allow for correlation between W and the auction price (because this
price depends on N), and the game-level heterogeneity convolution arguments we invoke (akin to
those used in Krasnokutskaya 2011) would not immediately apply.
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Vi − P and the seller receives a payoff of P , less any bargaining costs. If the two

parties do not come to agreement, the seller receives a payoff of VS (her value for

keeping the car) and the buyer receives a payoff of 0, less any bargaining costs. We

do not model costs explicitly, but assume that (i) they are nonzero, such that no

party would bargain if it were common knowledge that no gains from trade exist, and

(ii) they are small enough to be negligible from an estimation perspective.17

We focus on a restricted class of pure strategy Bayes Nash Equilibria (BNE).

Larsen (2021) demonstrates the existence of such equilibria and proves several prop-

erties that we state here and exploit in identification/estimation:

Proposition 1. Pure strategy BNE exist in which the following two restrictions hold:

(i) the seller’s payoff in the post-auction bargaining subgame is continuous in PA and

(ii) each bidder drops out of the auction only when the auction price equals her value.

In such equilibria, the following properties hold: (iii) secret reserve prices are

strictly increasing in sellers’ values; (iv) auction, secret reserve, and final prices are

additively separable in (and the probability of trade is invariant to) game-level hetero-

geneity; and (v) each seller type trades with all buyer types above a certain cutoff.

As highlighted in Section 3, the key objects to identify to evaluate bargaining

power are FS and FB. With these objects, we can compute the expected TIOLIO

payoff for each player and determine what fraction of these quantities each player

receives in practice. The novel part of our identification is that of FS. We dedicate

Section 4.1 to this endeavor. Identification of FB and incorporating game-level het-

erogeneity, on the other hand, rely largely on Proposition 1 and on prior results from

the auction literature. We discuss these arguments in Sections 4.2–4.3.

17Larsen (2021) estimates bounds on expected bargaining costs in this market and finds that they
are indeed negligible, (less than $34 the buyers and $5 for sellers).
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4.1 Equilibrium Menus

A pure strategy BNE in this game is a complicated object. To describe it, let ζi to

be the drop-out price of buyer i in the auction. Let DB
t ∈ {A,C,Q} represent the

buyer’s decision to accept, counter, or quit in odd periods t. Let PB
t represent the

buyer’s counteroffer (if the buyer counters) in period t. Let DS
t and P S

t be defined

similarly for even periods t. Let Ht represent the history of publicly observed actions

up through period t− 1 of the game. These actions include the auction price and all

previous bargaining offers and period-specific decisions.

The strategy of a buyer of type vBi
is a history-contingent set of actions σBi (vBi

) =

{ζi, {DB
t |Ht}i, {PB

t |Ht}i}, where the decisions DB
t and offers PB

t included are those

for periods in which it is the buyer’s turn. The strategy of a seller of type vS is a

history-contingent set of actions σS(vS) = {ρ, {DS
t |Ht}, {P S

t |Ht}}, where ρ(vS) = r

is the seller’s reserve price strategy, and where the decisions and offers are those for

periods in which it is the seller’s turn.18 A set of strategies {σB∗(vBi
)}Ni for all buyers

and σS∗(s) for the seller is a BNE if, for each player, her strategy is a best response

to opponents’ strategies and players update their beliefs about opponent values using

Bayes rule at each history of the game reached with positive probability.19 We assume

that the econometrician has access to data generated by a single such BNE.

Rather than working with this full set of strategies, we follow the mechanism design

literature and analyze the game as a direct mechanism. Here we introduce explicit

notation for the allocation function and transfer function, the two components of

any mechanism M. In a direct mechanism, each agent, i ∈ {S,B1, ..., Bn}, reports

(or potentially misreports) her private value to a mechanism designer, who assigns

18Note that, for simplicity, we do not allow for equilibria that explicitly depend on N , W , or the
drop-out prices of other bidders (other than the auction price).

19We do not impose any refinement, such as Perfect Bayes Equilibrium (PBE). These refinements
have been shown to do little or nothing to restrict the set of equilibria in sequential bargaining games
(see Gul and Sonnenschein 1988 and discussions in Ausubel et al. 2002). This is because, even in a
PBE, a large array of behavior can be sustained by carefully chosen beliefs following off-equilibrium
actions. Importantly, however, all of our identification arguments apply regardless of whether we
focus on BNE or a refinement such as PBE.
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allocations according to a function xi (vS . . . vBn). This function is equal to 1 for the

agent allocated the car and zero for others. The mechanism designer allocates net

payments made by i according to the function ti (vS . . . vBn).

The expected outcome for a given agent can be described by menus of probability-

transfer pairs. If player i behaves as if she is a type v′i (potentially misreporting her

type), she attains an expected outcome (Pi (v
′
i) , Ti (v

′
i)), defined as

Pi (v
′
i) ≡ E [xi (v

′
i, V−i)] , Ti (v

′
i) ≡ E [ti (v

′
i, V−i)] .

Pi (v
′
i) and Ti (v

′
i) are, respectively, the expectation of i’s allocation xi (v

′
i, V−i) and

transfer ti (v
′
i, V−i), over values V−i of other players −i, which are random variables

from i’s perspective.

The expected utility of i when she has value vi but plays as if it were v′i is

viPi (v
′
i)− Ti (v′i) . (1)

In any incentive compatible (IC) mechanism, vi (i’s true value) maximizes (1):

viPi (vi)− Ti (vi) ≥ viPi (v
′
i)− Ti (v′i)∀v′i. (2)

These IC conditions offer immediate bounds on the value of agent i:

Theorem 1. For any agent i, vi must satisfy

vi ≥
Ti (vi)− Ti (v′i)
Pi (vi)− Pi (v′i)

∀v′i : Pi (v
′
i) < Pi (vi)

vi ≤
Ti (v

′
i)− Ti (vi)

Pi (v′i)− Pi (vi)
∀v′i : Pi (v

′
i) > Pi (vi) .

Proof. Follows immediately from (2).

In any BNE in which i’s strategy involves an action that is one-to-one with her
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value, vi, Theorem 1 can be restated in terms of that action, rather than in terms of

types v′i that i could mimic. In our game, by Proposition 1.iii, the seller’s secret reserve

price is such an action: in any BNE, r = ρ(vS) (the secret reserve price function)

is strictly increasing in vS. We combine Theorem 1 with this strict monotonicity

property to obtain the following corollary specific to the seller’s value; as such, we

state it only for i = S:

Corollary 1. If, in equilibrium, r = ρ(vS) is one-to-one with vS, vS must satisfy

vS ≥
TS (r)− TS (r′)

PS (r)− PS (r′)
∀r′ : PS (r′) < PS (r) (3)

vS ≤
TS (r′)− TS (r)

PS (r′)− PS (r)
∀r′ : PS (r′) > PS (r) . (4)

Note that Corollary 1 adopts a slight modification of notation, which we will

maintain moving forward, in which we write PS and TS as functions of r directly

rather than vS. This is without loss of generality, as r is one-to-one with vS, and is less

cumbersome than writing PS and TS as functions of vS = ρ−1(r). We also write the

seller’s allocation and transfer functions as xS (r, V−S) and tS (r, V−S), respectively.

Figure 2, in the left panel, illustrates a hypothetical equilibrium menu faced by the

seller. We consider a case where the seller’s possible choices of secret reserve prices are

r′ ∈ {r1, ..., r5}. Indifference curves in this figure are straight lines, with the seller’s

utility being higher toward the southeast of the figure. To interpret, consider a seller

choosing r3. Compared to r3, points r4 and r5 have higher probability PS (r) of the

seller keeping the good and higher transfer TS (r) from the seller to buyer.20 If the

seller prefers r3 to r4 or r5, her value must be lower than the average cost of purchasing

this additional probability. That is, vS ≤
TS(r′)−TS(r3)
PS(r′)−PS(r3)

for items r′ ∈ {r4, r5}.

Similarly, compared to point r3, r1 and r2 have lower transfers and lower prob-

20Here we follow the mechanism design literature in modeling the expected transfer an agent
makes, rather than receives. For the seller, this can be counterintuitive: a higher transfer from the
seller to the buyer is in fact a lower payment received by the seller, as all payments flow from buyer
to seller in practice. The second panel of Figure 2 provides an alternative illustration.
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ability of keeping the good. If the seller prefers point r3, her value must be higher

than the average cost of purchasing the additional probability offered by r3. That is,

vS ≥
TS(r3)−TS(r′)

PS(r3)−PS(r′)
for items r′ ∈ {r1, r2}. Thus, the bounds in (3) and (4) imply that

the value of any seller type choosing r3 must lie between the slopes of the blue lines

labeled v (r3) and v̄ (r3) in Figure 2.

Alternatively, equilibrium menus faced by the seller can also be thought of in terms

of the probability that the seller sells the car and the expected revenue received by

the seller. The right panel of Figure 2 shows the equilibrium menu in terms of these

quantities. Sellers effectively choose a probability-revenue pair from a concave menu:

when sellers set lower reserve prices, they sell more often and get higher expected

revenues, but marginal revenue from selling with higher probability is lower with

lower reserve prices. If we observe a seller choosing r3, the secant lines on the menu

at r3 bound the seller’s value for the car.

This leads to our main (and most powerful) result: for a sufficiently smooth and

continuous game, the bounds in Theorem 1 collapse to yield point identification.

Corollary 2. Suppose PS (r) is continuous and strictly monotone with derivative

bounded away from 0; PS (r) , TS (r) are both continuously differentiable; and ρ (vS) is

continuous and strictly monotone in vS. Then vS (r), the inverse of ρ (vS), satisfies

vS (r) =
T ′S(r)

P ′S(r)
for all reserve prices r played by some type vS in equilibrium.

Corollary 2 is essentially the smooth, continuous-action analog of what is illus-

trated in Figure 2. In words, the required smoothness conditions are that different

types of sellers play different reserve prices, different reserve prices lead to different

probabilities of trade, and all functions are differentiable. Under these conditions, the

upper and lower bound slopes in Figure 2 collapse to a line, and the seller’s value is

exactly the slope of that line—the tangent line at the point the seller chooses.21 We

21Corollary 2 applies only to strictly separating equilibria in the sense that each seller types
chooses a different reserve price and each reserve price leads to a different trade probability. In
some bargaining games, equilibria feature partial-pooling regions where, for example, all sellers with
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maintain these smoothness conditions throughout the rest of the paper. Note that

these are conditions assumed directly on equilibrium objects (the equilibrium menu

and the secret reserve price function) rather than on primitives.

Corollary 2 can be considered a generalization of the seminal first price auction

result of Guerre et al. (2000) (GPV).22 The GPV argument, however, is specific to

the first-price auction game. In contrast, our approach can be applied to any game in

which the econometrician observes whether trade was successful, the transfers paid

between traders, and some variable that is one-to-one with agents’ types. This feature

of our menu approach may be advantageous in other bargaining settings as well, where

equilibria may be difficult to characterize, and probability and transfer rules may be

different from standard well-studied auction formats.

The BNE framework also imposes two restrictions on equilibrium menus, which

we utilize in identification and estimation. First, in addition to incentive compatibil-

ity, equilibrium menus must satisfy individual rationality, implying that the seller’s

expected payoff under the optimal choice of r must exceed vS, the seller’s value of

keeping the car herself:

max
r′

vSPS (r′)− TS (r′) ≥ vS ∀vS (5)

values above some cutoff never trade. In such settings, values for agents who pool would not be point
identified; however, the arguments in Theorem 1 would still yield a one-sided bound on these agents’
values by considering deviations to the nearest interior action. We do not need to appeal to these
arguments here because our data appear to be described well by a strictly separating equilibrium:
we estimate a strictly increasing PS (r) function, and a convex menu with no mass points.

22To see this, consider an n-bidder first-price auction in a symmetric independent private values
environment. Let the distribution of bids be written G(·), with density g(·). In a first-price auction,
the expected probability of winning, (Pi), and expected transfer (Ti) for bidder i bidding bid bi are

known transformations of G, given by Pi (bi) = G (bi)
n−1

and Ti (bi) = biG (bi)
n−1

. Applying our
menu approach to differentiate Pi and Ti as in Corollary 2, player i’s value is given by

vBi
=

dTi(bi)
dbi

dPi(bi)
dbi

=
bi(n− 1)G(bi)

n−2g(bi) +G(bi)
n−1

(n− 1)G(bi)n−2g(bi)
= bi +

G(bi)

(n− 1)g(bi)
.

This last expression is equivalent to that derived in the identification argument of GPV.
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Second, equilibrium menus must be convex, which we state as a theorem:

Theorem 2. The graph of {(PS (r) , TS (r))} is convex.

The intuition for Theorem 2 can be seen in the left panel of Figure 2. Every

action played in equilibrium must be optimal for some type, so the upper and lower

bounds in Theorem 1 must intersect at some point. Any point interior to the menu’s

convex hull is dominated: no type would find it optimal to play such actions.23 We

impose convexity and IR constraints on our estimated menu. These constraints serve

as tests of the model: violations suggest that BNE behavior does not rationalize the

data well.

One key point about this identification argument is that it relies on variation in

the probability that a game ends in agreement; the argument is not useful if the

researcher observes no cases where parties disagree. Indeed, in bilateral bargaining,

if the researcher only observes successful trades, the researcher cannot reject the

possibility that complete information (e.g. Nash bargaining) is actually the correct

behavioral model. It is data on failed attempts to trade that are essential for rejecting

a complete-information environment and for identifying agents’ private values.

4.2 Identification of the Distribution of Buyer Values

Identification of FB is relatively standard. For any continuation game after the auc-

tion, dropping out when the auction price reaches the bidder’s value is a weakly

dominant strategy (Proposition 1.ii). Recall that N , the number of bidders, is a

random variable varying across instances of the game. Let Pr(N = n) denote the

probability mass function of N . FB is identified via an order statistics inversion using

Pr(N = n) and the distribution of auction prices FPA(·). In Section 5 we discuss how

23Note that the menu agents are offered does not necessarily correspond to the equilibrium menu
observed by the econometrician, and the offered menu need not be convex. Throughout the paper,
we use the term menu to refer to this equilibrium menu.
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Figure 2: Hypothetical Equilibrium Menu

TS (r)

PS (r)

r1 r2
r3

r4

r5

r6

v (r3)

v̄ (r3)

Exp. Revenue

Sale Prob
r1

r2

r3

r4
r5

v̄ (r3)
v (r3)

Notes: The left panel shows a hypothetical equilibrium menu. The slopes of the blue lines are upper and lower bounds
for the value of an agent choosing action r3. The right panel shows the menu in terms of the seller’s probability of
sale, 1 − PS(r), and expected revenue, −TS(r). Again, the slopes of the blue lines are upper and lower bounds for
the value of a seller choosing action r3.

we estimate Pr(N = n) and FPA(·). For any y, the following holds:

FPA(y) =
∑
n

Pr(N = n)
[
nFB(y)n−1 − (n− 1)FB(y)n

]
. (6)

The right-hand side of (6) is monotonic in y, and thus FB is identified. The distribu-

tion of the highest-value bidder (the maximum order statistic) is then given by

F
(1)
B (y) =

∑
n

Pr(N = n)FB(y)n (7)

This is the value distribution for the bidder who potentially bargains with the seller.

4.3 Identification Under Game-Level Heterogeneity

We now describe how we incorporate game-level heterogeneity. Recall that game-level

heterogeneity is captured by W + Y β, where Y is observable to the econometrician

and W is not. By Proposition 1.iv, the game is location invariant : PA, R, and final

prices shift additively with W + Y β, and the trade probability is invariant. For our
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discussion, we condition on a realization of Y and focus here on W ; we discuss Y in

Section 5.

BNE in this game requires that agents’ strategies constitute a BNE conditional

on any value of w. Define the expected probability and transfer the seller achieves

when playing reserve price r + w in equilibrium, when W = w, as Pw
S (r + w) ≡

E [xS (r + w, V−S + w) | W = w] and TwS (r + w) ≡ E [tS (r + w, V−S + w) | W = w],

with expectations taken over other agents’ values (and hence their equilibrium ac-

tions). Due to location invariance, equilibrium menus are fully characterized by

probabilities and transfers conditional on w = 0, P 0
S (r) , T 0

S (r). These objects are

not immediately identified from conditional expectations in the data because we only

observe realizations of noisy reserve prices R̃ ≡ R + W , which are confounded with

unobserved heterogeneity W . Rather, we can identify probabilities and transfers con-

ditional on realizations of R̃ = r̃, which we denote P̃S (r̃) and T̃S (r̃), and then identify

P 0
S (·) and T 0

S (·) from these objects. As an intermediate step, we also identify the

densities fW , fR, and fPA by a standard convolution argument exploited elsewhere in

the auction literature. This requires several technical assumptions on characteristic

functions, stated in Appendix A.3.

Our identification result is the following theorem:

Theorem 3. P 0
S (·) , T 0

S (·) are identified from P̃S (r̃) , T̃S (r̃), and the joint distribution

of noisy reserve prices and auction prices, R̃ = R +W and P̃A = PA +W .

The proof of Theorem 3 demonstrates that P 0
S (·), the underlying expected allo-

cation function purged of unobserved heterogeneity, solves

P̃S (r̃) =

∫
P 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

, (8)

and T 0
S (r) solves

T̃S (r̃)− E [W∆PS | r̃] =

∫
T 0
S (r) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

, (9)
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where

E [W∆PS | r̃] ≡
∫

(r̃ − r) (P 0
S (r)− 1) fR (r) fW (r̃ − r) dr∫
fR (r) fW (r̃ − r) dr

. (10)

We describe in Section 5 how we exploit (8)–(10) to estimate P 0
S (·) and T 0

S (r).

5 Estimation of Menus and Private Values

5.1 Estimation Details

Our estimation follows the above identification arguments closely. Let j denote an

observation in the data, consisting of the allocation (who ends up with the car), the

transfer (zero if car the does not sell and the final price if is does), the seller’s secret

reserve price, and the auction price. We observe a large set of other characteristics

for each game j, which we denote yj. We describe each estimation step in turn below.

Observable Heterogeneity. We specify the total game-level heterogeneity for ob-

servation j to be y′jβ+wj, where β is a vector of parameters to be estimated. Let rrawj

and pA,rawj be the reserve and auction prices for observation j before removing any

game-level heterogeneity. We control for observable heterogeneity through a standard

homogenization regression (Haile et al. 2003). We run the following regression:

 rrawj

pA,rawj

 =

 y′jβ

y′jβ

+

 r̃j

p̃Aj

 , (11)

where r̃j ≡ rj + wj, p̃
A
j ≡ pAj + wj. To control for as much variation as possible,

yj includes a rich set of observables: dummies for each make-model-year-trim-age

combination (the age of the vehicle in years), dummies for the interaction of mileage

with car-make dummies, dummies for 32 vehicle damage categories, and more.24

24Other controls are fifth-order polynomials in the auction house’s blue book estimate and the
odometer reading; the number of previous attempts to sell the car; the number of pictures of the car
on the auction house’s website; a dummy for whether the odometer reading is considered accurate,
and the interaction of this dummy with the odometer reading; dummies for condition report grade
(ranging from 1–5); dummies for the year-month combination of the sale date and for auction house
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To improve our estimates in these regressions, we use our main sample of 131,443

observations, which contain both auction and reserve prices, as well as an additional

80,213 observations for which we observe only a reserve or auction price but not

both.25 The R2 from this regression is 0.95, suggesting that most of the variation in

these prices arises from observable differences across cars. For the sake of concreteness,

we refer to the predicted value y′jβ̂ as the market value of the car.

Unobserved Heterogeneity Distribution Estimation. The residuals from the

above regression, ˆ̃rj and ˆ̃pAj , are contaminated with unobserved heterogeneity, W ∼

FW . We estimate the marginal distributions FW , FR, and FPA and their corresponding

densities via maximum likelihood (MLE). The contribution of observation j to this

likelihood is given by

∫
fPA(ˆ̃pAj − w; θPA)fR(ˆ̃rj − w; θR)fW (w; θW )dw (12)

The objects θPA , θR, and θW are parameter vectors to be estimated. We specify the

density of each random variable Z ∈ {PA, R,W} as N(µZ , σZ).26 An alternative

approach would be to approximate characteristic functions and perform a Fourier

transform, as in Li and Vuong (1998) or Krasnokutskaya (2011). Either approach is

consistent; we found the likelihood approach (used also in Athey et al. 2011) most

straightforward.

Estimating Buyer Value Distribution. We estimate FB by solving (6) on a grid

location interacted with hour of sale; dummies for each seller appearing in at least 500 observations;
dummies for discrete odometer bins; and several measures of the thickness of the market during a
given sale and of the order the cars were run (see Larsen 2021 for details on their construction).

25The additively separable structure we impose is testable. In particular, we could instead estimate
β in (11) using only auction prices or only reserve prices. We find that doing so yields predicted

values of y′j β̂ that are highly correlated. However, because our estimation involves a number of
subsequent steps, such differences can matter for our final estimates of bargaining power. We
discuss these differences in Appendix B.1. We choose to pool reserve and auction prices to use all
available information.

26We explored a more flexible approximation for the densities in this step using fifth-degree Her-
mite polynomials, as in Gallant and Nychka (1987). We found that a likelihood ratio test failed to
reject the more parsimonious Normal approximation.
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of values for the buyer. This requires an estimate of FPA , which comes from the MLE

estimates above, and an estimate of Pr(N = n), which we obtain from the subsample

of the data with detailed bid logs. This data does not record the actual number

of bidders, but an auction-by-auction upper bound on the number of bidders can

be imputed based on the sum of two objects that are observable: the total number

of bids placed by bidders who were physically present for a given auction and the

number of bidders registered to participate online in the bidding of a given auction

house lane.27 After estimating FB, we then construct the value distribution for the

bidder who wins the auction (and potentially enters bargaining), F
(1)
B , using (7).

Local Linear Regressions for P̃S (r̃) and T̃S (r̃). We estimate the noisy expected

allocation function P̃S (r̃) through a local linear regression of the allocation in game j

on the noisy reserve price, i.e. the residual from the homogenization step, ˆ̃rj for game

j. We estimate the noisy expected transfer T̃S (r̃) analogously through a local linear

regression of the transfer in game j on ˆ̃rj. For these regressions, we use a Gaussian

kernel and bandwidth of $500. For comparison, the mean and standard deviation of

reserve prices in the data are $10,385 and $5,805.

Estimating P 0
S (r) via Spline-Fitting. We parameterize the function P 0

S (r) as a

quadratic I-spline (Ramsay 1988) with 5 knots, constrained to be nondecreasing in

r.28 Denote this P 0
S (r; θP ). We estimate the spline coefficients θP as the solution to

min
θP

∫ [(∫
P 0
S (r; θP ) f̂R (r) f̂W (r̃ − r) dr

ĥ(r̃)

)
− ˆ̃PS (r̃)

]2

ĥ(r̃)dr̃ (13)

In words, (13) numerically solves (8) by minimizing the distance between the esti-

27In Appendix B.1, we discuss alternative choices for Pr(N = n).
28We choose these knots to be uniformly spaced between -3000 and 5000. The choice of 5 as the

number of knots (for P 0
S and for T̆ 0

S , described below) was driven by an attempt to remain flexible
while avoiding over-fitting, which required some degree of experimentation. Avoiding over-fitting at
this stage of the estimation is important, as these objects are inputs in the subsequent stage where
we differentiate to obtain estimates of FS . For all integrals against the density of r or r̃, such as
(13), we approximate the integral using a uniformly spaced grid of r̃ values from -5000 to 7000 in
intervals of 10. These end points correspond approximately to the 0.00001 and 0.99999 quantiles of
the density of r̃.
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mated function ˆ̃PS (r̃) and the convolution of P 0
S (r; θP ) and f̂R(r)f̂W (r̃−r)dr

ĥ(r̃)
, weighting

by ĥ(r̃) ≡
∫
f̂R (r) f̂W (r̃ − r) dr, which is the estimated density function of r̃.29 We

denote the estimate P 0
S

(
r; θ̂P

)
by P̂ 0

S (r). The square root of the value of (13) at

the optimum constitutes one measure of fit—a root weighted mean squared error

(RMSE). Because we estimate a probability in this step, the RMSE naturally lies in

[0,1]. We estimate a RMSE of 0.012, suggesting that our probability estimates differ

from the local linear regression fit by only 1.2 percentage points on average.

Estimating T 0
S (r) via Spline-Fitting. Using the estimated probability P 0

S

(
r; θ̂P

)
function, we parameterize the expected transfer function as a convex regression spline

(C-spline; see Meyer 2008) in the probability rather than as a function of r directly.

We denote this composition by T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θT

)
.30 This type of spline approx-

imation allows us to directly constrain the transfer-probability menu to be convex.

We estimate the spline coefficients θT as the solution to

min
θT

∫ [(∫
T̆ 0
S (P 0

S (r; θP ) ; θT ) f̂R (r) f̂W (r̃ − r) dr
ĥ(r̃)

)
−
(
T̃S (r̃)− Ê [W∆PS | r̃]

] ]2

ĥ(r̃)dr̃.

subject to the constraint that T̆ 0
S (p) is weakly convex. This exercise also requires

an estimate of E [W∆PS | r̃], which we construct using (10). We denote the value

of T̆ 0
S

(
P 0
S

(
r; θ̂P

)
; θ̂T

)
at the estimated parameters, when written as a function of r,

by T̂ 0
S (r). The RMSE from this step represents the amount in dollars by which our

fit is off; we find this number to be quite low ($3) relative to prices in this market,

indicating a good fit.

Imposing convexity and individual rationality. As discussed in Section 4.1,

the BNE model imposes two key restrictions on equilibrium menus: menus must be

convex, and all menu points must satisfy individual rationality (IR), shown in (5). We

29Weighting by ĥ(r̃) does not matter asymptotically. In finite samples it has the effect of down-

weighting estimation where r̃ has low density—where ˆ̃PS (r̃) may be less accurately estimated.
30For the spline approximation of T̆ 0

S we again use 5 knots, placing more knots where more of the
mass lies, with knots at {0, 0.1, 0.25, 0.4, 0.6}.
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impose both constraints on the menu during estimation. We impose convexity on the

menu through the constraints of the C-spline approximation T̆ 0
S (p). The convexity

constraint is binding only on a set of measure 0: we find that one C-spline coefficient

is equal to 0, implying that the second derivative of the menu is equal to 0 for exactly

one value of P . To impose IR, for any agents choosing reserve prices r such that

(5) does not hold, we hold P̂ 0
S(r) fixed, and set T̂ 0

S(r) to the value that makes (5)

hold with equality. This treats these agents as trading with probability P̂ 0
S(r) but

having zero expected surplus, making them exactly indifferent between participating

or not. We find that, even without enforcing them, IR constraints are satisfied for an

overwhelming majority of sellers (90.4%). For the remaining 9.6%, the IR constraint

binds. These facts—convexity of the estimated menu and IR constraints being non-

binding for most of the estimated menu—offer some evidence of good model fit.

Estimating the Seller Value CDF and Reserve Price Function. From the

final estimated menu, we then construct, for a grid of values for r, an estimate of the

corresponding type vS that would choose each r. Specifically, for each r, we obtain

the inverse mapping vS(r) by evaluating the derivative d
ˆ̆
T
dp

, which has a closed form

given our spline approximation, at P̂ 0
S (r). This also yields an estimate of the mapping

ρ̂(vS). An estimate of FS is then given by F̂S(vS) = F̂R(ρ̂(vS)) for any vS. Note that

this exploits the estimate of F̂R from the MLE unobserved heterogeneity step. In

what follows, we sometimes exploit the seller’s expected allocation and transfer as a

function of her value rather than her reserve price. Estimates of these objects are

given by P̂ 0
S (ρ̂(vS)) and T̂ 0

S (ρ̂(vS)).

5.2 The Estimated Menu and Value Distributions

We now display, in Figure 3.A, the estimated menu, with the estimate of P 0
S (r) on the

horizontal axis and T 0
S (r) on the vertical axis.31 Each point on the menu corresponds

to the expected payoff for the seller from choosing a given secret reserve price. We note

31Appendix B.1 provides estimates of the initial estimation steps described in Section 5.1.
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Figure 3: Estimated Menu
(A) Estimated Menu (B) Sales/Revenue Menu

Notes: Panel A displays the final estimated menu, (P̂ 0
S , T̂

0
S). Dashed lines show pointwise 95% confidence bands from

bootstrapping with 200 replications. Units on the vertical axis are $1,000 relative to the market value estimate. The
points marked A–D are discussed in the body of the paper. Right panel shows sale probabilities, 1 − P 0

S(r), and
expected revenues, adjusted upward by $10,000, approximately the mean estimated market value.

here that our formulation for payoffs described in (1) in Section 4, vSP
0
S(r)− T 0

S(r),

means P 0
S(r) represents the probability of the seller keeping the good (so 1 − P 0

S(r)

is the probability that a sale occurs) and T 0
S (r) is the expected transfer paid by the

seller (so −T 0
S(r) is the expected payment received by the seller). The units for the

vertical axis are $1,000, and these numbers can be negative in panel A because they

are the result of subtracting off the market value estimate y′jβ̂; these numbers thus

indicate where a monetary amount lies relative to the car’s market value.

With this interpretation in mind, we compare several points along the menu,

rA, ..., rD, where rA < rB < rC < rD, in Figure 3.A. Points A and B lie along the

downward-sloping portion of the menu. Choice rA yields a lower probability of keeping

the good and a lower expected transfer (i.e. a less negative T 0
S) than would choice

rB. Therefore, a seller who chooses rA wants to get rid of the car more than a seller

who chooses rB, implying that the former seller has a lower value (lower vs) than the

latter. This is precisely what Figure 3.A shows: the derivative of the menu at rA is

more negative than at rB, and these derivatives (by Corollary 2) reveal sellers’ values,

so a seller choosing rA must therefore have a value that is farther below the market

value of the car than does a seller choosing rB. Points C and D lie along the upward-

30



Figure 4: Value Mapping and Value CDFs

(A) Mapping from Reserve to Value (B) Value CDF

Notes: Left panel shows the estimated mapping from reserve prices to values (blue line) and the reserve price (yellow
line, y = x). Right panel displays estimated CDF of seller values, FS (blue line), and estimated CDF of maximum
order statistic of buyer values, FB(1) (green line). Dashed lines show 95% confidence bands from bootstrapping
with 200 replications. Units on horizontal axes (and on vertical axis of panel A) are $1,000 relative to market value
estimate.

sloping portion of the menu. Choice rC yields a lower probability of keeping the good

but a higher expected transfer to the seller (i.e. a more negative T 0
S). Therefore, a

seller choosing rD wants to keep the good more (i.e. have a higher vS) than a seller

choosing rC , manifest by a derivative that is more positive at D than at C.

In Figure 3.B, we offer an alternative version of this menu in terms of expected

revenues and sale probabilities, analogous to the right panel of Figure 2. To improve

readability, we adjust expected revenues by adding $10,000, which is approximately

the average market value (y′jβ̂) for cars in our data.32 The plot displays several

possible reserve price choices (in units of $1,000). As in Figure 2, by choosing lower

reserve prices, the seller sells with higher probability and attains higher expected

revenue, but the marginal sale revenue decreases as r decreases.

Taking the menu’s derivatives at each point r yields the mapping between the

reserve price and the inferred value vS. We display this mapping with a solid blue line

in Figure 4.A, with reserve prices on the horizontal axis and values on the vertical

32This adjustment does not merely shift the menu in Figure 3.B upward but also rotates it. The
explanation of the rotation introduced by shifts in game-level heterogeneity is found in the proof of
Theorem 3.
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axis. The units for each axis are $1,000. The dashed lines indicate a pointwise

bootstrapped 95% confidence band. The yellow line shows the 45 degree line (the

reserve price itself). To interpret, consider a particular point on this mapping at

about r =-$300 (-0.3 on the horizontal axis). We see that the corresponding inferred

value for such a seller is about vS =-$2,000 (a value of -2 on the vertical axis).

Therefore, a seller who chooses a reserve price that is $300 below the market value is

actually willing to let the car go for up to $2,000 below the market value.

The estimated reserve-value mapping, combined with the distribution F̂R, gives

us an estimated distribution F̂S of sellers’ values, and we plot this in Figure 4.B.

We also plot the estimated distribution of the highest-value buyer—the buyer who

potentially ends up in bargaining. The distributions indicate that 75% of sellers have

values less than the market value, while 75% of buyers have values above this amount.

This suggests that there are typically gains from trade in this market, which is to be

expected given that auction houses have been functioning well as market makers in

this industry for three quarters of a century. However, panel B also shows overlap

between seller and buyer distributions, which, by the Myerson and Satterthwaite

(1983) Theorem, can lead to inefficiency, with some trades failing to occur even when

the highest-value buyer values the car more than the seller.

6 Quantifying Bargaining Power

In this section, we use the estimated menu and value distributions to compute bar-

gaining power weights (αS and αB). This requires estimating buyer and seller surplus

in the real-world mechanism, as well as surplus under the buyer-optimal and seller-

optimal mechanisms. We then show how bargaining power differs between buyers

and sellers, how these weights differ for cases in which the seller is a manufacturer

or not, how competition among buyers affects bargaining power, and how bargaining

power relates to the size of the pie.
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6.1 Computing Surplus and Bargaining Power Weights

We first discuss how we calculate the ex-ante trade surplus, or gains from trade, for

the real-world mechanism (the bargaining observed in the data). To calculate total

surplus, we exploit the property that a seller of type vS trades with all buyer types

above a certain cutoff (Proposition 1.v).33 Here we invoke the additional simplify-

ing assumption that these cutoffs do not vary with the auction price, pA.34 Con-

sequently, the P 0
S (ρ(vS)) function and the value distribution for the highest-value

bidder, FB(1) (·), together imply cutoffs c̃ (vS) =
{
vB : 1− F (1)

B (vB) = P 0
S (ρ(vS))

}
.

This allows us to calculate the total surplus from the actual mechanism as

∫ ∫
(vB − vS) 1{vB ≥ ˆ̃c (vS)}dF̂B(1) (vB) dF̂S (vS) . (14)

We can also calculate the ex-ante surplus for the seller, which is the expected payment

to the seller minus the expected value of the seller conditional on trading. Because our

estimation procedure produces estimates of the probabilities P 0
S (ρ(vS)) and transfer

T 0
S (ρ(vS)) for all seller values, we can calculate the surplus achieved by any seller type

as vSP̂
0
S

(
ρ̂(vS); θ̂P

)
− T̂ 0

S (ρ̂(vS)). The ex-ante surplus for the seller is then given by

integrating this quantity over vS. Buyer gains from trade are obtained by subtracting

the seller surplus from the total surplus.

We then compute the buyer-optimal mechanism, which is a TIOLIO price p∗ (vB)

maximizing (vB − p) F̂S (p). Total surplus is given by

∫ [
vBF̂S (p̂∗ (vB)) +

∫
vS1{vS ≥ p̂∗ (vB)}dF̂S (vS)

]
dF̂B(1)(vB) (15)

Expected seller surplus is then total surplus minus buyer surplus.

33This property is also satisfied in many other bilateral trade settings, and is referred to by Ausubel
and Deneckere (1993) as the “Northwestern Criterion.”

34We have performed estimation allowing cutoffs to vary with pA and obtained results that are
similar qualitatively and quantitatively. We adopt this simplification to reduce the computational
burden.

33



To calculate the seller-optimal mechanism, we use the well-known result from

auction theory that, when buyers’ values are symmetric, seller revenue is maximized

by a second-price auction with a public reserve price. As shown in Aradillas-López

et al. (2013), for a seller with value vS, the seller’s maximized surplus can be written

max
p

∫
max{p, v}dFPA (v)− vS − FB(1) (p) (p− vS) (16)

We plug in our estimated distributions and solve (16) for each seller type to find op-

timal public reserve prices p∗ (vS) and seller surplus in the seller-optimal mechanism.

Analogous to (15), total surplus is

∫ [
vSF̂B(1) (p̂∗ (vS)) +

∫
vB1{vB ≥ p̂∗ (vS)}dF̂B(1) (vB)

]
dF̂S (vS) ,

and expected buyer surplus is calculated as total surplus minus seller surplus.

With estimates of surplus for the buyer and seller under each of these mechanisms,

we compute bargaining power weights. In the notation of Section 3, the seller-optimal

mechanism isM1 and the buyer-optimal mechanism isM0. Let the real-world mech-

anism be denoted MRW . Bargaining power is then given by

α̂B =
ÛB(MRW )− ÛB(M1)

ÛB(M0)− ÛB(M1)
(17)

α̂S =
ÛS(MRW )− ÛS(M0)

ÛS(M1)− ÛS(M0)
(18)

where ÛB(M) is the estimate of the ex-ante expected surplus of the buyer under

mechanism M, as in Section 3, and similarly for ÛS(M).

6.2 Overall Estimates of Bargaining Power Between Buyers and Sellers

In this subsection, we focus on our estimates of bargaining power for our full sample.

We discuss various subsamples in the subsections that follow. Table 2 shows our
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Table 2: Components for Measuring Bargaining Power

(1) (2) (3) (4) (5) (6)
Trade Total Seller Seller Buyer Buyer
Prob. Surplus ($) Surplus ($) Margin ($) Surplus ($) Margin ($)

Real-world 0.763 2,208 1,251 1,640 957 1,254
(0.001) (143) (136) (176) (15) (19)

Buyer-optimal 0.549 1,933 799 1,455 1,135 2,067
(.028) (141) (119) (224) (94) (141)

Seller-optimal 0.712 2,178 1,531 2,150 647 908
(.011) (156) (145) (192) (22) (18)

Notes: Sale probability, total surplus, seller surplus (and margin), and buyer surplus (and margin) in the buyer-
optimal, seller-optimal, and real-world mechanisms. Seller and buyer margins are calculated by dividing seller and
buyer surplus, respectively, by trade probability. Standard errors from 200 bootstrap samples are in parentheses

estimates of trade probabilities and surplus in the real-world, seller-optimal, and

buyer-optimal mechanisms. In levels, we find that sellers achieve $1,251 of surplus in

the real-world mechanism, compared to $1,531 in the seller-optimal mechanism, and

$799 in the buyer-optimal mechanism. We also calculate average margins for sellers by

dividing seller utility by the trade probability; this is the average markup (in dollars)

of the sale price over the seller’s private value for successful trades. The average

margin is $1,640 in the real-world mechanism, compared to $1,455 in the buyer-

optimal mechanism and $2,150 in the seller-optimal mechanism. Given that average

car prices are approximately $10,000, this implies that sellers’ expected markups

over their values VS, in percentage terms, are approximately 16.4% of the price of

a car, compared to 14.6% and 21.5% at the buyer- and seller-optimal mechanisms,

respectively.

Buyer surplus, in levels, is $957 in the real-world mechanism, compared to $647

and $1,135 in the seller-optimal and buyer-optimal mechanisms, respectively. Buyers’

margins are $1,254 in the real-world mechanism (roughly 12.5% of the price of a car),

compared to $2,067 and $908 in the buyer- and seller-optimal mechanisms.

The six numbers in columns 3 and 5 of Table 2 are the building blocks to plug into

(17) and (18) to construct estimates of bargaining power, αB and αS. The yellow and
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blue objects in the first column of Figure 5 (“Full Sample”) display these estimates,

surrounded by 95% confidence intervals. Our point estimates are α̂S = 0.618 and

α̂B = 0.636. In words, the seller, on average, achieves an outcome that is 61.8% of

the way between her maximal payoff—her payoff from making a TIOLIO—and the

payoff she would receive if instead the buyer were to make a TIOLIO. The buyer, on

average, achieves an outcome that is 63.6% of the way between his maximal payoff

and what he would receive if the seller were to make a TIOLIO. We do not find

evidence in the full sample of one side of the market having more bargaining power

than another: the confidence intervals of buyer and seller bargaining power overlap.

The sum of α̂S and α̂B offers two measures of efficiency. First, we can compare

this sum to 1 to evaluate how well the real-world bargaining performs relative to a

simple random combination of the buyer- and seller-optimal mechanisms. For our full

sample, we find that this sum is significantly greater than 1 (shown in green in the

first column of Figure 5). This suggests that the real world achieves higher surplus

than could be achieved by giving either party all of the bargaining power.

Second, we can compare α̂B + α̂S in the real-world mechanism to what it would

be in the counterfactual first-best (ex-post) efficient outcome, which consists of the

buyer and seller trading whenever the buyer’s value exceeds the seller’s. We show

this estimate in purple in the first column of Figure 5.35 This first-best mechanism

can also be thought of as the outcome that would occur under vertical integration

between the upstream supplier (the company selling the car) and the downstream

buyer (the dealership), assuming there are no remaining bargaining frictions within

such an integrated firm. Without vertical integration, the first-best efficient surplus

is generally unattainable in bilateral bargaining (Myerson and Satterthwaite 1983).

In our full sample, however, we find that the real-world mechanism lies close to the

35Note that the division of surplus is not unique within the first-best mechanism, so the first-best
sum of αS and αB is not uniquely pinned down. For plotting the first-best in Figures 5, 6, and A.5,
we calculate the sum αB +αS corresponding to the same ratio of bargaining power αB/αS as in the
real-world mechanism. Graphically, this is equivalent to the division of surplus in the first-best that
lies on a ray connecting the point αB = 0, αS = 0 to the real-world αB , αS in Figure 1.
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vertically integrated outcome, suggesting that efficiency losses due to incomplete-

information are not large in the full sample.36

6.3 Manufacturer vs. Non-manufacturer Sellers

We next analyze whether bargaining power differs between sellers who are car man-

ufacturers and those who are not, and whether these manufacturer sellers have more

bargaining power than the dealers with whom they negotiate. Manufacturers, such as

Ford, General Motors, and Daimler Chrysler (the three largest U.S. companies), are

often major clients of used-car auctions, typically selling cars that have been leased

for a period and then re-purchased by the manufacturer, at which point the manu-

facturer takes care of vehicle resale. As described in Section 2, other major sellers in

the secondhand wholesale market include fleet companies (such as Wheels or Orix),

banks (such as Bank of America or Wells Fargo), or rental companies (such as Budget

or Enterprise). Manufacturers have a more complicated relationship with franchised

car dealers (who can be buyers at auctions) than do non-manufacturers, with many

state-specific laws governing relationships.

In the second and third columns of Figure 5, we repeat our analysis of α̂S and α̂B

separately for observations where the seller is a manufacturer vs. not. We find that,

in contrast to our full-sample results, in manufacturer sales sellers have much more

bargaining power than buyers: α̂S is 0.91 and α̂B is 0.045. Indeed, manufacturers’

achieve a surplus that is very close to what they would receive if they had all of the

bargaining power. Given that the outcome is so close to the seller-optimal mechanism,

36This result contrasts with that of Larsen (2021), who documented some inefficiency in bargaining
in wholesale used-car markets. The difference is driven by several factors. First, we analyze the full
real-world mechanism (the auction plus bargaining), whereas the former only studies the post-
auction bargaining. Second, we study only fleet/lease sales, and the bounds on efficiency loss in
Larsen’s earlier work are indeed closer to zero for such sales. Third, our point estimates of F̂S

lie close to—but slightly outside of (stochastically dominating)—the Larsen’s bounds, which can
happen because the two approaches rely on different assumptions. Our approach exploits optimality
of reserve prices, whereas the former exploits optimality of the seller’s choice to accept or reject the
auction price. A stochastically higher seller value CDF corresponds to a smaller gap between the
real-world mechanism and the first-best (see Proposition 6 of Larsen 2021).
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Figure 5: Bargaining Power Estimates

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B+α̂S (green), and the sum α̂B+α̂S in the first-best mechanism
(purple), for the full sample (leftmost), manufacturer and non-manufacturer sales, and two comparison samples: non-
manufacturer sales with similar average mileage and average age to manufacturer sales, and non-manufacturer sales
with a similar number of bidders as the manufacturer sample. To construct the first-best sum αB + αS , within each
subsample, we take first-best total surplus, and divide it between buyers and sellers such that the ratio αS/αB is the
same as in the real-world mechanism. Points represent estimates in the baseline sample, and confidence bars represent
95% confidence intervals from 200 nonparametric bootstrap replications.

the real-world bargaining in this sample performs close to what could be a achieved

by a random ultimatum game (the 95% confidence interval includes 1), and thus is

relatively efficient from this perspective. We can also measure efficiency relative to

the first-best, vertically integrated counterfactual. Note that the vertical integration

between dealers and manufacturer sellers also captures a notion of direct-to-consumer

sales for used-car markets, as it removes the wholesale-market negotiation. Relative

to this benchmark, manufacturer sales also do well, with the 95% confidence interval

for the first best sum of bargaining power weights overlapping that of the real-world.

In the non-manufacturer sample we find starkly contrasting results: α̂S is 0.44

and α̂B is 0.81. Thus, buyers have much more bargaining power when facing non-

manufacturer sellers. In this sample, we can reject the possibility that a random-

proposer game would perform better—the sum of the αs is 1.25—but we also find

evidence that the bargaining in this sample falls short of the first-best outcome, where

αB + αS is 1.38 (and the confidence intervals between the real-world and first-best

sum do not overlap).
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These differences in bargaining power between manufacturer and non-manufacturer

sales may by driven by differences in the composition of the two samples. To investi-

gate this possibility, we create a sample of non-manufacturer sales which are of similar

age and mileage to manufacturer cars by limiting the sample of non-manufacturer sales

to those with age and mileage values below particular cutoffs such that this sample

has similar average characteristics to those of manufacturer cars. We refer to this as

our comparison sample. We show the results using this characteristics-comparison

sample in the fourth column of Figure 5.37 In the comparison sample, α̂S is approxi-

mately 0.30 and α̂B is approximately 0.68. These are quite different—and oppositely

ranked—from the estimates of the manufacturer sample, suggesting that these char-

acteristics do not explain the difference between manufacturer and non-manufacturer

sales.38

Manufacturer sales also tend to have more bidders than non-manufacturer sales.39

We construct a comparison sample sample based on the number of bidders in the

auction, constructed using a cutoff such that the average number of bidders is the

same in the manufacturer and comparison non-manufacturer samples. The results

using this bidders-comparison sample are shown in the fifth column of Figure 5. Here

we find that α̂S is much higher, approximately 0.83, and α̂B is approximately 0.31.

Thus, in this bidders-comparison sample, sellers have slightly lower bargaining power

than in the manufacturer sample, and buyers have much higher bargaining power.

Hence, increased competition appears to partially explain sellers’ high bargaining

power in manufacturer sales, but does not fully explain why buyers’ surplus is so low

in the manufacturer sample.

37Note that, by construction, the comparison samples have no overlap with the manufacturer
sample, because the comparison sample consists entirely of non-manufacturer sales.

38In Appendix B.3, we explore other sample splits, showing how bargaining power varies with
characteristics such as car age, condition, and mileage, as well as seller experience.

39The number of bidders in manufacturer sales tends to be high even though these sales typically
have a restriction in place that only franchised dealers are allowed to attend and bid at the sale.
The large number of bidders suggests that these dealers compete heavily for the chance to have
late-model, used inventory of a given make.
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Our finding that, on average, dealers have higher bargaining power than whole-

salers in the secondhand market, and that the opposite is true among manufac-

turer sales, lends credence to previous claims that state laws governing the dealer-

manufacturer relationship generally favor dealers (Lafontaine and Scott Morton 2010).

Specifically, these laws govern the relationship on the supply side for new car transac-

tions. For used cars, where manufacturers are not subject to these laws, we find that

they hold the lion’s share of bargaining power. Lafontaine and Scott Morton (2010)

also argue that dealer-manufacturer relationships in new markets are inefficient, with

these state laws being the driver of the inefficiency and with consumers being the pri-

mary losers. Consistent with their arguments, our results suggest that manufacturer

sales for used cars, where these laws do not apply, are not inefficient.

6.4 How Does Competition Affect Bargaining Power and Efficiency?

We now explore in more detail the effects of competition on bargaining power. To do

so, we divide the full sample into thirds based on the upper bound on the number

of bidders in the auction from the bid log data described in Section 5. We estimate

bargaining power separately in each of these three subsamples. The results are shown

in Figure 6. We find a clear monotonic relationship between the number of bidders

and bargaining power: α̂S is higher and α̂B lower when there are more bidders.

Moreover, when the number of bidders is low, bargaining is very inefficient: the

sum α̂S + α̂B is far below 1, and particularly far below the vertically integrated, first-

best outcome. Seller bargaining power α̂S is statistically indistinguishable from 0, so

sellers achieve surplus similar to what they would in the buyer-offer mechanism, but

α̂B is around 0.71, meaning that buyers are getting less surplus than they would in

the buyer-offer mechanism. In the medium- and high-bidder samples sellers do better

and buyers do somewhat worse, but the sum α̂S + α̂B is significantly greater than

1 and its confidence interval overlaps with the vertically integrated outcome in both

cases.
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Figure 6: Bargaining Power Estimates, Splitting by Number of Bidders

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B+α̂S (green), and the sum αB+αS in the first-best mechanism
(purple), for the main dataset (leftmost), and three tercile samples of the data, based on the number of bidders in the
auction. To construct the first-best sum αB +αS , within each subsample, we take first-best total surplus, and divide
it between buyers and sellers such that the ratio αS/αB is the same as in the real-world mechanism. Points represent
estimates in the baseline sample, and the confidence bars represent 95% confidence intervals from 200 nonparametric
bootstrap replications.

Our finding in the low-N case is worth discussion. Recall from Section 3 that

any outcome with αS + αB = 1 can be implemented by a random ultimatum game

in which, with probability αS, the seller gets to make a TIOLIO, and with proba-

bility αB = 1 − αS the buyer gets to make a TIOLIO. This mechanism is a useful

benchmark in that it is simple to implement from a practical perspective. In the full

sample, as well as in the subsamples with medium and high numbers of bidders, we

find α̂S + α̂B to be significantly greater than 1, suggesting that the real-world bar-

gaining does significantly better than this random ultimatum benchmark. However,

when competition is low (the second column of Figure 6), α̂S + α̂B is approximately

0.74, so surplus would be higher if the mechanism designer were to implement this

randomized take-it-or-leave-it mechanism instead of the mechanism in the data. Ver-

tical integration would also significantly improve efficiency in this case where there is

low competition on the buyers’ side of the market.
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7 Conclusion

This study provides an empirical analysis of bargaining power under asymmetric

information. We focus on negotiations between buyers (car dealers) and sellers (large

institutions, such as manufactures or fleet-owning companies) in the supply side of

the U.S. used-car market. These negotiations are facilitated by wholesale used-car

auction platforms, who first run an ascending auction, and then facilitate bargaining

between the seller and highest bidder whenever the auction price falls below the

seller’s secret reserve price.

The private value distribution of the buyer can be easily estimated from data

on auction prices. The private value distribution of the seller is much more com-

plex to identify and estimate, but we show how this can be achieved by applying

a revelation-principle-like argument, interpreting the seller’s choice of secret reserve

price as a choice from a menu of expected probabilities of keeping the car and ex-

pected transfers—a menu that constitutes the marginal direct mechanism the seller

faces. The derivative of this menu evaluated at the point chosen by the seller cor-

responds to the seller’s privately known value. These two key objects—the value

distribution of the seller and buyer—can then be used to evaluate the seller’s and

buyer’s bargaining power.

As bargaining power is not a well-studied concept in incomplete-information bar-

gaining, we propose a new definition: an agent’s bargaining power is the share of

the agent’s best-case (i.e. TIOLIO) surplus the agent achieves, relative to what the

agent would achieve under the opponent’s best-case scenario. This extends a tra-

ditional (complete-information, Nash bargaining) notion of bargaining power to the

incomplete-information setting.

We estimate the buyer and seller value distributions and their corresponding bar-

gaining power in this market. We find that, overall, car dealers (buyers) have a similar

degree of bargaining power to sellers (large companies). However, focusing on sales
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by manufacturers vs. non-manufacturers, we find that manufacturers have substan-

tially more bargaining power than other sellers, and substantially more power than

the dealers with whom they negotiate. This strong bargaining position is driven in

part by a high level of competition among buyers for manufacturer sales. In settings

with fewer buyers competing in the auction, buyers’ bargaining power is substantially

higher than sellers and the bargaining is quite inefficient, both relative to a simple-

to-implement random-proposer alternative and relative to a benchmark of vertical

integration (the first-best outcome). We see these results as a first step toward under-

standing bargaining power in the supply side of used-car markets, and, more broadly,

in quantifying bargaining power in industries where asymmetric information plays a

role.
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Appendix for Online Publication

A Proofs

A.1 Proof of Corollary 2

Proof. We have assumed that ρ (vS) is strictly increasing—different types of sell-

ers play different reserve prices—and that PS (r) is strictly monotone, meaning that

different reserve prices lead to different probabilities of trade. Without loss of gener-

ality, suppose PS (r) is strictly increasing; the argument when PS (r) is decreasing is

analogous.

Note that the support of R can be treated as bounded given that the support

of VB is assumed to be bounded. To see this, let
[
M,M

]
denote the support of VB.

Choosing any secret reserve price r below M is a dominated action for the seller given

that every buyer has a value of at least M . Moreover, the seller is indifferent between

a secret reserve price of M and any secret reserve price higher than this because no

buyer would ever be willing to pay more than M . Thus, the support of R can be

treated as being bounded within
[
M,M

]
.

Consider some value vS strictly in the interior of the interval
[
M,M

]
. First,

we apply the bounds in (4), comparing ρ (vS), the reserve price chosen by vS, to

ρ (vS + δ), the reserve price chosen by type vS + δ. We have, for any δ,

vS ≤
TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
(19)

where the right-hand side of (19) always exists, because by assumption both ρ (·) and

PS (·) are strictly monotone. Now, let δ → 0. Because ρ is strictly monotone and

TS (·) and PS (·) are differentiable, we have

lim
δ→0

TS (ρ (vS + δ))− TS (ρ (vS))

PS (ρ (vS + δ))− PS (ρ (vS))
=
T ′S (ρ (vS))

P ′S (ρ (vS))
(20)
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The ratio of derivatives on the right-hand side of (20) always exists, because by

assumption TS (·) is differentiable, and PS (·) is strictly monotone and differentiable,

so P ′S (ρ (vS)) 6= 0 for all vS. Thus, the bound in (19) becomes:

vS ≤
T ′S (ρ (vS))

P ′S (ρ (vS))
(21)

Next, applying the bound in (3), we also have, for any δ,

vS ≥
TS (ρ (vS))− TS (ρ (vS − δ))
PS (ρ (vS))− PS (ρ (vS − δ))

(22)

Analogously, taking the limit as δ → 0, we have:

vS ≥
T ′S (ρ (vS))

P ′S (ρ (vS))
(23)

Combining (21) and (23), along with the fact that vS (r) is the inverse of ρ (vS),

yields the desired result for any vS in the interior of
[
M, M̄

]
.

Now, for v = M̄ , recall that we have assumed ρ (vS) is continuous, and thus

ρ
(
M̄
)

= lim
ε→0

ρ
(
M̄ − ε

)
= lim

ε→0

T ′S
(
M̄ − ε

)
P ′S
(
M̄ − ε

)
We have assumed TS and PS are continuously differentiable, hence,

lim
ε→0

T ′S
(
M̄ − ε

)
P ′S
(
M̄ − ε

) =
T ′S
(
M̄
)

P ′S
(
M̄
)

We have thus shown that ρ
(
M̄
)

=
T ′S(M̄)
P ′S(M̄)

. The proof that ρ (M) =
T ′S(M)

P ′S(M)
is analo-

gous. This completes the proof of Corollary 2.
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A.2 Proof of Theorem 2

Proof. We prove this result by contradiction. Suppose that the graph of {(PS (r) , TS (r))}

is not convex. Then there exists a triple r, r′, r′′, all of which are played with positive

probability in equilibrium, such that

γPS (r′) + (1− γ)PS (r′′) = PS (r) (24)

for 0 ≤ γ ≤ 1, and

TS (r) > γTS (r′) + (1− γ)TS (r′′) (25)

Consider the type vS whose optimal action is r. By playing r, her expected utility is

vSPS (r)− TS (r) (26)

If she were to instead play r′ with probability γ and r′′ with probability (1− γ), her

expected utility would be

vS [γPS (r′) + (1− γ)PS (r′′)]− [γTS (r′) + (1− γ)TS (r′′)] (27)

Plugging (24) into (27) yields vSPS (r)− [γTS (r′) + (1− γ)TS (r′′)], which, by (25), is

strictly greater than (26). Because r is optimal for type vS, this yields a contradiction,

and thus the graph of {(PS (r) , TS (r))} is convex.

A.3 Proof of Theorem 3

Before proving this result, we first state the technical conditions required for the

convolution argument. These are that (i) the characteristic functions of fR and fW

have only isolated real zeros and (ii) the real zeros of the characteristic function

of fPA and the real zeros of its derivative are disjoint. These are weak conditions

derived in Evdokimov and White (2012)—weaker than those of Li and Vuong (1998)
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or Krasnokutskaya (2011) while still yielding the same identification result.

We also introduce one piece of notation: Let ρw (vS) represent the secret reserve

price chosen by a seller of type vS in a game where the realization of W = w.

Proof. By Proposition 1.iv, we have that the seller’s secret reserve price increases

additively with unobserved heterogeneity; that is,

r̃ = ρw (vS) = ρ0 (vS) + w

Because the seller’s value VS is independent of buyers’ bids conditional on W , ρ0 (VS)

is also independent of auction prices PA conditional on W . Thus, by Evdokimov

and White (2012), FW , FR, and FPA are identified from the joint distribution of

R̃ = R +W and P̃A = PA +W .

Next, we show that P 0
S (r) and T 0

S (r) are identified from P̃S (r̃), T̃S (r̃), FW , and

FR. We describe the identification steps separately for probabilities and transfers.

Probabilities. The probability of trade contaminated with W , P̃S (r̃), can be written

as:

P̃S (r̃) = ER,V−S ,W [xS (R +W,V−S +W ) | R +W = r̃] (28)

= ER,V−S ,W

[
EV−S

[xS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(29)

= ER,W
[
PW
S (R +W ) | R +W = r̃

]
(30)

= ER,W
[
P 0
S(R) | R = r̃ −W

]
(31)

Expression (29) follows from applying the law of iterated expectations to (28). (30)

follows from taking the expectation over V−S, and using the definition of Pw
S (·) in

Section 4.3, and using that R and W are constant after conditioning on W and

R+W = r̃. The equality between (30) and (31) follows because of location invariance
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in Proposition 1.iv, which implies that

Pw
S (r + w) = P 0

S(r) ∀w, r;

that is, the probability of trade attained by setting reserve price r+w when unobserved

heterogeneity is W = w, is the same as the probability attained by setting reserve

price r when unobserved heterogeneity isW = 0. This allows us to replace PW
S (R+W )

in (30) with P 0
S(R) in (31).

In integral form, expression (31) is (8) in the main text. In words, (8) shows that

P̃S (r̃) is essentially a noisier version of P 0
S (r): it is a combination of values of P 0

S (r),

for r̃ close to r, equal to P S
0 (r) convolved against the function

fR (r) fW (r̃ − r)∫
fR (r) fW (r̃ − r) dr

. (32)

Because the distributions of R and W both have bounded support, we can set P S
0 (r)

to 0 for all r outside the support of R. Thus, both P S
0 (r) and (32) are in L1, and

hence the convolution theorem applies, meaning that the convolution of P S
0 (r) and

(32) is invertible and hence P 0
S (r) is identified from (32) and P̃S (r̃).

Transfers. Let pricew (r) represent the average trade price (conditional on trade)

when W = w and R = r. From Proposition 1.iv, the game is location-invariant; thus,

average prices increase one-for-one with changes in w; that is,

pricew (r + w) = price0 (r) + w ∀w, r (33)

The seller is paid pricew (r + w) with probability 1− Pw
S (r + w), i.e., one minus the

probability Pw
S (r + w) that the seller keeps the car. Thus, the expected transfer the

seller “pays”, TwS (r + w), can be written in terms of the average trade price and the

probability that the seller keeps the good as TwS (r + w) = pricew (r) (Pw
S (r + w)− 1).
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From (33), and from P 0(r) = Pw(r + w)∀w, r, we have

TwS (r + w) =
(
price0 (r) + w

) (
P 0
S (r)− 1

)
= T 0

S (r) + w
(
P 0
S (r)− 1

)
∀w, r (34)

The transfer function contaminated with W , T̃S (r̃), can then be written as

T̃S (r̃) = ER,V−S ,W [tS (R +W,V−S +W ) | R +W = r̃] (35)

= ER,V−S ,W

[
EV−S

[tS (R +W,V−S +W ) | W,R +W = r̃] | R +W = r̃
]

(36)

= ER,W
[
TWS (R +W ) | R +W = r̃

]
(37)

= ER,W
[
T 0
S (R) + (r̃ −R)

(
P 0
S (R)− 1

)
| W = r̃ −R

]
(38)

These equations are similar to expressions (28) to (31) above. (36) follows from

applying the law of iterated expectations to (35). (37) then follows from the definitions

of TwS (·) and Pw
S (·), noting again that R and W are constant after conditioning on

W and R +W = r̃. Finally, (38) follows from applying (34) to (37).

In integral form, (38) is equivalent to (9) and (10) from the main text. In (9), the

term T̃S (r̃) is identified in the data and the term E [W∆PS | r̃] can be calculated for

any r̃ using (10) because P 0
S (r) is identified; thus, the left-hand side of (9) is known.

The right-hand side of (9) is a convolution of T 0
S (r) against (32). By the convolution

theorem, this is invertible, and thus T 0
S (r) is identified.

B Additional Estimation Results and Discussion

B.1 Additional Details from Main Estimation Steps

The first step of our estimation regresses auction prices and reserve prices on ob-

servable features of the game. This step could have been performed instead using

only auction prices or only reserve prices as the left-hand-side variable of interest,

and our model suggests that we should obtain equivalent estimates of the predicted

51



market value Y β̂ regardless. When limiting to one or the other of these prices, we

find estimated predicted values that are highly correlated with our main estimate

(a correlation coefficient above 0.98). When we instead examine the correlation of

residual reserve prices from (11) under these alternative approaches, we find that the

residuals have a lower correlation coefficient (0.78) across methods. The results are

similar for residual auction prices (a correlation of 0.79). Because this step is fol-

lowed by a number of other estimation steps, differences in early stages of estimation

can still matter for our final results, and indeed we find that our main estimates of

(α̂B, α̂S), which are (0.64,0.62), change to (0.53,0.62) if we use only auction prices in

the observable heterogeneity step and to (0.13,0.78) if we use only reserve prices. We

choose to use the pooled sample in our regressions to include all available information.

We now examine the residuals from this regression in more detail. In the left

panel of Figure A.1 we show the probability of sale as a function of sellers’ residualized

reserve prices, R̃, estimated via a local linear regression. This probability corresponds

to 1 − P̃S (r̃), as P̃S (r̃) is the probability of the seller keeping the good. The units

for the horizontal axis are $1,000, and these numbers can be negative because they

are the result of subtracting off the market value estimate y′jβ̂; these numbers can

thus be thought of indicating where the reserve price lies relative to the market value

estimate of the car. The right panel of Figure A.1 displays, on the vertical axis,

the auction price and the final negotiated price, again from a local linear regression

against reserve prices.40 Here we observe that higher reserve prices are associated

with expected final prices that represent a higher markup over the auction price.

Figure A.1.B demonstrates that, after accounting for observable heterogeneity,

auction prices remain correlated with reserve prices, suggesting that it is important

to account for unobserved heterogeneity in our setting. We also see in panel A that

40Recall that auction prices and final prices will not necessarily coincide with one another because
of the bargaining component of the mechanism. Also, the final price exists only for observations of
the game that end in trade, whereas the auction price always exists. The regressions in each panel
use observations with reserve prices lying between the 0.01 and 0.99 quantiles of empirical reserve
prices.
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Figure A.1: Sale Probability, Auction Price, and Final Price by Reserve Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold regressed on the
secret reserve price residual. Panel B contains similar local linear regression estimates for the auction price (the high
bid from the auction) in yellow and the final price (conditional on a sale occurring) in black. Units are in terms of
$1,000, relative to the market value estimate. Uses main sample used in the body of the paper.

sellers who post higher reserve prices sell with lower probabilities, but are able to

attain higher prices conditional on sale. In particular, the difference between the

average final price conditional on sale and the average auction price is increasing in

the reserve price. The average auction price roughly measures the value of unobserved

car-level heterogeneity conditional on the reserve price.41 The fact that the difference

between the final price and the auction price is increasing in the reserve price suggests

that sellers who post high reserve prices are forgoing some probability of selling the

good in order to obtain a higher sale price, as the menu approach requires. We contrast

these results to those using observations in which the seller is a car dealership (which

we do not use in our main sample) in Appendix B.4.

41To see this, note that (i) P̃A = PA+W ; (ii) R̃ = R+W ; and (iii) PA, R,W mutually independent
together imply that:

E
[
P̃A | R̃

]
= E

[
PA +W | R+W

]
= E

[
PA | R+W

]
+ E [W | R+W ] = E

[
PA
]

+ E
[
W | R̃

]
That is, E

[
P̃A | R̃

]
is equal to E

[
W | R̃

]
, the conditional expectation of unobserved heterogeneity

W given R̃, plus the constant E
[
PA
]
.

53



In estimating the buyer value distribution, we use an auction-by-auction upper

bound on the number of bidders from our bid log sample to construct an estimate

of Pr(N = n). Here we differ from Larsen (2021), who uses instead an auction-

by-auction lower bound on N .42 Our choice is motivated by our goal to explore

how bargaining power varies with the degree of bidder competition, and the lower

bound on N offers far less variance in this dimension than the upper bound—it

nearly always equals 2 or 3. However, Larsen (2021) offers empirical evidence that,

while the underlying estimate of FB is naturally sensitive to the choice of Pr(N =

n), the estimated maximum order statistic distribution F̂
(1)
B (y) (which is what use

in constructing bargaining power estimates) implied by the estimated F̂B and by

P̂r(N = n) is relatively insensitive to this choice.43

To see whether this choice for Pr(N = n) drives our results, we estimated our

model using instead the lower bound on the number of bidders. The results are shown

in Figure A.2, analogous to those in Figure 5 in the body of the paper. We do not

show results in which we split by the number of bidders because of the lack of variance

in the N lower bound. These results differ slightly from those in the body of the paper

in that here we observe a slightly lower αS and slightly higher αB, and the confidence

intervals surrounding the two bargaining power estimates are disjoint, unlike those in

the body of the paper. In both Figures A.2 and 5, the bargaining is more efficient than

a random ultimatum game. The implications from the comparison of manufacturers

to non-manufacturers are the same in Figures A.2 and 5: manufacturer sellers have

more bargaining power than the buyers they negotiate with, and more bargaining

42As described in Larsen’s work, this lower bound, in a given auction, is the sum of the number
of unique bidders who bid online (bidder identities are observed for online bidders) plus 1 if the the
bid log records any physically present bidders (bidder identities are not recorded for these bidders)or
plus 2 if the log records two consecutive physical bids. This lower bound treats all physically present
bids as having come from a single bidder unless there are two such bids in a row, motivated by
the intuition that no bidder should bid against herself and so two consecutive physical bids must
correspond to an auction with at least two bidders physically present.

43Larsen (2021) shows that this insensitivity is not just an empirical artifact: for some choices of

Pr(N = n) (Poisson), the inferred F
(1)
B has a derivative with respect to changes in Pr(N = n) that

is identically zero, meaning that counterfactual exercises that rely on the maximum order statistic
distribution rather than on FB can be insensitive to how Pr(N = n) is specified.
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Figure A.2: Bargaining Power Estimates, Adopting Number of Bidders Lower Bound

Notes: Estimates as in Figure 5 but using lower bound on N instead of upper bound. Figure shows estimates of α̂B

(yellow), α̂S (blue), the sum α̂B + α̂S (green), and the sum αB + αS in the first-best mechanism (purple), for the
main dataset (leftmost), manufacturer and non-manufacturer sales, and a comparison sample: non-manufacturer sales
with similar average mileage and average age to manufacturer sales. To construct the first-best sum αB +αS , within
each subsample, we take first-best total surplus, and divide it between buyers and sellers such that the ratio αS/αB

is the same as in the real-world mechanism. Points represent estimates in the baseline sample, and the confidence
bars represent 95% confidence intervals from 200 nonparametric bootstrap replications.

power than non-manufacturer sellers.

We next examine the local linear regression and spline estimation steps. In Fig-

ure A.3, we show the local linear estimates of P̃S (r̃) and T̃S (r̃), as well as the

heterogeneity-corrected estimates P̂ 0
S (r) and T̂ 0

S (r). We also display intermediate

steps in this unobserved heterogeneity correction to illustrate the procedure. For

probabilities, the P̃S (r̃) function is essentially a noisy version of the P 0
S (r) function;

thus, correcting for unobserved heterogeneity will yield an estimate of P 0
S (r) that is

steeper than P̃S (r̃). This can be seen in panel A by comparing the P 0
S (r) line to

the P̃S (r̃) line. For transfers, unobserved heterogeneity necessitates two corrections

to the T̃S (r̃) function. First, we subtract from ˆ̃TS (r̃) the term Ê [W∆PS | r̃], which

represents the expected value of the unobserved heterogeneity conditional on r̃. In-

tuitively, for higher values of r̃, we will observe that trades tend to happen at higher

prices, but much of this is due to the unobserved heterogeneity term W being higher

on average rather than the transfer T 0
S (r) being higher. In panel B, comparing the
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Figure A.3: Removing Unobserved Heterogeneity from Allocation/Transfer Func-
tions

(A) Allocation function (B) Transfer function

Notes: Figure displays heterogeneity correction for allocation function (Panel A) and transfer function (Panel B).
Yellow lines display the original uncorrected estimates of P̃S(r̃) and T̃S(r̃) from local linear regressions, and green

lines display final, corrected estimates, P̂ 0
S(r) and T̂ 0

S (r). In panel B, the black line (which is very close to the blue line)

displays estimates from intermediate step subtracting off mean of unobserved heterogeneity, ˆ̃TS(r̃)− Ê
(
W∆P 0

S | r̃
)
.

In each panel, the blue line displays the fitted value for comparison. Units on the horizontal axis (and vertical axis of
panel B) are $1,000, relative to the market value estimate.

T̃S (r̃) line to the T̃S (r̃) − E [W∆PS | r̃] line shows that this correction makes the

slope of the expected transfer function significantly less negative. Secondly, T̂ 0
S (r) is

essentially a noise-corrected version of ˆ̃TS (r̃)− Ê [W∆PS | r̃], and thus the slope and

concavity of T̂ 0
S (r) are both larger in absolute value than the noisy version. The net

effect is that T̂ 0
S (r) is much less negatively sloped—and somewhat more concave—

than the original nonparametric estimate ˆ̃TS (r̃). In each panel, the blue line displays

the fitted estimates, constructed by the convolution of the estimated allocation or

transfer function against F̂W ; in each case, the estimate aligns closely with the local

linear estimates. Quantitatively, the RMSE of the fitted ˆ̃PS (r̃) function is 0.012, and

the RMSE of the ˆ̃TS(r̃)− Ê [W∆PS | r̃] function is $3.
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B.2 Evaluating the Impact of the Unobserved Heterogeneity Correction

In this section we evaluate the importance of the unobserved heterogeneity correction

for our analysis. First, recall that Figure A.1.B in Appendix B.1 demonstrates that,

after accounting for observable heterogeneity, auction prices are still highly corre-

lated with reserve prices, suggesting that it is important to account for unobserved

heterogeneity in our setting. To analyze this in more depth, we repeat our full analy-

sis but ignoring unobserved heterogeneity, treating the estimated expected allocation

and transfer functions, ˆ̃PS (r̃) , ˆ̃TS (r̃), as if they constitute the true menu. We then

proceed as in the main estimation steps, numerically differentiating this menu to es-

timate the distribution of seller values. Figure A.4 shows results analogous to those

from Figures 3.A, 4.A, and 4.B, comparing estimates accounting for and ignoring

unobserved heterogeneity.

Figure A.4.A shows how the unobserved heterogeneity correction affects the seller

menu. The menu is much steeper without the unobserved heterogeneity correction.

This is because when we observe in the data that a seller sets a higher reserve price

(and thus achieves a lower probability of sale), the average sale price is higher for two

reasons. First, the seller is higher up on the menu (P 0
S , T

0
S), attaining higher prices

in exchange for lower probabilities of sale. Second, the conditional expectation of

the unobserved heterogeneity component W is larger, and hence buyers’ bids are also

higher in dollar terms because such cars are better in a way which is observed by

sellers and buyers, but not by the econometrician. Recall that the difference between

the slopes of the yellow and black lines in Figure A.1.B (in Appendix B.1) measures

the size of this second force.

Panel B of Figure A.4 shows the implied mappings from reserve prices to sellers’

values, and panel C shows the implied distributions of seller values. Because sellers’

values are simply derivatives of the seller menu, without the unobserved heterogeneity

correction, we infer that sellers’ values are much lower: almost all sellers’ values are

negative, implying that they value the car less than the predicted market value of

57



Figure A.4: Estimation With and Without Unobserved Heterogeneity Correction

(A) Estimated Menu (B) Reserve-Value Relationship

(C) Seller Value CDF

Notes: Estimates of the seller menu and seller value distributions, with and without the unobserved heterogeneity
correction. Panel A shows the baseline menu estimate (blue) and the menu estimate using the local polynomial

estimates of allocation and transfer functions, ˆ̃PS (r̃) , ˆ̃TS (r̃), without the unobserved heterogeneity correction (green).
Panel B shows the mapping from reserve prices to seller values from the two menus, and panel C shows the CDFs of
seller values.
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the car. Without the unobserved heterogeneity correction, we estimate that sellers’

average values are -$4,307, with a nontrivial fraction of sellers having values from

-$30,000 to -$10,000, which appear to be unrealistically far below the market value

of the car. Thus, the unobserved heterogeneity correction appears to be important

to account for in order to obtain reasonable estimates of sellers’ reservation values.

B.3 Other sample splits

We now explore how agents’ bargaining power varies with characteristics of the game

or players, including the car’s age, mileage, and condition, and the seller’s experience.

Car age is measured as the difference between the year the car is offered for sale by

the auction house and the model-year of the car. Condition is based on an inspection

performed by the auction house prior to the auction. We measure a seller’s experience

as the cumulative number of times to date (at the time the seller offers a given car

for sale) that the seller has participated in the mechanism.

Separately for each of these characteristics, we split the data into terciles based on

the values of the characteristic (except condition, where we split into high and low)

and then run our estimation routine within a given subsample to obtain estimates

of bargaining power. The results are shown in Figure A.5. We find that, relative

to the full sample estimates, sellers have less bargaining power than buyers in cases

where the car is in poor condition. Buyer bargaining power has a non-monotonic

relationship with age and mileage of cars, whereas seller bargaining power tends to

increase with age and mileage. Transactions of the oldest cars exhibit high seller

bargaining power and low buyer bargaining power. Figure A.5 demonstrates that

sales with more experienced sellers do not exhibit more seller bargaining power, but

instead buyers in these transactions have more bargaining power.

In most subsamples of the data, we find that α̂S + α̂B > 1, suggesting that the

efficiency of the auction-plus-bargaining mechanism relative to the random-proposer

game is quite robust. The one exception is low-age (new) cars, where the 95% con-
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Figure A.5: Bargaining power estimates, split samples

Notes: Estimates of α̂B (yellow), α̂S (blue), the sum α̂B + α̂S (green), and the sum αB + αS in the first-best
mechanism (purple), for different data subsamples. The x-axis shows different sample splits. The leftmost set of bars
shows the full sample, and the other bars show results for different sample splits, by the car’s condition, mileage,
or age, and buy the seller’s experience. To construct the first-best sum αB + αS , within each subsample, we take
first-best total surplus, and divide it between buyers and sellers such that the ratio αS/αB is the same as in the
real-world mechanism. Points represent estimates in the baseline sample, and the confidence bars represent 95%
confidence intervals from 200 nonparametric bootstrap replications.
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fidence interval for this sum lies below 1. The confidence interval surrounding the

first-best, vertically integrated outcome overlaps that of the real-world bargaining

in most subsamples, but not for poor-condition cars, low- or medium-age cars, or

transactions with experienced sellers, where the estimates suggest some efficiency

loss relative to the fully efficient outcome.

B.4 Dealers vs. Fleet/Lease Sellers

Our study focuses on cars sold by fleet/lease sellers because we are particularly in-

terested in bargaining power between dealers and manufacturers or other large insti-

tutional sellers. In Figure A.1 we provided some descriptive evidence that the menu

approach is indeed appropriate in this setting, i.e., different secret reserve prices yield

different payoffs for sellers, and hence can serve to help separate seller types as our

method requires. In Figure A.6, we show these same descriptive results using instead

the sample of cars sold by dealers, which we do not use anywhere in the body of the

paper. Here we observe a relatively flat probability of trade and an expected final

price that represents a relatively constant markup over the auction price, regardless

of which reserve price the seller chooses. These results suggest that it would be chal-

lenging to use our menu approach to identify seller values in this sample, as this

approach exploits a tradeoff sellers face between probability of trade and transfers at

different reserve prices—a tradeoff that does not jump out from Figure A.6, unlike

Figure A.1.

Consistent with this evidence, when we estimate our model on the dealers sample,

we find that menu convexity binds and that, prior to enforcing the IR constraint, the

constraint is violated for 44% of sellers, unlike in the fleet/lease sample, where menu

convexity does not bind except at a single point and only a small fraction of sellers

(9.6%) require the IR-enforcement step of our estimation. This suggests that it would

be unwise to attempt to infer seller values based on an assumption of optimally chosen

secret reserve prices in the dealers sample. Larsen (2021) takes a different approach,
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Figure A.6: Dealer Sellers: Sale Prob., Auction Price, and Final Price by Reserve
Price

(A) Average Sale Probability (B) Expected Final and Auction Prices

Notes: Panel A displays local linear regression estimates of an indicator for whether the car sold regressed on the
secret reserve price. Panel B contains similar local linear regression estimates for the auction price (the high bid from
the auction) in yellow and the final price (conditional on a sale occurring) in black. Units are in terms of $1,000,
relative to the market value estimate. Uses dealers sample.

only partially identifying seller values by imposing a weak rationality assumption on

the seller’s choice to accept or reject the auction price in the first stage of the bar-

gaining game. The assumptions in Larsen (2021) yield bounds on the distribution of

seller valuations that are, unfortunately, too wide to be informative about bargaining

power. As highlighted above, we focus only on the fleet/lease sample in this paper.
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