Pool Math

Anthony Lee Zhang

July 4, 2024

1 Setup

You, A, are playing pool with someone better than you, R, for money. You must play an infinite number of games; you cannot exit. The rules are as follows. The loser of the last round picks a bet number, between $\$ 0$ and $\$ 100$. R can choose whether to make effort, or throw. If R makes an effort, she wins with probability $q>0.5$. If R throws, she loses for sure.

2 Solving the model.

It's always optimal for R to bet $\$ 100$ if she loses. Now, suppose A commits to betting x if he loses. R can choose to throw or not throw.

Throwing: If R throws, wins always lead to losses, and losses lead to wins with probability q . The stationary probabilities p_{W}, p_{L} over win and loss states satisfies the flow equations:

$$
\begin{gathered}
p_{W}=p_{L} q \\
p_{L}=p_{W}+p_{L}(1-q) \\
p_{W}+p_{L}=1
\end{gathered}
$$

Hence,

$$
\begin{gathered}
p_{L}(1+q)=1 \\
p_{W}=\frac{q}{1+q}, p_{L}=\frac{1}{1+q}
\end{gathered}
$$

When throwing, payoff is $\$ 100(2 q-1)$ in the L state and $-x$ in the W state, hence,

$$
\Pi_{\text {throw }}=\frac{q}{1+q}(-x)+\frac{1}{1+q}(100)(2 q-1)
$$

Not throwing: If R doesn't throw, the stationary distributions are just R's win and loss probabilities:

$$
p_{W}=q, p_{L}=1-q
$$

Note that wins are more likely under the not throwing situation, $q>\frac{q}{1+q}$ When R isn't throwing, her expected payoff is $\$ 100(2 q-1)$ in the L state and $x(2 q-1)$ in the W state, hence,

$$
\Pi_{\text {nothrow }}=q(x)(2 q-1)+(1-q) 100(2 q-1)
$$

Optimal throwing. Hence the optimal throwing decision compares:

$$
\begin{aligned}
\Pi_{\text {throw }} & >\Pi_{\text {nothrow }} \\
\frac{q}{1+q}(-x)+\frac{1}{1+q}(100)(2 q-1) & >q(x)(2 q-1)+(1-q) 100(2 q-1)
\end{aligned}
$$

As x increases, the cost of throwing increases and the gains from not throwing increase, that is,

$$
\Pi_{\text {throw }}^{\prime}(x)<0, \Pi_{\text {nothrow }}^{\prime}(x)>0
$$

In fact we can write:

$$
\begin{gathered}
\frac{1}{1+q}(100)(2 q-1)-(1-q) 100(2 q-1) \geqslant q(x)(2 q-1)-\frac{q}{1+q}(-x) \\
\left(\frac{1}{1+q}-(1-q)\right)(100)(2 q-1) \geqslant x q\left((2 q-1)+\frac{1}{1+q}\right) \\
\left(\frac{1-(1-q)(1+q)}{1+q}\right)(100)(2 q-1) \geqslant x q\left(\frac{(2 q-1)(q+1)+1}{1+q}\right) \\
\left(\frac{q^{2}}{1+q}\right)(100)(2 q-1) \geqslant x q\left(\frac{2 q^{2}-q+2 q-1+1}{1+q}\right) \\
\left(\frac{q^{2}}{1+q}\right)(100)(2 q-1) \geqslant x q\left(\frac{2 q^{2}+q}{1+q}\right)
\end{gathered}
$$

The LHS is the gains from throwing. This doesn't depend on x. It's the difference in probabilities of being in the L state, $\frac{1}{1+q}$ less $(1-q)$, times the payoff (100) $(2 q-1)$. The RHS is the losses from throwing. It's the difference between expected gain of $q x(2 q-1)$ in W states if not throwing, versus losing $\frac{q}{1+q} x$ in W states if throwing. Throwing is optimal if the gains are greater than the losses.

Nash equilibrium. The break-even x is:

$$
\begin{gathered}
x^{*}=\frac{\left(\frac{q^{2}}{1+q}\right)(100)(2 q-1)}{q\left(\frac{2 q^{2}+q}{1+q}\right)} \\
x^{*}=\frac{\left(\frac{q}{1+q}\right)(100)(2 q-1)}{\left(\frac{2 q^{2}+q}{1+q}\right)} \\
x^{*}=\frac{q(100)(2 q-1)}{2 q^{2}+q} \\
x^{*}=\frac{q(100)(2 q-1)}{q(2 q+1)}
\end{gathered}
$$

$$
x^{*}=100 \frac{2 q-1}{2 q+1}
$$

As $q \rightarrow 0.5$, the breakeven x goes to 0 , but there is always a breakeven; i.e. if the cost of throwing is low enough throwing will always be optimal. As $q \rightarrow 1$, the breakeven goes to

$$
\frac{100}{3}
$$

By minimax theorem for zero-sum games, x^{*} is the unique Bayes-Nash equilibrium of the game.

