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1 Setup

You, A, are playing pool with someone better than you, R, for money. You must play an infinite number of
games; you cannot exit. The rules are as follows. The loser of the last round picks a bet number, between $o
and $100. R can choose whether to make effort, or throw. If R makes an effort, she wins with probability

q > o.5. If R throws, she loses for sure.

2 Solving the model.

It’s always optimal for R to bet $100 if she loses. Now, suppose A commits to betting x if he loses. R can
choose to throw or not throw.
Throwing: If R throws, wins always lead to losses, and losses lead to wins with probability gq. The

stationary probabilities pyy, pr. over win and loss states satisfies the flow equations:
Pw =7PLq

PL=Pw +pL(1—q)

Pw+PpL =1
Hence,
pL1+q)=1
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When throwing, payoff is $100 (2q — 1) in the L state and —x in the W state, hence,

Mihrow = ﬁ (—x) + 1+q

(100) (2g —1)
Not throwing: If R doesn’t throw, the stationary distributions are just R’s win and loss probabilities:

Pw=4q,pPL=1—(



Note that wins are more likely under the not throwing situation, q > % When R isn’t throwing, her

expected payoff is $100 (2q — 1) in the L state and x (2q — 1) in the W state, hence,

Muothrow = q (x) (29 — 1) + (1 — q) 100 (29 — 1)

Optimal throwing. Hence the optimal throwing decision compares:

ﬂthrow > ”nothrow
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(100) (2 —1) > q (x) (2 — 1) 4 (1 — q) 100 (2q — 1)

As x increases, the cost of throwing increases and the gains from not throwing increase, that is,

T (x) < o,TT, (x) >0

throw nothrow

In fact we can write:

o (100)(2q—1)—(1—q)1oo(2q—1)>q(x)(2q—1)—1jq (—x)

(qu—(l—q)) (100) (2g —1) = xq ((Zq_1)+1iq)

(1—(1;j)q(1+q)> (100) (2q — 1) > xq ((2q—1i(f;—1)+1)
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The LHS is the gains from throwing. This doesn’t depend on x. It’s the difference in probabilities of
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being in the L state less (1 — q), times the payoff (100) (2q — 1). The RHS is the losses from throwing.

It’s the difference between expected gain of qx (2q — 1) in W states if not throwing, versus losing ;ﬁ%x in
W states if throwing. Throwing is optimal if the gains are greater than the losses.

Nash equilibrium. The break-even x is:
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x* = 100

As q — o.5, the breakeven x goes to o, but there is always a breakeven; i.e. if the cost of throwing is low

enough throwing will always be optimal. As q — 1, the breakeven goes to

100

3

By minimax theorem for zero-sum games, x* is the unique Bayes-Nash equilibrium of the game.
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