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1 Setup

You, A, are playing pool with someone better than you, R, for money. You must play an infinite number of

games; you cannot exit. The rules are as follows. The loser of the last round picks a bet number, between $0

and $100. R can choose whether to make effort, or throw. If R makes an effort, she wins with probability

q > 0.5. If R throws, she loses for sure.

2 Solving the model.

It’s always optimal for R to bet $100 if she loses. Now, suppose A commits to betting x if he loses. R can

choose to throw or not throw.

Throwing: If R throws, wins always lead to losses, and losses lead to wins with probability q. The

stationary probabilities pW ,pL over win and loss states satisfies the flow equations:

pW = pLq

pL = pW + pL (1 − q)

pW + pL = 1

Hence,

pL (1 + q) = 1

pW =
q

1 + q
,pL =

1

1 + q

When throwing, payoff is $100 (2q− 1) in the L state and −x in the W state, hence,

Πthrow =
q

1 + q
(−x) +

1

1 + q
(100) (2q− 1)

Not throwing: If R doesn’t throw, the stationary distributions are just R’s win and loss probabilities:

pW = q,pL = 1 − q
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Note that wins are more likely under the not throwing situation, q > q
1+q When R isn’t throwing, her

expected payoff is $100 (2q− 1) in the L state and x (2q− 1) in the W state, hence,

Πnothrow = q (x) (2q− 1) + (1 − q) 100 (2q− 1)

Optimal throwing. Hence the optimal throwing decision compares:

Πthrow > Πnothrow

q

1 + q
(−x) +

1

1 + q
(100) (2q− 1) > q (x) (2q− 1) + (1 − q) 100 (2q− 1)

As x increases, the cost of throwing increases and the gains from not throwing increase, that is,

Π′
throw (x) < 0,Π′

nothrow (x) > 0

In fact we can write:

1

1 + q
(100) (2q− 1) − (1 − q) 100 (2q− 1) > q (x) (2q− 1) −

q

1 + q
(−x)

(
1

1 + q
− (1 − q)

)
(100) (2q− 1) > xq

(
(2q− 1) +

1

1 + q

)
(

1 − (1 − q) (1 + q)

1 + q

)
(100) (2q− 1) > xq

(
(2q− 1) (q+ 1) + 1

1 + q

)
(

q2

1 + q

)
(100) (2q− 1) > xq

(
2q2 − q+ 2q− 1 + 1

1 + q

)
(

q2

1 + q

)
(100) (2q− 1) > xq

(
2q2 + q

1 + q

)
The LHS is the gains from throwing. This doesn’t depend on x. It’s the difference in probabilities of

being in the L state, 1

1+q less (1 − q), times the payoff (100) (2q− 1). The RHS is the losses from throwing.

It’s the difference between expected gain of qx (2q− 1) in W states if not throwing, versus losing q
1+qx in

W states if throwing. Throwing is optimal if the gains are greater than the losses.

Nash equilibrium. The break-even x is:

x∗ =

(
q2

1+q

)
(100) (2q− 1)

q
(

2q2+q
1+q

)

x∗ =

(
q

1+q

)
(100) (2q− 1)(
2q2+q

1+q

)
x∗ =

q (100) (2q− 1)

2q2 + q

x∗ =
q (100) (2q− 1)

q (2q+ 1)
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x∗ = 100

2q− 1

2q+ 1

As q → 0.5, the breakeven x goes to 0, but there is always a breakeven; i.e. if the cost of throwing is low

enough throwing will always be optimal. As q → 1, the breakeven goes to

100
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By minimax theorem for zero-sum games, x∗ is the unique Bayes-Nash equilibrium of the game.
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