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Abstract

We study uniform-price double auctions augmented with a class of subsidy schemes.

Using these subsidies, any profile of linear demand schedules can be implemented as an

equilibrium outcome. By revenue equivalence, all other mechanisms which implement

linear auction equilibria are essentially equivalent to some subsidy scheme in our class.

We show that, under a linear dependency condition on primitives, fully efficient, bud-

get balanced, and individually rational trade is possible. Thus, the welfare loss from

equilibria in uniform-price auctions without subsidies is a non-fundamental distortion,

which can be fixed with better mechanism design. However, we show that monopolist

trading platforms have incentives to reduce allocative efficiency to increase revenue,

even as the number of traders becomes large.
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1 Introduction

The uniform-price auction is a natural generalization of the second-price auction to multi-

unit settings. It is a popular model of limit-order books, and is commonly used in treasury

auctions, exchange opening and closing auctions, electricity auctions, and other settings.

It is known to be inefficient, since agents have incentives to shade their bids. In practice,

the uniform-price auction is often used in combination with various side payments, such as

make- and take- fees or subsidies. Motivated by these mechanisms in practice, this paper

studies the following questions. What are the equilibrium outcomes, which can be sustained

by uniform-price auctions with subsidy schemes? How much can subsidy schemes improve

efficiency in double auctions? Do market platforms have incentives to choose side payment

schemes which are efficiency-improving?

In this paper, we analyze uniform-price double-auctions, augmented with three kinds of

subsidies. Using these subsidies, any profile of linear bidding strategies can be implemented

as an equilibrium. We find that fully efficient and budget balanced trade is achievable if

and only if a certain parameter restriction relating the means of traders’ endowments and

their holding costs is satisfied. Special cases which satisfy this restriction are when traders

are ex-ante symmetric or when the means of their endowments are zero which is assumed

by many existing models in the literature. We find that if market operators are revenue-

maximizing and have market power, they may even have incentives to introduce subsidies

that even reduce efficiency relative to a double auction without subsidies in order to increase

revenue. That is, subsidy schemes, and related mechanisms have the potential to improve

efficiency in multi-unit trading settings, but revenue-maximizing market platforms may not

have incentives to implement efficiency-improving outcomes.

We analyze these questions in a Gaussian-quadratic multi-unit trading game. Agents are

endowed with a Gaussian inventory position in a single asset, and incur holding costs which

are quadratic in their final asset positions. Agents’ inventory positions are private informa-

tion, but agents’ holding capacities, and the distributions of agents’ inventory positions, are

common knowledge. We allow the magnitude of agents’ holding capacities, and the means

and variances of agents’ inventory positions, to vary arbitrarily across agents.

We study uniform-price double auctions, with three types of subsidies (or taxes). Quadratic

subsidies are payments proportional to the squared quantity of the asset bought or sold. Slope

subsidies depend on the slope of agents’ bids with respect to prices. Finally, linear subsidies

pay agents proportional to the net quantity of the asset that they buy or sell. These subsidies

encourage agents to either buy more or sell more, for a given inventory position.

These subsidy schemes are tractable, and can implement a large range of outcomes. First,
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we show that these subsidy schemes sustain Bayes-Nash equilibria in linear bidding strate-

gies. The existence of linear equilibria under quadratic and linear subsidies is known in the

literature: it follows because agents’ ex-post best responses to uncertainty in other agents’

types can be implemented using linear bidding strategy. We show that linear equilibria are

still optimal, in expectation, under slope subsidies. Technically, we solve for equilibria by

changing variables so that agents choose quantities as a function of the residual supply inter-

cept, and then formulating the optimal bidding problem as a calculus-of-variations problem

in this space.

In linear equilibria of double auctions, agents’ bids are characterized by three quantities:

an inventory sensitivity, a price sensitivity, and an intercept. All three components are

important. Inventory sensitivities determine how much agents pass through their inventory

shocks to the market. Price sensitivities determine how much agents absorb inventory in

the market. We show that any pattern of linear bid strategies – intercepts, and price and

inventory sensitivities for each agent – can be implemented using some subsidy scheme,

which we can solve for in closed form. Thus, using subsidy schemes, the market operator

can effectively choose any agent to be a liquidity provider or a liquidity taker, or to induce

any agent to buy or sell more of the asset on average.

The intuition for this result is that the three kinds of subsidies have different effects

on each of the three components of bids. Slope subsidies, combined with quadratic taxes,

encourage agents to provide liquidity, but not to take liquidity: price sensitivities are high,

but inventory sensitivities are low. Conversely, quadratic subsidies and slope taxes tend to

induce agents to become liquidity takers: to bid with high inventory sensitivities, and low

price sensitivities. Linear subsidies allow us to vary how much agents are buyers or sellers

on average.

Next, we show that revenue equivalence holds in our setting. Thus, any other trading

mechanism which implements identical allocation rules to our subsidy schemes is equivalent,

in terms of expected revenues and utilities, to a uniform-price auction with some subsidy

scheme. As a result, our results about subsidy schemes generalize to a broad class of trading

games. If fully efficient trade is possible under any trading game, it can be achieved using

some subsidy scheme in our class. Similarly, the subsidy scheme which maximizes the auction

platform’s revenue cannot be improved on, in expectation, by any other trading game which

implements linear bidding equilibria.

We proceed to analyze the classic question of Myerson and Satterthwaite (1983) in our

setting: can any trading mechanism achieve fully efficient, individually rational, and budget

balanced trade? We show that efficient trade is possible if and only if a linear dependency

condition holds: traders’ risk capacities must be exactly proportional to the means of their
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inventory shocks.

In the efficient mechanism, the market operator charges fixed entry fees to market par-

ticipants, and uses the revenue to subsidize more aggressive trade. When full efficiency is

feasible, it can be achieved using a continuum of different subsidy schemes. In particular,

we show that there is always an efficient subsidy schemes which is budget balanced ex-post,

so the market operator faces no revenue risk; and there is always a scheme which is ex-post

incentive compatible for bidders, so it gives agents robust bidding incentives. Thus, when

full efficiency is achievable, the market operator can use different choices of implementing

subsidies to trade off the goals of revenue risk and robust incentive provision. However, we

also show that, in any fully efficient subsidy scheme, the market operator pays out exactly as

much in subsidies as she charges in entry fees, so the market operator is left with no revenue

surplus.

Assuming agents are symmetric, we analytically characterize the revenue-maximizing

mechanism for the market operator. In the revenue-optimal mechanism, the market op-

erator imposes taxes which limit agents’ trading aggressiveness. This improves revenue

substantially, relative to the uniform-price auction, but in fact decreases agents’ expected

welfare. The welfare loss from the optimal mechanism is large. While the uniform-price

auction converges to the efficient allocation as the number of traders increases, the revenue-

maximizing mechanism destroys a constant fraction of first-best trade surplus, independent

of the number of traders.

Next, we analyze an extension of our model to a dynamic setting, and ask under what

conditions efficient dynamic budget balanced trade is possible. By dynamic budget balance,

we mean the conditional expected future cost of running the mechanism, following any

history is equal to zero. We can not offer a sharp characterization as we could in the static

model – we only provide sufficient conditions on parameters for budget balanced, incentive

compatible, and individually rational trade.

We show that fully efficient trade is actually easier to achieve in the dynamic case than the

static case: the set of parameters for which full efficiency is possible is strictly larger in the

dynamic case. The intuition is that dynamic trade relaxes traders’ participation constraints,

allowing higher participation fees to be charged. This is because if traders do not participate

in the first round of trade, they will never be allowed to participate thereafter, and thus

must bear the exposure to risk of their inventory shocks forever after. Participation is more

valuable for traders of all types because of the presence of future inventory shocks.

We explore two extensions to the model. First, we characterize the set of allocation

rules which can be implemented by our subsidy schemes. Second we numerically solve for

the revenue maximizing subsidy scheme and second-best welfare maximizing mechanism
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when traders are heterogeneous. Under a variety of parameter settings we find that subsidy

schemes can significantly improve welfare and increase auction revenue.

The main implications of our results are as follows. First, better market design can

improve trading efficiency in multi-unit auction settings. When agents’ inventory shocks

are mean-zero or ex-ante symmetric, subsidy schemes can implement fully efficiency and

budget balanced trade. It is well known in the literature that the uniform-price auction is

an inefficient mechanism, since agent have incentives to shade their bids, regardless of the

distributions of agents’ initial inventory positions. Our results imply that a large part of this

inefficiency is non-fundamental: it is a weakness of the uniform-price auction mechanism,

and can be alleviated with better trading game design. In the setting of our model, various

side payment schemes in double auctions are able to substantially improve trading efficiency.

By revenue equivalence, other mechanisms which encourage more aggressive bidding may

have similar results.

However, we also show that market platforms’ incentives are not aligned with those of

market participants. When fully efficient mechanisms are possible, market operators pay out

in subsidies as much as they collect in entry fees, so they are left with no revenue surplus.

Subsidy schemes which maximizing market operators’ revenue are inefficient: they are always

worse than uniform-price auctions without subsidies, and the efficiency loss is not alleviated

by bidder competition. Regulators should closely monitor the market design decisions of

monopolist market platforms, as the revenue-optimal trading mechanisms for monopolist

platforms can be detrimental for trading efficiency.

1.1 Literature review

This paper is related to a number of strands of literature. First, we contribute to the

literature on multi-unit double auctions with quadratic utility functions.1 In particular,

our paper contributes to the literature on the effects of heterogeneous holding capacities in

financial markets. For instance, Sannikov and Skrzypacz (2016) show that heterogeneous risk

capacities give rise to phenomena such as momentum and front-running in dynamic markets.

Malamud and Rostek (2017) shows that fragmented markets may be welfare superior to a

centralized market if risk capacities are sufficiently heterogeneous. In contrast with these

papers we focus on implementing equilibria by altering the trading mechanism. We show

heterogeneous risk capacities limit the potential to improve allocative efficiency when the

1See, for example, Kyle (1989), Vayanos (1999), Vives (2011), Rostek and Weretka (2012a), Vives (2014),
Rostek and Weretka (2015a), Manzano and Vives (2016), Sannikov and Skrzypacz (2016), Antill and Duffie
(2017), Du and Zhu (2017), Duffie and Zhu (2017), Malamud and Rostek (2017), Lee and Kyle (2018), Chen
and Duffie (2020), and Zhang (2020).
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auction operator is constrained by a budget.

Our contribution, relative to this literature, is that our subsidy schemes allow us to study

the revenue and efficiency properties of all possible linear auction equilibria. To our knowl-

edge, our full implementation result is new to the literature. Other papers have analyzed the

effects of certain subsidy schemes in double auctions; for example, quadratic subsidies are

also discussed by Manzano and Vives (2016), who study double auctions with two kinds of

bidders, studying how bidders’ information precision and holding costs affect market power.

Üslü (2019) also analyzes quadratic subsidies in a search-and-bargaining model of OTC mar-

kets. To our knowledge, we are the first to study slope subsidies, and to show that they

admit linear auction equilibria.

A closely related paper is Antill and Duffie (2017), who study a particular “workup”

mechanism which improves efficiency in dynamic double-auction settings. Their mechanism,

in a static context, is ex-post individually rational, incentive compatible, budget balanced,

and efficient; however, it requires that the platform operator observes the sum of all agents’

inventory shocks. In contrast, we show that budget-balanced efficient trade is possible with-

out assuming the aggregate inventory is observable to the platform operator.

Pycia and Woodward (2019) compare uniform-price and pay-as-bid auctions. However,

most of the results apply to the case where agents have no private information. Woodward

(2019) studies a hybrid mechanism which is a convex combination of uniform-price and

pay-as-bid auctions. Andreyanov and Sadzik (2017) study a more general class of settings:

agents’ utility functions must have a single dimension of heterogeneity and satisfy single-

crossing, but do not need to be quadratic. Agents’ values may also be interdependent. In this

setting, Andreyanov and Sadzik characterize “σ-Walrasian equilibrium” mechanisms, which

are prior-robust mechanisms that are individually rational, incentive compatible, budget

balanced, and have bounded efficiency losses, which converge to 0 as the number of agents

increase. We study a less general setting than Andreyanov and Sadzik, as our setting requires

the platform operator to know the distributions of agents’ types; however, the benefit is that

we can more sharply characterize exactly optimal and revenue-maximizing mechanisms in

our setting.

By demonstrating our full-space and revenue equivalence results, we are able to analyze

our mechanisms as if they were direct revelation mechanisms. In doing so, we bring together

the double auctions literature with the classic mechanism design literature, which studies

the possibility of budget-balanced, individually rational and incentive compatible efficient

trade.2 While the Gaussian-quadratic double auctions framework falls within the framework

2See, for example, d’Aspremont and Gérard-Varet (1979), Myerson (1981), Myerson and Satterthwaite
(1983), Cramton, Gibbons, and Klemperer (1987), Krishna and Perry (1998), McAfee (1991), Segal and
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of single-crossing mechanism design, to our knowledge, the literature has not attempted to

apply the revelation principle and mechanism design in this setting. We take a somewhat

roundabout approach: we study a specific class of subsidy and tax mechanisms, and show

that this class can implement any affine rule. By revenue equivalence, the characterization of

the subsidy/tax rules thus equivalently characterizes the entire space of incentive-compatible

mechanisms, up to agent-specific constants.

This paper is also related to a number of papers on multi-unit auctions without quadratic

utility, which argue that subsidies can encourage aggressive bidding and combat collusion.3

Our dynamic model is also related to the literature on mechanism design in dynamic settings.

See, for example, Bergemann and Välimäki (2010), Athey and Segal (2013), Pavan, Segal,

and Toikka (2014), and Skrzypacz and Toikka (2015). In contrast to these papers, we provide

an indirect implementation of the efficient allocation by a double auction with a dynamic

subsidy scheme.

1.2 Outline

The rest of this paper proceeds as follows. In section 2 we describe the setup of our baseline

static model. In section 3 we characterize linear equilibria of the model. In section 4, we prove

our full-space and revenue equivalence results. In section 5, we provide conditions for when

budget balanced efficient trade is attainable, and in section 6 we characterize mechanisms

which maximize the platform operator’s revenue. In section 7 we partially extend the results

to a dynamic setting. In section 8 we analyze various extensions of the model. In section 9

we discuss our results and conclude.

2 Baseline model

In our baseline model, trade of a single perfectly divisible asset takes place in a single period.

There are N > 2 traders, indexed by i ∈ {1, 2, ..., N}, who participate in the market. Prior

to trade, a given trader i is endowed with an initial quantity Xi ∼ N(µi, σ
2
X,i) which is her

private information. We assume that traders’ endowments, (Xi)i = (X1, ..., XN), are jointly

independent and defined on a complete probability space (Ω,F ,P). The joint distribution

over endowments is common knowledge—all traders know the means (µi)i and variances

(σ2
X,i)i of endowments.

Whinston (2011), and Segal and Whinston (2016).
3See McAdams (2002), Kremer and Nyborg (2004), LiCalzi and Pavan (2005), McAdams (2007) and

Levmore (2018).
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Agents have private values. We assume that trader i’s utility function is quasilinear in

cash transfers with a quadratic holding cost incurred on a nonzero post-trade position:

− 1

2κi
(Xi + qi)

2 + ti(q1, ..., qN).

Preferences of this form are prevalent in the market microstructure literature. See Vives

(2011), Rostek and Weretka (2012a), Du and Zhu (2012), and Sannikov and Skrzypacz

(2016). The holding cost may for example represent costs associated with regulatory capital

requirements, margin requirements, or aversion to risk. When κi is higher, trader i can

better tolerate large asset positions and so we refer to κi as trader i’s holding capacity. We

assume that traders’ holding capacities are common knowledge and allow for heterogeneity.

The trading mechanisms we analyze are uniform price double auctions, augmented with

three kinds of subsidies. Each trader i submits a demand schedule to the double auction. The

demand schedule is a measurable function qi : R2 → R specifying the quantity, qi(Xi, p), that

trader i will purchase for each realization of the market clearing price, p, given her endow-

ment, Xi. We assume that admissible demand schedules must be continuously differentiable,

strictly monotone decreasing in price, and satisfy a technical decay condition4. We denote

the set of admissible demand schedules by M. Given the submitted demand schedules, the

double auction computes the market clearing price, p∗, which satisfies∑
i∈N

qi(Xi, p
∗) = 0.

Finally, traders receive the quantities specified by their demand schedules at the per-unit

price, p∗. They also receive payments from three different types of subsidies: linear, quadratic,

and slope subsidies.

The linear subsidy pays trader i

τiqi(Xi, p
∗)

units which if τi is positive, encourages trader i to buy more of the asset. The quadratic

subsidy pays trader i

ciqi(Xi, p
∗)2

units. If ci is positive it encourages trader i to increase the magnitude of her trade. The

slope subsidy pays trader i
∂
∂p
qi(Xi, p

∗)∑
j∈N

∂
∂p
qj(Xj, p∗)

Ri

4See Appendix A for a formal statement of the condition. A more easily stated sufficient condition is
that lim|p|→∞ e−λpqi(x, p) = 0 for each x ∈ R and λ ∈ R+.
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units. If Ri is positive, the slope subsidy encourages trader i to submit a steeper demand

schedule which is more sensitive to the market clearing price. Taking into account the

subsidies, the total net transfer to trader i following trade is

ti(q1, ..., qN) = −p∗qi(Xi, p
∗) +

∂
∂p
qi(Xi, p

∗)∑
j∈N

∂
∂p
qj(Xj, p∗)

Ri +
ci
2
qi(Xi, p

∗)2 + τiqi.

Note that we allow the coefficients (Ri, ci, τi)i to differ across traders. A double auction with

subsidies is characterized by the profile of subsidy coefficients (Ri, ci, τi)i which we will refer

to as a subsidy scheme5.

3 Linear equilibria

In this section we characterize linear Bayes-Nash equilibria of the model. A linear equilibrium

is a profile of coefficients (ai, yi, wi)i which in turn defines a profile of linear demand schedules

(q1, ..., qN) where

qi(Xi, p) = ai − wiXi − yip (1)

such that each trader i maximizes her expected utility by selecting (1), assuming that all

other traders submit their equilibrium demand schedules. Formally, for each trader i, (1)

must solve her demand selection problem:

sup
f∈M

E
[
− 1

2κi
(Xi + f(Xi, p

∗
f ))

2 + ti(q1, ..., f, ..., qN)

]
(2)

where p∗f is the random variable defined by the market clearing condition

f(p∗f ) +
∑

{j∈N |j 6=i}

aj − wjXj − yjp∗f = 0. (3)

In a linear equilibrium, each trader’s bidding strategy is characterized by three numbers:

ai, yi, wi. Here, ai is the quantity demanded absent consideration for endowment or price.

The coefficient, wi determines the proportion of trader i’s endowment that will be unloaded

in the exchange irrespective of the price. That is, wi can be thought of as capturing trader

i’s demand for liquidity from the market. yi determines how responsive i’s demands are to

market prices and thus how much of other traders’ endowments trader i will absorb through

the equilibrium price. Thus yi can be thought of as a measure of how much liquidity trader

5We allow each subsidy coefficient to be either positive or negative. In the latter case the corresponding
“subsidy” is really a tax but we do not make this distinction in our terminology.
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i supplies to the market.

Given a linear equilibrium, using equations (1) and (3), we can characterize the equilib-

rium allocation, price, and residual supply curve facing each trader.

Lemma 1. In a linear equilibrium, (ai, yi, wi)i,

1. the market clearing price is

p∗ =

(∑
i∈N ai − wiXi

)∑
i∈N yi

. (4)

2. trader i’s post-trade inventory is:

Xi + qi = (1− wi)Xi + ai − yi
(
∑

j∈N aj − wjXj)∑
j∈N yj

. (5)

In order to characterize linear equilibria, it is useful to work with equilibrium residual

supply curves. From the perspective of agent i, any equilibrium induces a random residual

supply curve, qRSi (p), which specifies the number of units of the underlying asset that i is

able to trade at price p. The residual supply curve facing i is the negative of the sum of all

other agents’ demand schedules:

qRSi (p) = −
∑

{j∈N |j 6=i}

qj (Xi, p) (6)

If all agents’ bids are linear, residual supply curves will be affine, taking the form:

qRSi (p) = dip+ ηi (7)

The slope of residual supply, di, is the inverse of price impact: if agent i purchases 1 additional

unit of the asset, she changes market clearing prices by 1
di

. The residual supply intercept, ηi,

is a function of other agents’ inventory positions Xj. The following lemma characterizes the

equilibrium value of di, and the mean and variance of ηi, in terms of primitives (κi, µXi, σ
2
Xi)i

and the linear equilibrium parameters (ai, yi, wi)i.

Lemma 2. Given (κi, µXi, σ
2
Xi)i and (ai, yi, wi)i, the residual supply curve facing i satisfies:

di =
∑

{j∈N |j 6=i}

yj (8)
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Hence, trader i’s price impact is:

1

di
=

1∑
{j∈N |j 6=i} yj

(9)

The residual supply intercept ηi is:

ηi =
∑

{j∈N |j 6=i}

−aj + wjXj (10)

ηi thus has mean and variance:

µηi =
∑

{j∈N |j 6=i}

−aj + wjµXj (11)

σ2
ηi

=
∑

{j∈N |j 6=i}

w2
jσ

2
X,j. (12)

The following proposition provides necessary and sufficient conditions for a candidate

set of demand coefficients (ai, yi, wi)i to be a linear equilibrium for a given subsidy scheme

(Ri, ci, τi)i.

Proposition 1. Given a subsidy scheme, (Ri, ci, τi)i, a necessary and sufficient condition

for (ai, yi, wi)i to be a linear equilibrium is that for each i:

1

2κi
− ci

2
+

1

di
> 0 (13)

ai =
τi −

µηiRi
σ2
ηi(

1
κi

+ 1
di
− ci − Ri

σ2
ηi

) (14)

wi =
di

κi + di − κidi
(
ci + Ri

σ2
ηi

) (15)

yi =
κidi

(
1 + Ridi

σ2
ηi

)
κi + di − κidi

(
ci + Ri

σ2
ηi

) . (16)

A formal proof of Proposition 1 is contained in Appendix A.3. While it is known in

the literature that linear equilibria exist under quadratic and linear subsidies (Manzano and

Vives (2016)), to our knowledge, however, the analysis of slope subsidies is new to this paper.

Nonzero slope subsidies imply that agents’ payoffs depend on both the slope and the level
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of their own bids, so we cannot use the standard approach in the double-auctions literature,

of finding a bid curve which is point-wise optimal given price impact.

Instead, we recognize that the problem of choosing quantities as a function of the market

price, qi (p), is equivalent to selecting a quantity, q̃i (ηi), as a function of the residual supply

intercept ηi. The key reason why slope subsidies are tractable is that under this change-of-

variables the slope subsidy revenue for agent i is simply linear in q̃′i (ηi). As a result, when

solving trader i’s optimization problem using the calculus-of-variations, we find that agents’

optimal bid curves turn out to be linear whenever ηi is Gaussian as in our model.

When slope subsidies Ri are nonzero, proposition 1 implies that agents’ optimal bid

parameters (ai, yi, wi)i depend on both residual supply slopes, di, and the mean and variance

of residual supply, µηi and σ2
ηi

respectively. From Lemma 2,
(
di, µηi , σ

2
ηi

)
i

also depend on

(ai, yi, wi)i. Thus, equilibrium conditions involve a fixed point simultaneously in
(
di, µηi , σ

2
ηi

)
i

and (ai, yi, wi)i.

Intuitively, with slope subsidies, agents attempt to guess what the equilibrium price will

be, and bid elastic bid curves going through the conjectured equilibrium price, in order to

increase slope subsidy payoffs. This implies that agents’ optimal bids depend on the mean

and variance of residual supply: when residual supply variance is low, it is less costly to tilt

away from ex-post optimality to harvest slope subsidies. Thus, slope subsidies affect bidding

aggressiveness more when the variance of residual supply is low: from (15) and (16), the

effect of a small change in Ri is larger when σ2
ηi

is small.

Qualitatively, positive slope and quadratic subsidies both increase agents’ bidding aggres-

siveness, and thus can improve trading efficiency relative to equilibrium without subsidies.

Consider first the special case when all subsidy coefficients are zero. A higher price impact

or equivalently lower di leads trader i to decrease wi and thus the quantity of endowment he

unloads in the auction. It also leads trader i to decrease yi and thus provide less liquidity

to the rest of the market. Price impact is therefore a key source of inefficiency because it

inhibits the mutually beneficial redistribution of endowments across traders. This can be

most easily seen in the case of symmetric holding capacities. Inspecting equations (5) and

(15), the post-trade inventory of trader i is

κ

κ+ d
Xi +

d

κ+ d

1

N

∑
j∈N

Xj.

Clearly, in the symmetric case, the efficient allocation is one in which each trader’s post-trade

inventory is 1
N

∑
j∈N Xj. Thus the higher is price impact, the lower is d and the less efficient

is the equilibrium allocation.

As seen from equations (15) and (16), an increase in either ci or Ri leads to increases in wi
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and yi and thus reduces price impact faced by other traders and increases the aggressiveness

with which all traders unload their endowments. Though both improve efficiency, ci and Ri

do so through different primary channels. Ri compensates traders proportional to yi and

thus encourages trader i to provide more liquidity to other traders—ie. reducing the price

impact faced by other traders. Though an increase in ci also increases yi (an indirect effect),

it has the direct effect of lowering the effective price impact faced by trader i himself. This

is because price impact costs are quadratic and equal to 1
di
q2
i , so a quadratic subsidy reduces

trader i’s effective price impact by ci units.

4 Implementable allocations and revenue equivalence

Our next result shows that our subsidies allow the market operator to implement a large

class of outcomes: any profile of bid strategies, (ai, yi, wi)i, can be implemented using some

subsidy scheme, and we can solve for the implementing subsidies in closed form.

Proposition 2. Given a profile of demand coefficients, (ai, yi, wi)i such that wi > 0, yi >

0 for each i ∈ N , the unique subsidy scheme (Ri, ci, τi)i such that (ai, yi, wi)i is a linear

equilibrium satisfies

ci =
1

κi
(1− 1

wi
)− yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
+

2∑
{j∈N |j 6=i} yj

(17)

Ri =

[
yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} yj

]
σ2
ηi

(18)

τi =
ai
wiκi

+
µηiRi

σ2
ηi

(19)

for each i ∈ N , where di, µηi, and σ2
ηi

are defined in equations (8), (11), and (12).

A simple intuition for the proof of proposition 2 is the following. For any given set of

subsidies (Ri, ci, τi), solving the linear equilibrium conditions in proposition 1 is nontrivial,

since it involves finding a fixed point in (ai, yi, wi)i and the implied residual supply parameters(
di, µηi , σ

2
ηi

)
i
. However, given a target value of (ai, yi, wi)i, we can calculate the residual

supply parameters
(
di, µηi , σ

2
ηi

)
i
, and simply substititute them in to 1, and solve for the

subsidies (Ri, ci, τi) which implement this as an equilibrium. Hence, Proposition 2 implies

that it is much easier to solve the inverse problem, of calculating the subsidy schemes which

implement a given allocation, than to solve for equilibrium under a given set of subsidies.

Proposition 2 implies that our subsidies and taxes are flexible enough to implement a
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large family of bidding schemes, and thus a large family of allocation rules.6 A natural

question raised by Proposition 2 is whether there is any loss of generality in focusing on

implementation using these particular subsidies and taxes. That is, if a given allocation

rule can be implemented using these subsidy schemes, is it possible that a wholly different

trading game could implement the same allocation rule, but with higher expected revenue

for the market operator? The following proposition shows that this is not possible – revenue

equivalence holds in our setting, so any two trading games which implement the same alloca-

tion have essentially the same implications for the market operator’s revenue, and expected

utilities for all market participants.

Before stating the proposition, we first define a mechanism in our model setting. A

mechanism consists of

1. an message space Ai,

2. an allocation function, fi : A1× ...×AN → R, which maps a profile of traders’ actions

to a post trade inventory for trader i,

3. a payment function, gi : A1× ...×AN → R, which maps a profile of all traders’ actions

to a net transfer to trader i

for each trader i. A direct mechanism is a mechanism where Ai = R for each i. A mechanism

implements an equilibrium with allocation (q1, ..., qN) if there exists a BNE, a = (a1, ..., aN) ∈
A1 × ...×AN , where

(f1(a), ..., fN(a)) = (q1, ..., qN)

almost surely. By the revelation principle, if an allocation is implementable by a mechanism

with a given set of equilibrium transfers, it is implementable in a truthful reporting equilib-

rium of a direct mechanism in which traders report their private endowments with the same

transfers.

Proposition 3. Suppose two direct mechanisms M and M ’ implement the same allocation

in a truthful reporting equilibrium. Let UM
i and UM ′

i denote the equilibrium payoff of trader

i in the truthful reporting equilibrium of M and M ′ respectively. Let X = (X1, ..., XN). If

for each i, fMi , fM
′

i , gMi , gM
′

i are differentiable, then there exist constants δi ∈ R such that

E[gMi (X)|Xi] = E[gM
′

i (X)|Xi] + δi

6In subsection 8.1 below, we characterize precisely the set of allocation rules which can be implemented
in linear auction equilibria, and give examples of allocation rules which cannot be implemented.
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and

E[UM
i |Xi] = E[UM ′

i |Xi]− δi

for ω ∈ Ω.

Appendix A.6 proves some additional results about revenue equivalence; we characterize

linear equilibria which induce equivalent allocation rules, and show that a stronger version

of revenue equivalence holds: any two subsidy schemes which implement the same allocation

rule have the same expected revenues, utilities, and payments, even without agent-specific

fixed fees.

Revenue equivalence implies that any other mechanism which implements linear bid-

ding equilibria is expected-revenue- and expected-utility-equivalent to some subsidy scheme.

Hence, only mechanisms which are nonlinear, or achieve other allocation rules, can improve

upon our subsidy schemes.

5 Implementing the efficient allocation

In this section, we ask: under what conditions can a subsidy scheme implement the fully

efficient allocation?

Since utilities are quasilinear in transfers, the relevant measure of allocative efficiency is

the sum of traders’ holding costs. It turns out that at the efficient allocation each trader’s

post trade inventory is proportional to her holding capacity.

Lemma 3. At the efficient allocation, trader i’s post-trade inventory is

Xi + qi =
κi∑
j∈N κj

(
∑
j∈N

Xj).

The allocation of linear equilibrium (ai, yi, wi)i is efficient if and only if wi = 1, yi = ακi,

and ai = βκi for some α, β ∈ R and α > 0 for each i ∈ N .

By Lemma 3 the efficient allocation is the outcome of several linear equilibria. Hence,

using Proposition 2 we can derive the subsidy schemes that implement the efficient allocation.

Lemma 4. A subsidy scheme implements the efficient allocation if and only if:

Ri =

(
α− 1

α

)∑
{j∈N |j 6=i} σ

2
X,j∑

{j∈N |j 6=i} κj
(20)

ci =

(
2− α
α

)
1∑

{j∈N |j 6=i} κj
(21)
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τi = K +

(
α− 1

α

)∑
{j∈N |j 6=i} µXj∑
{j∈N |j 6=i} κj

(22)

for each each i ∈ N for some α ∈ R+ and K ∈ R.

As seen from the lemma, there are a continuum of subsidy schemes that are efficient.7

Fixing an arbitrary choice we compute the expected cost of the subsidy scheme as well as

the maximal participation fees the auction operator can charge subject to interim individual

rationality (each trader’s expected utility, conditional on her endowment, from participating

in the auction is non-negative). In general, we find that the expected cost exceeds the revenue

from participation fees whenever the traders’ holding capacities are not proportional to the

means of their endowments. Thus, by revenue equivalence, there generally does not exist a

mechanism which implements the efficient allocation subject to ex-ante budget balance and

individual rationality.

Proposition 4. There exists a mechanism (with differentiable transfer rules) that imple-

ments the efficient allocation such that it is individually rational for traders to participate

in the mechanism and is ex-ante budget balanced if and only if the vectors [κ1, ...., κN ] and

[µ1, ...., µN ] are linearly dependent.

Notice that, if budget-balanced full efficiency is not achievable by some subsidy scheme,

then revenue equivalence in proposition 3 implies that budget-balanced and IR full efficiency

cannot be achieved using any other mechanism. Hence, proposition 4 in fact characterizes

when efficient trade is possible with any mechanism. To our knowledge, this result is new

to the literature.

A special case when the linear dependency condition holds is the often-studied case when

all traders are ex-ante symmetric. In that setting, full efficiency is achievable at zero expected

cost—welfare losses due to price impact avoidance are a symptom of the double auction

mechanism and not an inherent inefficiency of the model setting and can be eliminated with

subsidies. This may at first glance seem surprising, in that it appears to violate the classic

impossibility result of Myerson and Satterthwaite (1983). The intuition behind Proposition

4 is similar to another classic result due to Cramton, Gibbons, and Klemperer (1987) who

show under certain conditions that when agents own shares of a partnership, the efficient

outcome is achievable with budget balance. This is because, in that setting, each type of

each agent earns positive expected surplus and provided this surplus is large enough, the

mechanism designer can charge participation fees to cover the cost of any subsidies. The

7In fact, efficiency can be achieved by using only quadratic subsidies by setting α to 1 or by using only
slope and linear subsidies by setting α to 2. For other inefficient allocations, we generally require all three
subsidy types for implementation.
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same logic applies to our model where, unlike in Myerson and Satterthwaite (1983), each

type of each trader can be either a buyer or seller with positive probability and thus earns a

surplus from participating in the auction. Indeed, under the linear dependency condition it

can be shown that in expectation each trader is neither a net buyer or net seller. This ensures

that the surplus is sufficiently high for the worst-off type of each trader so participation fees

can cover the cost of the efficient subsidy scheme.

Though a continuum of subsidies can implement the efficient allocation as shown in

Lemma 2 certain subsidy schemes have desirable properties. One desirable property is ex-

post budget balance where for each ω ∈ Ω the cost of operating the auction is non-positive.

A second desirable property is implementation in dominant strategies. Both of these are

achievable with subsidy schemes (but not simultaneously).

Proposition 5. Suppose that [κ1, ...., κN ] and [µ1, ...., µN ] are linearly dependent. Then

subsidy schemes with

Ri =

∑
{j∈N |j 6=i} σ

2
X,j

2
∑
{j∈N |j 6=i} κj

, ci = 0, τi = K +

∑
{j∈N |j 6=i} µXj

2
∑
{j∈N |j 6=i} κj

(23)

for some K ∈ R combined with a fixed entry fee for each trader i of

κi

(∑
{j∈N |j 6=i} σ

2
X,j

)
2
(∑

{j∈N |j 6=i} κj

)(∑n
j=1 κj

)
implement fully efficient trade with individual rationality, and ex-post budget balance. Subsidy

schemes with

Ri = 0, ci =
1∑

{j∈N |j 6=i} κj
, τi = K (24)

for some K ∈ R combined with a fixed entry fee for each trader i of:

κi

(∑
{j∈N |j 6=i} σ

2
X,j

)
2
(∑

{j∈N |j 6=i} κj

)(∑n
j=1 κj

)
implement fully efficient trade in dominant strategies with individual rationality and ex-

ante budget balance. If fully efficient trade is possible, any mechanism which achieves full

efficiency leaves the market operators with no expected revenue surplus.

In words, proposition 5 states that, when the linear dependency condition holds and

budget-balanced full efficiency is achievable, it can be achieved with only slope subsidies, in

(23), or only quadratic subsidies, in (24). Slope subsidies have the benefit that, since bid
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slopes are nonrandom in our setting, the auctioneer breaks even ex post, and thus faces no

revenue risk. Quadratic subsidies have the advantage that agents’ bid curves are ex-post

best responses, so these mechanisms are somewhat more incentive-robust for bidders. The

fact that there is a continuum of subsidies which implement the efficient allocation allows the

market operator to trade off the objectives of revenue risk and incentive robustness, while

maintaining full allocative efficiency.

By revenue equivalence, any two subsidy schemes which implement the efficient allocation

are revenue-equivalent. Moreover, Proposition 4 implies that fully efficient subsidy schemes

leave the market operator with exactly zero expected revenue: market operators charge entry

fees to market participants, and in expectation, pay out all of the fee revenue in slope or

quadratic subsidies. Naturally, revenue-maximizing market operators may not have incen-

tives to choose efficient subsidy schemes. In the following subsection, we will characterize

subsidy schemes which maximize the market operator’s expected revenue, and show that

they substantially decrease trading efficiency.

In summary, this section we have provided a sharp condition for when fully efficient trade

is implementable with ex-ante budget balance and individual rationality. A natural question

is: what is the second-best mechanism which maximizes efficiency subject to ex-ante budget

balance and individual rationality when this condition is violated? Even when considering

only our simple class of subsidy schemes answering this question seems intractable analyti-

cally. However, in an extension in Appendix B.6, we are able to solve for an upper bound on

the welfare loss of the second best mechanism. The bound is constructive and is obtained

by solving for the highest constant γ < 1 such that each trader buys a fraction γ of the

quantity purchased in an efficient equilibrium.

Beyond this analytical result, we also solve for the second best subsidy scheme numeri-

cally for a range of parameters in Subsection 8.2. Subsidy schemes are amenable to numerical

analysis because of the relatively low dimensionality of linear equilibria, which are charac-

terized by three demand coefficients for each trader. We find that in several cases (when

the linear dependency condition is violated) the second best subsidy scheme achieves a high

fraction of first best gains.

6 Revenue-maximizing subsidy schemes

In this section we ask whether a (monopolistic) auction operator with revenue maximizing

incentives would implement subsidy schemes that improve the welfare of traders. We find

that the auction operator may actually have incentives to implement subsidy schemes that

reduce welfare. For our analytical results we restrict attention to symmetric subsidies with ex-
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ante symmetric traders but our numerical analysis confirms the result for several parameters

even when allowing for asymmetry8.

The following proposition characterizes revenue-maximizing subsidy schemes and associ-

ated equilibrium welfare losses.

Proposition 6. When traders are ex-ante symmetric, revenue-maximizing symmetric sub-

sidy schemes implement linear equilibria with

wi =
1

2
.

Revenue-maximizing subsidy schemes satisfy

c+
2 (N + 2)

σ2
X (N − 1)

R =
3−N

(N − 1)κ
, τ = K (25)

for some K ∈ R. The auction’s expected revenue per trader is

(N − 1)σ2
X

8κN
. (26)

Expected gains from trade per agent is

3 (n− 1)σ2
X

8κn
(27)

Expected welfare loss per trader relative to first best welfare is

(N − 1)σ2
X

8κN
. (28)

Expected welfare loss per trader relative to the equilibrium welfare with no subsidies is

σ2
X

Nκ
[
N − 1

8
− 1

2(N − 1)
] ≥ 0. (29)

Under any revenue-maximizing subsidy scheme, the sensitivity of traders’ demand sched-

ules to their endowments is equal to 1/2 whereas in the first best equilibrium it is equal to 1

and in the equilibrium with no subsidies it is equal N − 1/N − 2. Thus, when N > 3 traders

trade even less aggressively than when there are no subsidies resulting in further welfare

losses as seen in (29). Surprisingly, in the special case of N = 3 the revenue maximizing

subsidy scheme entails no subsidies. Note also that welfare losses do not converge to zero

8Our numerical analyses suggest that symmetric subsidies are optimal when traders are ex-ante symmetric
though we have not yet attempted to prove this.
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as the number of traders tends to infinity when price impact tends to zero. This contrasts

with the equilibrium without subsidies which is asymptotically efficient. In fact, equations

(27) and (28) imply that welfare losses relative to first best are a fraction 1/4 of the total

possible gains from trade for all N . Thus auction operators may have incentives to reduce

allocative efficiency in order to increase revenue.

Proposition 6 only applies to the case of ex-ante symmetric traders. In general, it is

analytically intractable to solve for the revenue maximizing subsidy scheme when traders are

asymmetric. However we are able to numerically solve this problem for a variety of parameter

settings. We report these results in Subsection 8.2. For some asymmetric parameter values

we do find that the equilibrium allocation of the revenue maximizing subsidy scheme is

welfare superior to that of the no subsidy case, however this is not generally the case.

7 A dynamic model

In this section we extend our baseline model to study when efficient trade is achievable in a

dynamic setting.

As before, we assume that there are N > 2 traders and a single asset. Time, t, is discrete

with an infinite horizon taking values in {0, 1, 2, ...}. At each date, traders participate in

a double auction with subsidies. Trader i begins with an initial inventory of the asset,

Xi0 ∼ N(µi, σ
2
iX). Thereafter, her inventory evolves according to

Xi,t+1 = Xit + qit + εi,t+1

where qit is the amount purchased in period t, and εi,t+1 ∼ N(0, σ2
iε) is an inventory shock.

For simplicity we assume that σ2
iX = σ2

iε for each i ∈ N . We assume that all primitive random

variables are jointly independent and defined on a complete probability space (Ω,F ,P).

Analogous to the static setting, trader i’s utility is equal to

∞∑
t=0

e−rt
(
− 1

2κi
(Xit + qit)

2 + Tit

)

where Tit is the time-t net cash transfer to trader i. At each t, given her information

set consisting of her past endowments, demand schedules, and prices, trader i selects a

continuously differentiable demand schedule which is strictly monotone decreasing in the

time-t price and satisfies a technical decay condition9. In addition, we assume that admissible

9The technical decay condition is that lim|p|→∞ e−λpqit(ω, p) = 0 for each ω ∈ Ω and λ ∈ R+.
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demand submission strategies satisfy a no-Ponzi scheme condition

limt→∞e
−rtE[X2

it] = 0.

In a dynamic setting, a subsidy scheme specifies (potentially stochastic) processes of

linear, quadratic, and slope subsidies. We restrict attention to a comparatively small class

of stationary subsidy schemes defined below.

Definition 1. A stationary subsidy scheme, (ζi, ωi, ci, Ri)i consists of

1. a linear subsidy process which pays trader i

τitqit =

(
ζi
∑
j 6=i

Xj,t−1 + ωiqi,t−1

)
qit

at each t ∈ {0, 1, 2, ...} where Xj,−1 = µi.

2. a quadratic subsidy process which pays trader i

ciq
2
it

at each t ∈ {0, 1, 2, ...}.

3. a slope subsidy process which pays trader i

Ri
q′it∑
j∈N q

′
jt

at each t ∈ {0, 1, 2, ...}.

Above, the quadratic and slope subsidy coefficients, ci and Ri, remain constant over time

however the linear subsidy coefficient, τit evolves dynamically as a function of the aggregate

inventory of the other traders and the quantity purchased by trader i at time t − 1. More

precisely, τit depends on the auction operator’s inference of
∑

j 6=iXj,t−1 from the demand

schedules submitted at time t− 1. However, in any equilibrium the operator’s inference will

be correct so for notational simplicity we do not distinguish between inferred and actual

inventories. Later we will give intuition for why we assume τit evolves in this particular way.

In what follows we show that a stationary subsidy scheme can implement any stationary

allocation of the aggregate inventory. That is given arbitrary positive constants γ1,...,γN

which sum to 1, there exists a stationary subsidy scheme such that, in a linear PBE, trader
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i’s post-trade inventory is

Xit + qit = γi
∑
j∈N

Xjt

for each t. Thus, trader i absorbs a constant fraction γi of the total inventory shock,
∑

j∈N εjt

in each period. We focus on implementing allocations of this form primarily for tractability—

with these allocations, the aggregate inventory is perfectly revealed to each trader at the end

of each trading date. If this were not the case the model would run into the issue of infinite

regress of beliefs as traders must infer other traders’ inventories, other traders’ beliefs about

traders’ inventories, beliefs about beliefs and so on.

For a given (γi)i, we solve for a stationary subsidy scheme that implements a linear PBE

in which traders’ demand coefficients remain constant over time and are consistent with (γi)i.

To provide intuition behind the law of motion of τit note that in any such equilibrium, the

mean of residual supply µη,i,t facing trader i necessarily evolves over time as the aggregate

inventory is shocked. As seen from equation (14) of the static model the intercept ai of

a trader’s demand schedule depends on the mean of residual supply—to ensure that this

intercept does not evolve over time τit must evolve to offset changes in µη,i,t. This is why we

allow τit to evolve in our definition of a stationary subsidy scheme. τit evolves as a function

of qis−1 and
∑

j 6=iX
j
s−1 because these are sufficient statistics from trader i’s perspective for

inferring the mean of residual supply. The other demand coefficients, as in the static model

(see (15) and (16)), do not depend on the mean of residual supply and thus neither quadratic

nor slope subsidy coefficients need to evolve over time for there to be stationary demand

coefficients.

The following proposition characterizes the stationary subsidy schemes that implement

a given stationary allocation.

Proposition 7. Given a stationary allocation γ1, ..., γN , the stationary subsidy schemes

which implement it in a PBE are of the form

ζi =
Ri∑
j 6=i σ

2
jε

= −ωi = − 1

Θ

1

1− γi
− 1
κi

Θγi + 1− e−r

1− e−r

and

2ci =
1

(1− γi)Θ
[−2 +

1
κi

Θγi

1− e−r
]

for each i ∈ N for some Θ ∈ R+.

The fully efficient allocation corresponds to the case when γi = κi∑
j∈N κj

for each i. Using

Proposition 7, we can compute the expected cost of implementing the efficient allocation
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(allowing for participation fees subject to individual rational participation in each period10).

We can then derive a condition on model primitives such that the implementation is dynamic

budget balanced and participation is individually rational.

Definition 2. A mechanism is dynamic budget balanced if at any history, the conditional

expectation of the future cost of running the mechanism conditional on reaching that history

is zero. In the case of a stationary subsidy scheme with participation fees (Pit)it the condition

is that

E

[
∞∑
s=t

∑
i∈N

(
ciq

2
is + τiqis +Ri

yi∑
j∈N yj

)
− Pis

∣∣∣∣Ft
]
≤ 0

for all t where Ft is the auction operator’s time t information set11.

Definition 3. A mechanism is individually rational if for each trader i, at any history, trader

i’s continuation utility from participation exceeds her continuation utility from exiting the

mechanism (and thus absorbing her own endowment shocks forever after).

Proposition 8 presents a sufficient condition for dynamically budget balanced and indi-

vidually rational efficient trade to be implementable in a PBE.

Proposition 8. If

e−r

2(1− e−r)2

∑
i∈N

(− 1∑
j∈N κj

+
1

κi
)σ2

iε

> −
∑

i∈N µi
∑

j 6=i µj

2(1− e−r)
∑

j∈N κj
+
∑
i∈N

1

2(1− e−r)
κi∑

j∈N κj
∑

j 6=i κj
(
∑
j 6=i

µj)
2

then fully efficient, dynamically budget balanced, and individually rational trade is imple-

mentable in a PBE. When [κ1, ..., κN ] is proportional to [µi, ..., µj], the above inequality is

satisfied.

The proposition implies that, after a first round of trade, it is costless for the operator to

keep all traders at the efficient allocation thereafter since the efficient allocation is propor-

tional to risk capacities. Moreover in a dynamic setting, there is a larger range of parameters

for which fully efficient and budget balanced trade is achievable. The intuition behind this

result is similar to that of Skrzypacz and Toikka (2015). With multiple rounds of trade,

since traders expect future inventory shocks, participation is more attractive than in the

10We assume that if a trader does not participate in a given period she is excluded from participation
forever after.

11Ft is the σ-algebra generated by the demand schedules of all traders and all prices prior to time t.
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static model. Thus the auction operator can charge higher participation fees. Indeed the

inequality in Proposition 8 is slackened when the variances of inventory shocks are higher.

Note however, that Proposition 8 only gives a sufficient condition. Unlike in the static

model our characterization is not sharp. This is because revenue equivalence may not hold

in our dynamic setting so there may possibly exist a more complicated mechanism that can

implement the efficient allocation at a cheaper cost12.

8 Extensions and additional results

8.1 What are the restrictions that linear auction equilibria impose

on allocation rules?

Thus far, we have studied allocation rules implemented by linear equilibria of auctions,

described by tuples of coefficients {(ai, yi, wi)}. A natural question is how this restricts the

set of allocation rules we consider. In this subsection, we characterize the set of allocation

rules which can be implemented by linear auction equilibria, and present two examples of

allocation rules are not in this set.

Building on the results of section 4, we consider truthful-reporting equilibria of direct

mechanisms, which can be thought of as defining mappings from profiles of agents’ types to

amounts traded by each agent. Consider a general allocation function:

[q1 (X1 . . . Xn) , . . . qn (X1 . . . Xn)]

where qi (X1 . . . Xn) is the net amount of the asset traded by agent i, assuming that all other

agents’ types are X1 . . . Xn. Since the net amount traded by agents must be 0, we require

allocation functions to satisfy:∑
i∈N

qi (X1 . . . Xn) = 0 ∀ (X1 . . . Xn) (30)

The following lemma is a direct consequence of (5) in Lemma 1, and the full implemen-

tation result of Proposition 2.

Lemma 5. An allocation rule can be implemented by a double auction with subsidies if and

12We plan to investigate this soon.
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only if it can be represented as:
q1 (x1 . . . xn)

...

qn (x1 . . . xn)

 = k + A


x1

...

xn

 (31)

Where the elements ki of k satisfy: ∑
i∈N

ki = 0 (32)

And A has the form:

A =


a11 a12 · · ·
a21 a22 · · ·
...

...
. . .


aij = siwj ∀i, j 6= i (33)

aii = − (1− si)wi ∀i (34)

Where wi ≥ 0, si ≥ 0, and
∑

i∈N si = 1.

A more intuitive condition on allocation rules, which is implied by proposition 5, is the

following.

Lemma 6. Any allocation rule which can be implemented by a double auction with subsidies

satisfies, for distinct indices i, j, k, l:

∂qi
∂xk
∂qj
∂xk

=

∂qi
∂xl
∂qj
∂xl

(35)

Intuitively, lemma 6 implies that allocation rules implemented by auction equilibria must

satisfy a kind of partial symmetry, or anonymity, condition, given in (35): if i’s quantity

traded is more responsive than j’s quantity is to k’s endowment, than i’s quantity traded is

proportionally more responsive than j’s quantity traded to l’s endowment as well. Another

intuition for (35) is that, in auction equilibria, any given agent can choose to trade more or

less aggressively, but she must trade more aggressively with all agents; agents cannot choose

to trade preferentially more aggressively with some agents but not others.

The following two examples illustrate allocation rules which cannot be implemented by

linear double-auction equilibria.
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Example 1. Suppose n = 4, and the allocation rule is:

q1 (X1 . . . X4) =
X1 +X2

2
−X1

q2 (X1 . . . X4) =
X1 +X2

2
−X2

q3 (X1 . . . X4) =
X3 +X4

2
−X3

q4 (X1 . . . X4) =
X3 +X4

2
−X4

This allocation rule does not satisfy (35), since:

∂q1
∂X2

∂q1
∂X4

=
0.5

0
,

∂q3
∂X2

∂q3
∂X4

=
0

0.5

Intuitively, example 1 illustrates an allocation rule in which agents 1 and 2 trade with

each other, and agents 3 and 4 trade with each other, but agents 1 and 2 cannot trade with

agents 3 and 4. In financial settings, we might think of 1 and 2 as trading on a different

exchange from agents 3 and 4. This example violates condition (35), because 1’s trade

quantity responds to 2’s endowment, but not 4’s, whereas 3’s trade quantity responds to 4’s

but not 2’s, so it cannot be implemented by a double-auction equilibrium.

Example 2. Suppose n = 3, and the allocation rule is:

q1 (X1 . . . X3) = −X1

2
+
X2

2
+
X3

2

q2 (X1 . . . X3) =
X1

4
− X2

2
(36)

q3 (X1 . . . X3) =
X1

4
− X3

2

This allocation rule cannot be implemented by an auction. To see this, note that:

∂q1

∂X3

= s1w3 =
1

2

hence, w3 > 0; moreover,
∂q2

∂X1

= s2w1 =
1

4

hence, s2 > 0; thus, we must have
∂q2

∂X3

> 0
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But from (36), we have ∂q2
∂X3

= 0.

The allocation rule in example 2 can be thought of as a dealer network: agents 2 and

3 trade their endowments with 1, but never trade with each other. Condition (35) trivially

holds, since (35) requires at least 4 agents; however, this allocation rule cannot be represented

in a way that satisfies (33) and (34).

Mathematically, restricting attention to double-auction equilibria simplifies the space of

allocation rules substantially, since it reduces the dimensionality of the space of allocation

rules from order N2 to order N . Moreover, in our setting, the fully efficient allocation can

always be attained by a non-discriminatory allocation rule (though the resultant mechanism

may not satisfy budget balance). However, when budget-balanced full efficiency is not at-

tainable, in principle, second-best efficiency could potentially be increased by considering a

broader class of allocation rules than the ones we consider in this paper.

8.2 Numerical results

In a second extension, we numerically study how subsidy schemes perform for either rev-

enue maximization, or welfare maximization subject to budget balance, under a variety of

parameter settings. Proposition 2 shows that our subsidy schemes can be used to implement

any linear equilibrium, not just the efficient allocation, and derives closed-form expressions

for the implementing subsidies. Thus, given a conjectured linear equilibrium, we can derive

analytic, though complex, expressions for welfare and the platform’s total revenue; we show

these expressions in appendix D.4. This allows us to formulate the welfare and revenue max-

imization problems as analytical optimization problems. To find the second-best mechanism,

for a set of primitives, we seek the linear equilibrium which maximizes welfare, conditional

on total revenue being nonnegative:

max
{(ai,yi,wi)}

Welfare
(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
s.t. Revenue

(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
≥ 0 (37)

To find the revenue-maximizing problem, we solve:

max
{(ai,yi,wi)}

Revenue
(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
(38)

For a variety of parameter settings, we solve (37) and (38) numerically using a convex

optimization routine. Appendix D.3 describes additional details of our procedure.

Figure 1 shows our results for numerical welfare maximization, subject to budget bal-
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ance. Essentially, this corresponds to solving numerically for “second-best” subsidy schemes,

subject to budget balance. The y-axis of each plot in Figure 1 shows the ratio:

WelfareSecond best −WelfareNo subsidies
WelfareFirst best −WelfareNo subsidies

in words, the ratio of the difference between expected welfare from the second-best and ex-

pected welfare from the uniform-price auction without subsidies, and the difference between

first-best welfare and uniform-price auction welfare. That is, this is the welfare gain from the

second-best mechanism relative to the uniform-price auction without subsidies, as a fraction

of the total possible welfare gain.

To construct the left-most figure, for different values of the number of traders, N , we set

(µX1 , ..., µXN ) = (0, 0, . . . k1,−k1) , (κX1 , ..., κXN ) = (1, . . . 1) , (σ2
X1
, ..., σ2

XN
) = (1, . . . 1)

and plot the welfare gain as we vary k1 from 0 to 3. That is, we focus on how the welfare

gain depends on means of traders endowments. To construct the middle figure we set

(µX1 , ..., µXN ) = (0, 0 . . . 1,−1) , (κX1 , ..., κXN ) = (1, . . . k2, k2) , (σ2
X1
, ..., σ2

XN
) = (1, . . . 1)

and plot the welfare gain as we vary k2 from 0 to 5. This allows us to see how the welfare

gain depends on agents’ risk capacities. Finally, we set

(µX1 , ..., µXN ) = (0, 0 . . . 1,−1) , (κX1 , ..., κXN ) = (1, . . . 1) , (σ2
X1
, ..., σ2

XN
) = (1, . . . k3, k3)

where k3 ranges from 0.1 to 5 to see how the welfare gain changes with the variances of

agents endowments. For all graphs, different lines represent different values of the number

of traders. Note that under any parameter specification, the linear dependency condition

for fully efficient and budget balanced trade is violated, so fully efficient trade is impossible,

and the y-axis must be lower than 100%. However, figure 1 shows that, across all parameter

settings we tried, the second-best mechanism can achieve over 90% of the total welfare gap

between the first-best mechanism and equilibrium in a double auction with no subsidies.

This shows that, even when full efficiency is not achievable, optimal subsidies can improve

efficiency substantially, relative to the uniform-price auction with no subsidies.

In Figure 2, we show results for the revenue-maximizing mechanism. The y-axis shows

the ratio:
RevenueRev max

RevenueNo subsidies

That is, this is the ratio between the market operator’s expected revenue from the revenue-
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Figure 1: Welfare gain from the second best mechanism, as a percentage of the gap between
first-best welfare and equilibrium welfare.

Figure 2: Revenue gain from the revenue-maximizing mechanism, as a percentage of equi-
librium revenue in a double auction without subsidies but with optimal entry fees.

optimal subsidy schemes, compared to expected revenue from the uniform-price auction

without subsidies, combined with optimal entry fees. We see that the revenue-maximizing

mechanism is often able to substantially improve upon the uniform-price auction without

subsidies: in some cases, optimal revenue is many times the revenue of a uniform-price

auction without subsidies. The revenue gain is higher when the means of endowments are

more disparate. It is also higher when the variance of endowments and risk capacities are

low for the agents with extremal endowment means (in this case agents with µX equal to 1

or -1).

9 Discussion

9.1 Implications for market design

Besides the uniform-price auction, a broad variety of other mechanisms are used in multi-unit

trading settings: discriminatory-price auctions, dark pools, workup, size-discovery mech-

29



anisms,13 fragmented trade across multiple venues,14 various OTC- or networked mecha-

nisms,15 payments for order flow and make-take fees,16 and many other mechanisms. The

basic idea behind many of these trading mechanisms which aim to improve trading alloca-

tive efficiency, such as dark pools and make-take fees, is to encourage agents to trade more

aggressively, either by reducing agents’ price impact, or by directly paying agents to trade

more.

In this paper, we show that agents’ behavior in multi-unit trading games can also be

modified by simply augmenting uniform-price double auctions with a simple class of subsidy

schemes. Our subsidies are simple to describe and implement, and in the context of our

model, can implement a large space of outcomes. They have other desirable properties for

the market operator: slope subsidies have low revenue uncertainty for the market operator,

and quadratic subsidies give market participants robust incentives. An interesting direction

for future research would be to test the performance of these subsidies, and to compare their

performance to existing mechanisms, in lab experiments or in real-world settings.

Our results also suggest that monopolist market platforms may not have good incentives

to develop mechanisms which improve trading efficiency. Thus, while better market design

can improve market outcomes, free and unregulated markets – especially markets in which

some platforms have substantial market power – may not naturally converge to efficiency-

improving mechanisms without regulatory oversight.

9.2 Implications for mechanism design

In the literature on multi-unit trade, the uniform-price auction is known to be an inefficient

mechanism. Bidders in double auctions have incentives to shade their bids in order to avoid

price impact; in equilibrium, agents under-trade relative to the social optimum. At first

glance, the efficiency losses from the uniform-price auction seem analogous to the intuition

behind the Myerson-Satterthwaite impossibility theorem. Building on this intuition, a nat-

ural conjecture would be that the bid-shading effect of the double auction generalizes to a

larger set of mechanisms, and that fully efficient and budget-balanced trade is impossible,

under any mechanism, in multiple-unit settings with private information.

The results of this paper show that the story is somewhat more subtle. When a linear

dependency condition between agents’ inventory means and risk capacities is satisfied, fully

13See Duffie and Zhu (2017), Antill and Duffie (2017)
14See Budish, Lee, and Shim (2019), Degryse, De Jong, and van Kervel (2015), Gresse (2017), Pagnotta

and Philippon (2018), Chen and Duffie (2020)
15See Malamud and Rostek (2017)
16See Colliard and Foucault (2012), Foucault, Kadan, and Kandel (2013), Malinova and Park (2015),

Cardella, Hao, and Kalcheva (2015), Battalio, Corwin, and Jennings (2016), and Chao, Yao, and Ye (2019).
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efficient and budget balanced trade is possible. This condition is satisfied in a number of

settings studied in the literature, in which agents’ endowments are ex-ante symmetric. When

the linear dependency condition is not satisfied, no mechanism can achieve budget-balanced

and fully efficient trade. However, our computational results show that the standard uniform-

price auction is inefficient even in this setting: under a variety of parameter settings, the

welfare loss of the standard uniform-price auction is much larger than that of the second-best

mechanism.

Our results thus show that there are two sources of inefficiency in the uniform-price

double auction mechanism. The first is a fundamental distortion caused by agents’ private

information, analogous to Myerson-Satterthwaite impossibility, which is independent of the

trading mechanism used. The second is a distortion which results from the uniform-price

double auction mechanism, and it can be fixed with better game design.

Our approach differs somewhat from the standard mechanism design approach. In a

standard mechanism design paper, the revelation principle is applied to show that Bayes-

Nash equilibria of arbitrary games can be represented as direct revelation mechanisms, which

map profiles of agents’ types to implementable allocation rules and implementing transfers.

The analyst can then study all possible Bayes-Nash equilibria of trading games, by analyzing

the set of incentive-compatible revelation mechanisms. A direct revelation mechanism is a

mapping from profiles of agents’ types into implementable allocation rules, with associated

transfers calculated using the envelope theorem.

This paper takes a slightly different approach, but achieves a similar goal. Proposition

2 shows that any linear equilibrium can be implemented by some subsidy scheme. From

proposition 3, this implies that subsidy schemes are expected revenue- and utility-equivalent

to direct revelation mechanisms which implement linear equilibrium allocation rules. Our

subsidies can thus be thought of as a particular representation of direct revelation mech-

anisms, associated with this subset of allocation rules. Relative to using direct revelation

mechanisms, the subsidy approach also implies that any linear equilibria can be implemented

using a fairly simple class of side payments. Our subsidy schemes can still be used in set-

tings where the market operator is not completely certain about the underlying parameters,

whereas incentive-compatible direct revelation mechanisms are very sensitive to the distri-

butions of agents’ types.

Our search for efficient and revenue-maximizing mechanism is limited in a number of

ways. We restrict attention to allocation rules which can be implemented by linear double-

auction equilibria. As subsection 8.1 shows, this rules out allocation rules implemented by

some mechanisms, such as dealer networks or fragmented exchanges, which may be important
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in practice.17 An interesting direction for future work would be relax this assumption,

exploring optimal mechanism design for a broader class of allocation rules.

Our approach also rules out non-linear equilibria, and we restrict preferences to be linear-

quadratic with Gaussian uncertainty. The literature has shown that the general nonlinear

case is analytically complex. If agents’ utility functions can be arbitrary nonlinear functions,

even describing agents’ type spaces becomes quite difficult. Moreover, there is a large applied

theory literature analyzing the linear-quadratic case. We thus view the linear-quadratic case

as an important special case to study.

We assume private values and common knowledge of risk capacities. An interesting

direction for future work would be to explore how our subsidies perform in environments

with interdependent values with generalized information structures.18

17See, for example, Glode and Opp (2016), Peivandi and Vohra (2014), Yoon (2017), Babus and Parlatore
(2017), Wang (2016), Malamud and Rostek (2017), Chen and Duffie (2020)

18Some papers which analyze double auctions with interdependent values include Rostek and Weretka
(2012b), Rostek and Weretka (2015b), and Bergemann, Heumann, and Morris (2015)
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Appendix

A Proofs and Supplementary Material for Sections 3

and 4

A.1 Proof of Lemma 1

The market clearing condition is∑
i∈N

qi(p
∗) =

∑
i∈N

ai − wiXi − yip∗ = 0.

Solving for p∗ gives equation (4) and substituting p∗ into traders’ equilibrium demand sched-

ules gives (5).

A.2 Proof of Lemma 2

Combining agents’ demand schedules from (1) with the definition of residual supply in (6),

we have:

qRSi (p) = −

 ∑
{j∈N |j 6=i}

aj − wjXj − yjp

 = ηi + dip

This gives (8) and (10). Taking the mean and variance of ηi, we get (11) and (12).

A.3 Proof of Proposition 1

Proof. The proof proceeds in two steps. First, we show that the condition that {(yi, wi)}i∈N
satisfy the system of equations defined by (13), (15), and (16) is a necessary condition for a

linear equilibrium. In the second step we show that it is a sufficient condition.

Necessity: Suppose all agents other than i are bidding:

qi(p) = ai − wiXi − yipi. (39)

To solve an agent’s optimal demand submission problem, it is convenient to solve for an

agent’s optimal demand schedule as if he or she could condition the quantity on the residual

supply intercept,

ηi ≡ qi − dip (40)
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defined in (10) of lemma 2. Fixing the slope of residual supply d, any function qi (p) which is

a continuous, differentiable, and strictly decreasing linear function of prices, can be uniquely

represented as a function q̃i (ηi), which is a continuous, differentiable, and strictly increasing

function of ηi. The function q̃i (ηi) is defined as:

q̃i (ηi) = {qi (pi) : qi (pi)− dip = ηi} (41)

By assumption, qi (p) is continuously differentiable and strictly decreasing, so the function

qi (pi)− dip

is a cont. differentiable and strictly decreasing function of p, so q̃i (ηi) defined in (41) is also

cont. differentiable and strictly increasing in ηi. Also, if two qi (p) functions differ for some

p, the functions q̃i (ηi) constructed through (41) must also differ for some ηi.

Writing the agent’s bidding problem in terms of q̃i (ηi) is useful because it simplifies the

expression for slope subsidies. From (41), for any p, q̃i (ηi) satisfies:

q̃i (qi (pi)− dip) = qi (p)

Differentiating both sides with respect to p, we have:

q̃′i (qi (pi)− dip) (q′i (p)− di) = q′i (p)

q̃′i (ηi) =
q′i (p)

q′i (p)− di
.

Hence, we can write agent i’s slope subsidy as:

− ∂
∂p
qi(Xi, p

∗)

− ∂
∂p
qi(Xi, p∗) + yi

Ri =
yi

di + yi
Ri = Riq̃

′
i(ηi)

We can therefore write an agent’s optimization problem as:

maxq̃∈M

∫ ∞
−∞

[τiq̃i −
1

2κi
(Xi + q̃i)

2 − pq̃i + q̃′i(ηi)Ri −
ci
2
q̃2
i ]φ(ηi)dri (42)

where φ is the pdf of ηi; the mean and variance of ηi are characterized in lemma 2. The agent

maximizes over M, the set of strictly increasing and continuously differentiable functions,

f , of sufficiently rapid decay: limr→∞φ(ri)f(ri) = 0 and limri→−∞φ(ri)f(ri) = 0.
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First, from (40), we can write

p =
q̃i + ηi
di

So (42) becomes:

maxq̃∈M

∫ ∞
−∞

[− 1

2κi
(Xi + q̃i)

2 −
(
q̃i + ηi
di

)
q̃i + q̃′i(ηi)Ri +

ci
2
q̃2
i ]φ(ηi)dηi (43)

To solve (43), we derive the Euler-Lagrange conition. We take the variation of q̃i with an

arbitrary function h in M and substitute into the objective function:∫ ∞
−∞

[τiq̃i−
1

2κi
(Xi+ q̃i+αh)2− (

ηi + q̃i + αh

di
)(q̃i+αh)+(q̃′i+αh′)Ri+

ci
2

(q̃i+αh)2]φ(ηi)dηi.

(44)

Where α ∈ R. A necessary condition for q̃i to solve (43) is that (44), viewed as a function

of α, is maximized at α = 0. The first order condition with respect to α gives the necessary

condition, ∫ ∞
−∞

[τi −
1

κi
(Xi + q̃i)h− (

ηi + q̃i
di

)h− q̃i
di
h+ h′Ri + ciq̃ih]φ(ηi)dηi = 0.

We integrate by parts to get:∫ ∞
−∞

[τi −
1

κi
(Xi + q̃i)− (

ηi + q̃i
di

)− (
1

di
− ci)q̃i]φ(ηi) + φ′(ηi)Ridηi = 0

where we have used that h ∈ M is of sufficiently rapid decay that hφ(ri)]
∞
−∞ = 0. Since

this must hold for all h ∈ M, we derive that a necessary condition for optimality is the

Euler-Lagrange condition:

[τi −
1

κi
(Xi + q̃i)− (

ηi + q̃i
di

)− (
1

di
− ci)q̃i]φ(ri) = −φ′(ηi)Ri.

Since φ (ηi) is the normal pdf, it satisfies:

φ′(ηi) =
ηi − µη
σ2
η

φ (ηi)

Therefore we have:

[τi −
1

κi
(Xi + q̃i)− p− (

1

di
− ci)q̃i] = −ηi − µηi

ση
Ri
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Now plug in:

ηi = qi − pdi

[τi −
1

κi
(Xi + q̃i)− p− (

1

di
− ci)q̃i] =

µηi + pdi − qi
σ2
ηi

Ri

Solve for q̃:

q =

(
1

κi
+

1

di
− ci −

Ri

σ2
η

)−1(
τi −

Riµηi
σ2
ηi

− Xi

κi
− p

(
1 +

Ridi
σ2
ηi

))
(45)

Expression (45) relates the optimal quantity q to Xi, pi, and constant terms. Extracting the

coefficients on Xi and p and the constant, and simplifying somewhat, we get (14), (15) and

(16) of proposition 1.

Sufficiency: Now, we show that the Euler-Lagrange condition is a sufficient condition.

We compute the second derivative of (44) with respect to α to derive∫ ∞
−∞

(
− 1

2κi
− 1

di
+
ci
2

)
h2(ηi)φ(ηi)dηi ≤ 0

This implies that 1
2κi

+ 1
di
− ci

2
> 0 is a necessary condition that any linear equilibrium must

satisfy. If it is equal to zero, then the objective function is linear in α and optimality can

not be achieved at α = 0. Similarly, if 1
2κi

+ ci
2

+ 1
di
< 0 then the objective function is

globally convex in α and can not be maximized at α = 0 for any q̃, a necessary condition for

a demand schedule to be optimal. Put differently, any demand schedule which satisfies the

Euler-Lagrange condition can not be an optimal demand schedule, but the Euler-Lagrange

condition is a necessary condition as we argued earlier.

We now prove sufficiency of the Euler-Lagrange condition under the assumption 1
2κi

+
1
di
− ci

2
> 0. Recall that h is an arbitrary function inM. The inequality is strict as long as h

is not equal to zero on a set of positive P-measure. This implies that (44) is a strictly concave

function of α for each h ∈ M. Suppose q̃i solves the Euler-Lagrange condition. Suppose

for contradiction that there exists a k ∈ M which achieves a higher value of the objective

function than q̃i but does not satisfy the Euler-Lagrange conditions. Take h to be k − q̃i

in (44). By assumption the objective function is higher at α = 1 than at α = 0. However

since (44) is strictly concave in α, a first order condition is both necessary and sufficient for

optimality. Since q̃i satisfies the Euler-Lagrange condition by construction the first order

condition is satisfied at α = 0 which contradicts the assumption that the objective achieves

a higher value at α = 1 than at α = 0. This completes step 2.
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A.4 Example of equilibrium nonexistence

To show that equilibrium nonexistence is possible, suppose agents have equal risk capaci-

ties, κi = κ, and have arbitrary endowment means and variances. We consider symmetric

quadratic subsidies, so ci = c > 0 and Ri = 0 for all i. In equilibrium, agents’ demand slopes

will be symmetric, yi = y, and by proposition 1, they satisfy:

y =
κd

κ+ d− κdc

where d = (n− 1) y. Substituting for d and solving, we have:

y = κ
(n− 2)

(1− κc) (n− 1)

We see that y > 0, so there does not exist an equilibrium with linear downward-sloping

demand curves if c > 1
κ
.

A.5 Sufficient conditions for equilibrium existence

Proposition 9. A sufficient condition for existence of a linear equilibrium is that the fol-

lowing parameter conditions hold for each i ∈ N :

1.

Ri ≥ 0,

2.
1

κi
− ci > 0,

3.
1

κi
− ci −

Ri

σ2
ηmax,i

> 0

4.
( 1
κi
− ci − Ri

σ2
ηmax,i

)

1
κi
− ci

<
N − 1

N
.

where

σ2
ηmax,i

=
∑

{j∈N |j 6=i}

σ2
X,j(

1
κi

1
κi
− ci − Ri

σ2
ε

)2 + σ2
ε . (46)

Proof. Suppose the parameter conditions 1 through 4 in the statement of the theorem are

satisfied. To prove existence, it suffices to prove that there exists a solution to the system of
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equations defined by (15) and (16) such that 1
2κi

+ 1
di
− ci

2
> 0 holds for each i ∈ N . To start

we divide the numerator and denominator of equations (15), and (16) by κidi to derive the

expressions

wi =
1
κi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

(47)

and

yi =
1 + Ridi

σ2
ηi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

. (48)

Recall that σ2
ηi

:=
∑
{j∈N |j 6=i} σ

2
X,jw

2
j + σ2

ε . Next, we can, using the definition of di, express

yi =
1

N − 1

∑
j∈N

dj − di

Using this equation together with (48) we have

1

N − 1

∑
j∈N

dj − di =
1 + Ridi

σ2
ηi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

. (49)

Rearranging, we derive

di =

1
N−1

∑
j∈N dj −

1
1
κi

+ 1
di
−ci−

Ri
σ2ηi

1 +

Ri
σ2ηi

1
κi

+ 1
di
−ci−

Ri
σ2ηi

. (50)

Rearranging further, we have

di =

1
N−1

∑
j∈N dj[

1
κi

+ 1
di
− ci − Ri

σ2
ηi

]− 1

1
κi

+ 1
di
− ci

⇔

di[
1

κi
− ci] + 2 =

1

N − 1

∑
j∈N

dj[
1

κi
+

1

di
− ci −

Ri

σ2
ηi

]

⇔

d2
i [

1

κi
− ci] + 2di = di

1

N − 1

∑
j∈N

dj[
1

κi
− ci −

Ri

σ2
ηi

] +
1

N − 1

∑
j∈N

dj

⇔

d2
i [

1

κi
− ci] + di[2−

1

N − 1

∑
j∈N

dj(
1

κi
− ci −

Ri

σ2
ηi

)]− 1

N − 1

∑
j∈N

dj = 0. (51)
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Define b = 2− 1
N−1

∑
j∈N dj(

1
κi
− ci − Ri

σ2
ηi

). Then by the quadratic equation we have

di =
−b+

√
b2 + 4( 1

κi
− ci) 1

N−1

∑
j∈N dj

2[ 1
κi
− ci]

. (52)

As long as
∑

j∈N dj is positive, by our assumption that 1
κi
− ci > 0 the above expression is

well defined and a positive real number.

Consider the following map, Φ, which takes as input a candidate (w1, ..., wN , d1, ..., dN).

Then, using equations (47) and (52), Φ computes a new candidate (w′1, ..., w
′
N , d

′
1, ..., d

′
N) as

output. That is,

w′i =
1
κi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

(53)

and

d′i =
−b+

√
b2 + 4( 1

κi
− ci) 1

N−1

∑
j∈N dj

2[ 1
κi
− ci]

(54)

for each i ∈ N . Let MC denote the set

[0,
1
κ1

1
κ1
− c1 − R2

σ2
ε

]× [0,
1
κ2

1
κ2
− c2 − R2

σ2
ε

]× ...× [0,
1
κN

1
κN
− cN − RN

σ2
ε

]× [0, C]N

where C is a strictly positive constant in R. We argue that there exists C such that Φ maps

from MC into MC .

By the assumption that 1
κi
− ci − Ri

σ2
ε
> 0 and Ri > 0 we have

0 < w′i =
1
κi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

<
1
κi

1
κi
− ci − Ri

σ2
ε

for each i ∈ N .

Consider (54). By inspection, the right-hand side is strictly increasing in
∑

j∈N dj. For

large values of
∑

j∈N dj, b is approximately equal to − 1
N−1

∑
j∈N dj(

1
κi

+ ci− Ri
σ2
ηi

). Thus, the

right-hand side of (54) is approximately equal to the left-hand side of

1
N−1

∑
j∈N dj(

1
κi
− ci − Ri

σ2
ηi

)

1
κi
− ci

<

1
N−1

∑
j∈N dj(

1
κi
− ci − Ri

σ2
ηmax,i

)

1
κi
− ci

with the approximation becoming arbitrarily “good” as
∑

j∈N dj diverges. The inequality

uses the assumption that Ri ≥ 0. Suppose each dj ∈ [0, C] for some C finite arbitrarily
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large. Then the right hand side of the above inequality is less than

N
N−1

C( 1
κi
− ci − Ri

σ2
ηmax,i

)

1
κi
− ci

(55)

Note that the above expression is strictly less than C since it was assumed that

N
N−1

( 1
κi
− ci − Ri

σ2
ηmax,i

)

1
κi
− ci

< 1.

Thus, if we take C to be sufficiently large but finite, then the output d′i ∈ [0, C] for all

i ∈ N if the input di ∈ [0, C] for each i ∈ N . For such a C, Φ maps from MC into MC .

By the Brower’s fixed point theorem, there exists a fixed point of Φ which in turn implies

the existence of a solution to the system of equations defined by (15) and (16) (take the

fixed point of Φ and define each yi by the equation (49)). This solution constitutes a linear

equilibrium, since 1
2κi

+ 1
di
− ci

2
> 0 is satisfied.

A.6 Linear equilibria which induce equivalent allocation rules

The following lemma characterizes linear equilibria which implement identical allocation

rules.

Lemma 7. Two linear equilibria, {(ai, yi, wi)} and {(ãi, ỹi, w̃i)} implement the same al-

location if and only if wi = w̃i, and yi = αỹi for each i ∈ N for some α ∈ R, and

ãi = ai − yi∑
j∈N yj

β for some β ∈ R.

Lemma 7 implies that there are two dimensions of redundancy in linear equilibria: agents’

bids can be scaled up or down, or shifted in parallel, without changing the allocation rule

that is implemented. Thus, the space of allocation rules is (3N − 2)-dimensional. This

implies that, for general N , all three of our subsidies are needed to span the full space of

allocation rules. An immediate corollary of proposition 3 is that, if two subsidy schemes

implement the same allocation, they are revenue- and utility-equivalent.

In fact, under our subsidy schemes, a stronger version of revenue equivalence holds. The

following lemma shows that any two subsidy schemes which implement the same allocation

rule have the same expected revenues, utilities, and payments, even without agent-specific

fixed fees.
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Lemma 8. LetM andM′ be any two double auctions with subsidy schemes that implement

the same allocation. Then for each i ∈ N ,

E[tMi |Xi = xi] = E[tM
′

i |Xi = xi]

and

E[UMi |Xi = xi] = E[UM
′

i |Xi = xi]

for each xi ∈ R where tMi , tM
′

i , UMi , UM
′

i are defined analogously to those of proposition 3.

A.6.1 Proof of lemma 7

Proof. Suppose that {(ai, yi, wi)} and {(ãi, ỹi, w̃i)} both induce the same equilibrium alloca-

tion. The final inventory of agent i ∈ N is

(1− wi +
yiwi∑
j∈N yj

)Xi +
∑
j 6=i

yiwj∑
j∈N yj

Xj +
yi∑
j∈N yj

ε− yi∑
j∈N yj

∑
j∈N

aj + ai

which by assumption is equal to

(1− w̃i +
ỹiw̃i∑
j∈N ỹj

)Xi +
∑
j 6=i

ỹiw̃j∑
j∈N ỹj

Xj +
ỹi∑
j∈N ỹj

ε− yi∑
j∈N yj

∑
j∈N

ãj + ãi

for each ω ∈ Ω. Fix an arbitrary i ∈ N . For an arbitrary j ∈ N distinct from i, consider

ω ∈ Ω such that Xj 6= 0 but Xl = 0 for all l ∈ N such that l 6= j and ε = 0. Then it must

be that

wjyi∑
j∈N yj

Xj −
yi∑
j∈N yj

∑
j∈N

aj + ai =
w̃j ỹi∑
j∈N ỹj

Xj −
ỹi∑
j∈N ỹj

∑
j∈N

ãj + ãi (56)

for all ω ∈ Ω. This is only possible if both the slope of Xj and the intercept are the same

on both sides of the equality.

That is,
wjyi∑
j∈N yj

=
w̃j ỹi∑
j∈N ỹj

⇔

wj
w̃j

=

ỹi∑
j∈N ỹj

yi∑
j∈N yj

. (57)

Moreover, since j was arbitrary, this must hold for all j ∈ N such that j 6= i. However i ∈ N
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was arbitrary. Fix an arbitrary j ∈ N . Then it must be by (57)

ỹi∑
j∈N ỹj

=
βyi∑
j∈N yj

for all i ∈ N such that i 6= j for some constant β :=
wj
w̃j

. Next, we show that

ỹj∑
j∈N ỹj

=
βyj∑
j∈N yj

also holds. Fix an arbitrary k ∈ N such that k 6= j. Then we have that

ỹi∑
j∈N ỹj

=
wk
w̃k

yi∑
j∈N yj

(58)

for all i ∈ N such that i 6= k. Now take i distinct from both j and k. Then we have

ỹi∑
j∈N ỹj

=
wk
w̃k

yi∑
j∈N yj

= β
yi∑
j∈N yj

which implies that β = wk
w̃k

. Therefore by (58)

ỹj∑
j∈N ỹj

=
βyj∑
j∈N yj

as claimed. Summing over j ∈ N on both sides of the above equality implies that β = 1. By

(57) this implies wj = w̃j for all j ∈ N . It also implies that

yj =

∑
j∈N yj∑
j∈N ỹj

ỹj

which is of the form yj = αỹj for some α ∈ R.

In order for the intercepts in equation (56) to be equal for each i ∈ N it must be that

− yi∑
j∈N yj

∑
j∈N

aj + ai = − yi∑
j∈N yj

∑
j∈N

ãj + ãi

for all i ∈ N . Equivalently,

yi∑
j∈N yj

∑
j∈N

(aj − ãj) = ai − ãi

for each i ∈ N . Then the above equality is equivalent to ãi = ai− yi∑
j∈N yj

β holding for some
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arbitrary constant β.

A.6.2 Proof of lemma 8

Proof. From lemma 7, the equivalence class of subsidy schemes which implement the same

allocation is: {(ai + yi∑
j∈N yj

β, αyi, wi)} for arbitrary α and β in R. We will show that

the total expected cost of any subsidy scheme that implements an equilibrium in the class

{(ai + yi∑
j∈N yj

β, αyi, wi)}, for some α and β, does not depend on α and β. First, note that

we can write total subsidy revenue paid out to bidders by a subsidy scheme as:

∑
i∈N

(
ci
2
E[q2

i ] +
Riyi
d+ yi

+ τiE[qi])

We can decompose this into two pieces:

=

[∑
i∈N

(
ci
2

Var[qi] +
Riyi
di + yi

)]
+

[∑
i∈N

(ci
2
E[qi]

2 + τiE[qi]
)]

(59)

We will show that each piece separately does not depend on α or β.

Calculating ci
2
Var[qi] + Riyi

di+yi

Calculating ci
2
Var[qi]: From proposition 2, the quadratic subsidy which implements the

linear equilibrium {(ai + yi∑
j∈N yj

β, αyi, wi)} is:

ci =
1

κi
(1− 1

wi
)− yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
+

2∑
{j∈N |j 6=i} αyj

(60)

Also, from (5) of lemma 1, the quantity traded by an agent on the exchange in equilibrium

is

qi = −wiXi +

(
ai −

yi∑
j∈N yj

β

)
+

yi∑
j∈N yj

(∑
j∈N

−

(
aj −

yj∑
j∈N yj

β

)
+ wjXj

)
(61)

Thus, V ar (qi) is:

V ar[qi] =

(∑
{j∈N |j 6=i} yi∑

j∈N yj
wi

)2

σ2
X,i +

(
yi∑
j∈N yj

)2

σ2
ηi

(62)
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where we have used the definition of σ2
ηi

from lemma 2. Hence, we have:

c

2
V ar (qi) =∑

i∈N

1

2

(
1

κi

(
1− 1

wi

)
− αyi∑

{j∈N |j 6=i} αyj

(
1

κiwi

)
+

2∑
{j∈N |j 6=i} αyj

)
(∑{j∈N |j 6=i} αyi∑

j∈N αyj
wi

)2

σ2
X,i +

(
αyi∑
j∈N αyj

)2

σ2
ηi

 (63)

Expression (63) does not depend on β, and the the only piece which depends on α is:

∑
i∈N

1∑
{j∈N |j 6=i} αyj

(−wi +
yi∑
j∈N yj

wi

)2

σ2
X,i +

(
yi∑
j∈N yj

)2

σ2
ηi



=
1

α

∑
i∈N

∑{j∈N |j 6=i} yj(∑
j∈N yj

)2 w
2
i σ

2
X,i +

1∑
{j∈N |j 6=i} yj

(
yi∑
j∈N yj

)2σ2
ηi

 (64)

Now, we can write the left piece of (64) as:

1(∑
j∈N yj

)2

∑
i

 ∑
{j∈N |j 6=i}

yj

w2
i σ

2
X,i =

1(∑
j∈N yj

)2

∑
i

 ∑
{j∈N |j 6=i}

w2
jσ

2
Xj

 yi =
1(∑

j∈N yj

)2

∑
i

yiσ
2
ηi

(65)

To see this, note that: ∑
i∈N

n∑
j=1

yjw
2
i σ

2
Xi =

n∑
j=1

∑
i∈N

w2
i σ

2
Xiyj

And: ∑
i∈N

n∑
j=1

yjw
2
i σ

2
Xi −

∑
i∈N

 ∑
{j∈N |j 6=i}

yj

w2
i σ

2
Xi =

∑
i

yiw
2
i σ

2
Xi

n∑
j=1

∑
i∈N

w2
i σ

2
Xiyj −

n∑
j=1

∑
i 6=j

(
w2
i σ

2
Xi

)
yj =

∑
i

yiw
2
i σ

2
Xi
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Thus, using (65), (64) can be written as:

=
1

α

∑
i

 yi(∑
j∈N yj

)2σ
2
ηi

+
1∑

{j∈N |j 6=i} yj

(
yi∑
j∈N yj

)2

σ2
ηi


This further simplifies to:

=
1

α

∑
i

 yi(∑
j∈N yj

)∑
{j∈N |j 6=i} yj

σ2
ηi

(66)

Hence, ci
2

Var[qi] is equal to a constant plus (66).

Calculating Riyi
di+yi

: Now, the expected slope subsidy payment is:

∑
i

Ri
yi

di + yi

From (18) of proposition 2, we have:

Ri =

[
yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} αyj

] ∑
{j∈N |j 6=i}

wjσ
2
Xj

Thus,

∑
i

Ri
yi

di + yi
=
∑
i

[
αyi∑

{j∈N |j 6=i} αyj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} αyj

] ∑
{j∈N |j 6=i}

wjσ
2
Xj

[ αyi∑n
j=1 αyj

]
(67)

Expression (67) does not depend on β, and the only part which depends on α is:

1

α

∑
i

yi∑
yi

[
− 1∑

{j∈N |j 6=i} yj

]
σ2
ηi

(68)

(68) is exactly the negative of (66). Thus, we have shown that the sum

∑
i∈N

(
ci
2

Var[qi] +
Riyi
di + yi

)

does not depend on α and β.

Calculating
∑

i∈N
(
ci
2
E[qi]

2 + τiE[qi]
)
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Calculating ci
2
E[qi]

2: From (60) above, we have

−ci =
1

κi
(

1

wi
− 1) +

yi∑
{j∈N |j 6=i} yj

[
1

κiwi
]− 2

α
∑
{j∈N |j 6=i} yj

which does not depend on β. Thus, the piece of ci
2
E[qi]

2 which depends on α can be written

as:
1

α

∑
i∈N

1∑
{j∈N |j 6=i} yj

E[qi]
2. (69)

Calculating τiE[qi]: From (19) of proposition 2, we have:

τi =
ai + β yi∑

j yj

wiκi
+
µηiRi

σ2
ηi

Substituting for Ri, σ
2
ηi

, and µηi , we have:

τi =
ai + β yi∑

j yj

wiκi
+ ∑

{j∈N |j 6=i}

−

(
aj + β

yi∑
j yj

)
+ wjµXj

[ yi∑
{j∈N |j 6=i} yj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} αyj

]
(70)

Now, we can ignore all components of this that do not depend on β or α. This leaves us

with:

β yi∑
j yj

wiκi
+

 ∑
{j∈N |j 6=i}

−aj + wjµXj

(− 1∑
{j∈N |j 6=i} αyj

)
−

β

∑
{j∈N |j 6=i} yi∑

j yj

[
yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} αyj

]
(71)

This simplifies to:

β

wiκi

1

α
∑

j yj
+

 ∑
{j∈N |j 6=i}

−aj + wjµXj

(− 1∑
{j∈N |j 6=i} αyj

)

Now the term
β

wiκi

1

α
∑

j yj
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does not vary across agents; thus,

∑
i

(
β

wiκi

1

α
∑

j yj

)
E[qi] =

(
β

wiκi

1

α
∑

j yj

)∑
i

E[qi] = 0

since total trade quantities qi always sum to 0 across agents. Thus, we are left with the term:

1

α

∑
{j∈N |j 6=i} aj − wjµXj∑

{j∈N |j 6=i} αyj

The component of expected cost summed across agents which depends on α and β is thus:

1

α

∑
i

∑
{j∈N |j 6=i} aj − wjµXj∑

{j∈N |j 6=i} αyj
E [qi] (72)

Now, note that from the definition of residual supply in (7), we have:

p =
qi − ηi
di

=
qi −

[∑
{j∈N |j 6=i}−aj + wjXj

]
∑
{j∈N |j 6=i} yj

Hence, ∑
{j∈N |j 6=i} aj + wjXj∑

{j∈N |j 6=i} yj
= p− qi∑

{j∈N |j 6=i} yj

Taking expectations, ∑
{j∈N |j 6=i} aj + wjµXj∑

{j∈N |j 6=i} yj
= E [p]− E [qi]∑

{j∈N |j 6=i} yj

Thus, (72) is equal to
1

α

∑
i∈N

(E[p]− E[qi]∑
{j∈N |j 6=i} yj

)E[qi] (73)

Now, ∑
i∈N

E[p]E[qi] = E[p]
∑
i∈N

E[qi] = 0

so (73) simplifies further to:

=
1

α

∑
i∈N

− E[qi]
2∑

{j∈N |j 6=i} yj
.
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This is exactly the negative of (69); thus, the sum∑
i∈N

(
ci
2
E[qi]

2 + τiE[qi])

does not depend on α or β. This proves that all components of expected revenue, (59), are

independent of α and β, proving lemma 8.

A.7 Proof of Proposition 2

Proof. Fix {(ai, yi, wi)} such that wi > 0 and yi > 0 for each i ∈ N . We will demonstrate that

the subsidy-tax scheme, {(Ri, ci, τi)}, given in the statement of the proposition implements

{(ai, yi, wi)} by demonstrating that conditions in Proposition 1 are satisfied. Using equation

15, we compute

wi =
1
κi

1
κi

+ 1
di
− ci − Ri

σ2
ηi

.

Rearranging, we have
1

κi
+

1

di
− ci −

Ri

σ2
ηi

=
1

κiwi

and rearranging again we obtain,

− ci −
Ri

σ2
ηi

=
1

κi
(

1

wi
− 1)− 1∑

{j∈N |j 6=i} yj
. (74)

Next, using equation 16, we have

y∗i =

1 + Ridi
σ2
η∗
i

1
κi

+ 1
di
− ci − Ri

σ2
η∗
i

.

The following series of rearrangements give

yi[
1

κi
+

1

di
− ci −

Ri

σ2
ηi

] = 1 +
Ridi
σ2
ηi

=⇒ yi[
1

κi
+

1∑
{j∈N |j 6=i} yj

+
1

κi
(

1

wi
− 1)− 1∑

{j∈N |j 6=i} yj
] = 1 +

Ridi
σ2
ηi
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=⇒ Ri =

[
yi∑

{j∈N |j 6=i} yj
[

1

κi
+

1

κi
(

1

wi
− 1)]− 1∑

{j∈N |j 6=i} yj

]
σ2
ηi
. (75)

Substituting into (74), we obtain

− ci =
1

κi
(

1

wi
− 1) +

yi∑
{j∈N |j 6=i} yj

[
1

κi
+

1

κi
(

1

wi
− 1)]− 2∑

{j∈N |j 6=i} yj
(76)

Simplifying (75) and (76), we get (17) and (18).

Solving (14) for τi, we get:

τi = ai

(
1

κi
+

1

di
− ci −

Ri

σ2
ηi

)
+
µηiRi

σ2
ηi

Now, plugging in for Ri and ci using (17) and (18), we have:

ci +
Ri

σ2
ηi

=
1

κi
(1− 1

wi
)− yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
+

2∑
{j∈N |j 6=i} yj

+

[
yi∑

{j∈N |j 6=i} yj

(
1

κiwi

)
− 1∑

{j∈N |j 6=i} yj

]

=
1

κi
+

1

di
− 1

wiκi

Hence,
1

κi
+

1

di
− ci −

Ri

σ2
ηi

=
1

wiκi

thus, we can write τi as:

τi =
ai
wiκi

+
µηiRi

σ2
ηi

proving (19).

Finally, we check that
1

2κi
− ci

2
+

1

di
> 0

holds for all i ∈ N . Substituting in the expression for ci given in (76) yields

1

2κi
+

1

2κi
(

1

wi
−1)+

yi∑
{j∈N |j 6=i} yj

[
1

2κi
+

1

2κi
(

1

wi
−1)]− 1∑

{j∈N |j 6=i} αyj
+

1

α
∑
{j∈N |j 6=i} yj

> 0
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which is equivalent to the condition that.

1

2κi

1

wi
(1 +

yi∑
{j∈N |j 6=i} yj

) > 0

The above is satisfied if
1

2κiwi

∑
j∈N yj∑

{j∈N |j 6=i} yj
> 0.

which is the case since for each i ∈ N it was assumed that wi > 0 and yi > 0 for each i ∈ N .

A.8 Proof of Proposition 3

Proof. Fix an arbitrary direct mechanism with allocation rule {qi} and transfer rule {ti}
such that each qi and ti is differentiable. In equilibrium, truthful reporting must be incentive

compatible which implies that

Xi = argmaxX̃i − E[
1

2κi
(Xi + qi(X̃i, X−i))

2 − ti(X̃i, X−i)|Xi].

Taking a first order condition with respect to X̃i and evaluating at Xi we have

−E[
1

2κi
(Xi + qi(Xi, X−i))

∂

∂X̃i

qi(Xi, X−i)|Xi] = E[
∂

∂X̃i

ti(Xi, X−i)]

which is a necessary condition for truthful reporting to be optimal.19 By the fundamental

theorem of calculus, we have

E[ti(Xi, X−i)− ti(0, X−i)|Xi] =

∫ Xi

0

−E[
1

2κi
(x+ αi(x,X−i))α

′
i(x,X−i)|Xi]dx

which holds for each Xi ∈ R. Proposition 3 is an obvious implication of the above equation.

19Need to assume some minor technical conditions in order to bring the derivative inside the expectation
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B Proofs and Supplementary Material for Sections 5

and 6

B.1 Proof of Lemma 3

Proof. The sum of strategic traders’ holding costs is:

N∑
i=1

1

2κi
(Xi + qi)

2.

We form the Lagrangian

L =
N∑
i=1

1

2κi
(Xi + qi)

2 − λ

[
N∑
i=1

qi − ε

]
(77)

Differentiating (77) with respect to qi, we obtain:

1

κi
(Xi + qi)− λ = 0

which gives

qi =
1
κi
Xi − λ
− 1
κi

= −Xi + λκi.

Now we substitute into the market clearing condition to compute λ.

N∑
i=1

−Xi + λκi = ε

which gives

λ =

∑N
i=1Xi + ε∑N
i=1 κi

.

Thus,

Xi + qi =
κi

(∑N
j=1 Xj + ε

)
∑N

j=1 κj

as desired.

Then, using (5) of proposition 1, a linear equilibrium induces efficient allocations if and
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only if:

κi

(∑N
j=1Xj + ε

)
∑N

j=1 κj
= (1− wi)Xi + ai − yi

(
∑

j∈N aj − wjXj)∑
j∈N yi

One bid profile which implements the efficient allocation is for all agents to bid honestly,

setting:

ai = 0, wi = 1, yi = κi (78)

This collection of demand schedules clearly satisfies (B.1). Applying lemma 7, the set of all

bid profiles which implements the efficient allocation is thus described by:

ai = βκi, wi = 1, yi = ακi

where α, β ∈ R and α > 0.

B.2 Proof of Lemma 4

Proof. Lemma 3 characterizes the set of bid profiles that implements the fully efficient out-

come. Plugging in

ai = βκi, wi = 1, yi = ακi

to the implementing subsidies formulas (17) and (18) of proposition 2, we get:

ci =
1∑

{j∈N |j 6=i} κj

(
2− α
α

)

Ri =

∑
{j∈N |j 6=i} σ

2
X,j∑

{j∈N |j 6=i} κj

(
α− 1

α

)
This proves (20) and (21). For τi, plugging in for di, µηi using lemma 2, we have:

τi = βκi

(
1

κi

)
+

1∑
{j∈N |j 6=i} κj

(
α− 1

α

) ∑
{j∈N |j 6=i}

−βκj + µXj


This simplifies to:

τi =
β

α
+

(
α− 1

α

)∑
{j∈N |j 6=i} µXj∑
{j∈N |j 6=i} κj

Replacing β
α

with K, we get (eq:efftausubs).
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B.3 Proof of Proposition 4

Proof. Full efficiency is achieved by any subsidy scheme satisfying the conditions of propo-

sition 4. We will choose a particular set of conditions, setting β = 0 and α = 2, implying

that the implementing subsidies are:

ci = 0

Ri =
1

2
∑

j 6=i κj(
∑

j 6=i σ
2
X,j + σ2

ε )

τi =

∑
j 6=i µj

2
∑

j 6=i κj

This choice is convenient because it sets ci = 0. Notice that when the linear dependency

condition is satisfied τ is a constant. We will show that there do not exist participation

fees coupled with the above subsidy scheme which satisfy individual rationality. By rev-

enue equivalence, no other subsidy scheme which implements the efficient allocation can be

combined with participation fees which satisfy individual rationality, proving Proposition 4.

Notice that Ri is positive for each i and that we can charge participation fees equal to

Ri
κi∑
j∈N κj

for each i to cover the cost of the slope subsidy. We now show that it is possible to

charge additional participation fees while satisfying IR to cover the cost of the linear subsidy

if and only if the linear dependency condition in the statement of the proposition holds. This

is equivalent to showing that the inequality

∑
i∈N

minXi∈R E[− 1

2κi
(Xi + qi)

2 − pqi + τiqi|Xi]−
1

2κi
X2
i ≤ E[

∑
i∈N

τiqi] (79)

holds and that equality is achieved if and only if the linear dependency condition is satisfied.

This implies that, if the linear dependency condition is satisfied, efficient trade is possible

and leaves the market operator with 0 expected revenue; if it is not satisfied, budget-balanced

and fully efficient trade is impossible.

The left hand side is the maximum additional agent-specific participation fees that can

be charged while satisfying IR summed across agents. The right hand side is the cost of the

linear subsidy. Towards this end, we first show that the right hand side is strictly positive

when the linear dependency condition does not hold and is zero otherwise. We then show

that the left hand side is zero. We have

E[
∑
i∈N

τiqi] =
∑
i∈N

∑
j 6=i µj

2
∑

j 6=i κj
[−µi +

κi∑
j∈N κj

(
∑
j∈N

µj)]
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=
∑
i∈N

∑
j 6=i µj

2
[− µi∑

j 6=i κj
+ (

1∑
j 6=i κj

− 1∑
j∈N κj

)
∑
j∈N

µj]

=
∑
i∈N

∑
j 6=i µj

2
[

∑
j 6=i µj∑
j 6=i κj

− 1∑
j∈N κj

∑
j∈N

µj]

=
1

2

∑
i∈N

(
∑

j 6=i µj)
2∑

j 6=i κj
− 1

2
∑

j∈N κj
(N − 1)2(

∑
j∈N

µj)
2

=
1

2
[
∑
i∈N

g2
i

z2
i

−
(
∑

i∈N gi)
2∑

i∈N z
2
i

]

where gi =
∑

j 6=i µj and zi =
√∑

j 6=i κj. Thus, by the Cauchy-Schwarz inequality,

E[
∑
i∈N

τiqi] ≥ 0

with equality holding if and only if the vector of z2
i ’s and the vector of gi’s are linearly

dependent or (equivalently [µ1, ..., µN ] and [κ1, ..., κN ] being linearly dependent).

We now prove that the left hand side of (79) is zero by showing that

minXi∈R E[− 1

2κi
(Xi + qi)

2 − pqi + τiqi|Xi]−
1

2κi
X2
i = 0 (80)

for each i ∈ N . We have

E[− 1

2κi
(Xi + qi)

2 − pqi + τiqi|Xi]−
1

2κi
X2
i

⇔

E[− 1

2κi
(X2

i + 2Xiqi + q2
i ) +

Xi + qi
2κi

qi) + τiqi|Xi]−
1

2κi
X2
i

⇔

(−Xi

2κi
+ τi)E[qi|Xi]

⇔

(−Xi

2κi
+ τi)(−

∑
j 6=i κj∑
j∈N κj

Xi +
κi∑
j∈N κj

∑
j 6=i

µj)

⇔
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2κi

∑
j 6=i κj∑
j∈N κj

(−Xi

2κi
+ τi)

2

Thus, Xi = 2κiτi makes the objective in (80) equal to 0 and is the arg-min proving (80).

B.4 Proof of Lemma 5

We prove (23) and (24) separately.

Ex-post budget balance: The subsidy scheme in (23) corresponds to the efficient

subsidies of proposition (4), with α = 2. Thus, they implement the fully efficient allocation,

and by proposition 4, they are budget-balanced ex ante. Now, if [κ1, ...., κN ] and [µ1, ...., µN ]

are linearly dependent, then

τi = K +

∑
{j∈N |j 6=i} µXj

2
∑
{j∈N |j 6=i} κj

is some constant τ . The total amount paid out by the market platform in linear subsidies is

thus 0, since ∑
i

τiqi = τ
∑
i

qi = 0

Then, by the result of lemma 3, in any efficient equilibrium, we have

yi = ακi

this implies that the amount paid out to agent i in slope subsidies is:

yi∑
j yj

Ri =
κi∑
j κj

Ri =
κi

(∑
{j∈N |j 6=i} σ

2
X,j

)
2
(∑

{j∈N |j 6=i} κj

)(∑n
j=1 κj

)
If we charge agents this much in fixed entry fees, the market platform exactly breaks even,

for any realization of X1 . . . XN .

Ex-post incentive compatibility: To prove (24), we prove a more general statement:

any subsidy scheme for which Ri = 0 induces agents to bid ex-post optimally.

Suppose Ri = 0. From (42) in appendix A.3, agents’ optimization problem can be written:

maxq̃∈M

∫ ∞
−∞

[τiq̃i −
1

2κi
(Xi + q̃i)

2 −
(
q̃i + ηi
di

)
q̃i −

ci
2
q̃2
i ]φ(ηi)dri

Since there is no q̃′i term, this problem can be solved pointwise in ηi. Differentiate the
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integrand with respect to q̃i, to get:

τi −
1

κi
(Xi + q̃i)−

(
q̃i + ηi
di

)
− q̃i
di
− ciq̃i = 0

Now, since
q̃i + ηi
di

= p

this is:

τi −
1

κi
(Xi + q̃i)− p−

q̃i
di
− ciq̃i = 0

Solve for q, to get:

qi

(
ci +

1

di
+

1

κi

)
= τi −

Xi

κi
− p

Hence, the demand schedule:

qi (Xi, p) =
τi − Xi

κi
− p

ci + 1
di

+ 1
κi

is ex-post optimal, in the sense that it is optimal regardless of the realization of ηi.

B.5 Proof of proposition 6

Total expected revenue of the market platform is equal to the maximal entry fees charged

to the agent, less the total revenue paid out in subsidies.

Under symmetry, equilibria are characterized simply by w and y; we set a = 0 by setting

τ = 0. Now, by strong revenue equivalence, any way of implementing a given w produces the

same revenue. We will implement different choices of w by varying c, as this is analytically

simpler.

We will use expressions from appendix D.4 below. From lemma 11, price and quantity

are

p (X, η) =
−wX − η
d+ y

, q (X, η) =
−dwX + yη

d+ y
(81)

Equilibrium under c subsidies in the symmetric case: From proposition 1, equi-

librium conditions are:

w =
d

κ+ d− κd
(
c+ R

σ2
η

) , y =
κd
(

1 + Rd
σ2
η

)
κ+ d− κd

(
c+ R

σ2
η

)
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Setting R = 0, and using d = (n− 1) y, we have:

y =
κ (n− 1) y

κ+ (n− 1) y − κ (n− 1) yc

Solving this for y and w, we have:

y =
κ (n− 2)

(1− cκ) (n− 1)
(82)

w =
1

1− cκ

(
n− 2

n− 1

)
(83)

In order for the second-order condition (13) to hold, we need:

1

2κ
− c

2
+

1

(n− 1)κ
> 0

2n− 1

2n− 2
> cκ (84)

Entry fees: The entry fees that the platform operator can charge to each agent are

pinned down by IR constraints: the worst-off type X of each agent must have nonnegative

expected utility gains from the mechanism. The total expected utility gain of type X of an

agent is:

E [U | X] = E

[
− 1

2κ

(
2Xq + q2

)
− pq + τq +

c

2
q2 +R

y

d+ y
| X
]

(85)

In the symmetric case, with τ = 0, the agent with lowest utility will always be the agent

with X = 0. The expected utility of this agent is:

E [U | X = 0] = E

[
− 1

2κ

(
q2
)
− pq +

c

2
q2 +R

y

d+ y
| X
]

Substituting for q using (81), we have:

E

[
− 1

2κ

(
y

d+ y
η

)2

−
(
−η
d+ y

)(
yη

d+ y

)
+
c

2

(
y

d+ y
η

)2

| X

]

= σ2
η

[
− 1

2κ

(
y

d+ y

)2

+

(
y

(d+ y)2

)
+
c

2

(
y

d+ y

)2
]

(86)

Now, in any symmetric equilibrium, we have d = (n− 1) y, so (86) simplifies substantially,
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to:

=
σ2
η

n2

[
− 1

2κ
+

1

y
+
c

2

]
Substituting for σ2

η, we have entry fees:

=
n− 1

n2
w2σ2

X

[
− 1

2κ
+

1

y
+
c

2

]
(87)

Total expenditures: The total expected expenditures on subsidies, for any one agent,

is:

E

[
cq2

2

]
= E

[
c

2

(
−d
d+ y

wX +
y

d+ y
η

)2
]

=
c

2

((
d

d+ y

)2

w2σ2
X +

(
y

d+ y

)2

σ2
η

)

=
c

2

((
n− 1

n

)2

w2σ2
X +

(
1

n

)2

(n− 1)w2σ2
X

)
(88)

Total revenue: The total revenue of the platform operator is equal to the sum difference

between entry fees, (87), and the total amount paid out in subsidies, (88). This difference

is:

Totrev =
n− 1

n2
w2σ2

X

[
− 1

2κ
+

1

y
− c

2
(n− 1)

]
Now, we substitute for w2 and y in terms of c, using (82) and (83), to get:

Totrev =
(n− 2)2

n2 (n− 1)
σ2
X

(
1

1− cκ

)2 [
− 1

2κ
+

1− cκ
κ

n− 1

n− 2
− c

2
(n− 1)

]
(89)

Differentiating with respect to c, we have:

dTotrev

dc
=

(n− 2)

2n (n− 1)
σ2
X

[
3− n− ck(n− 1)

(1− ck)3

]
(90)

Setting (90) to 0 and solving for c, we get:

c∗ =
3− n

κ (n− 1)
(91)

This always satisfies (84). Moreover, (90) is negative for c > c∗, and positive for c < c∗.
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Thus, (91) describes the revenue-maximizing choice of c. Plugging this into (83), we get:

w =
1

2

To calculate optimal expected revenue per agent for the platform operator, we plug the

optimized value c∗ into the revenue expression (89), to get:

(n− 1)σ2
X

8κn

This proves (26). To find the set of all subsidy schemes which can implement the revenue-

maximizing allocation, we solve:

w =
(n− 1) y

nκ− (n− 1) y − κ (n− 1) y
(

R
(n−1)w2σ2

X

)

y =
κ (n− 1) y

(
1 + R(n−1)y

(n−1)w2σ2
X

)
κ+ (n− 1) y − κ (n− 1) y

(
c+ R

(n−1)w2σ2
X

)
with w = 0.5; this proves (25). Note that τ is arbitrary, because linear subsidies only affect

the constant term ai, shifting it uniformly upwards or downwards, which does not affect

allocations, and thus does not affect the platform’s revenue.

Welfare: To calculate welfare, note that agents’ trade quantity is:

q (X, η) =
−dwX + yη

d+ y
= −n− 1

n
wX +

1

n
η

and we have:

σ2
η = w2σ2

X =
(n− 1)σ2

X

4

Expected total holding costs for each agent are:

E

[
− 1

2κ

(
2Xq + q2

)]
Expanding, we have:

E

[
− 1

2κ

(
2X

(
−n− 1

n
wX +

1

n
η

)
+

(
−n− 1

n
wX +

1

n
η

)2
)]
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Taking the expectation and setting w = 1/2, this becomes:

1

2κ

[
3

4

n− 1

n
σ2
X

]
This proves (27). The maximal welfare gain can be found by setting w = 1 and repeating

the calculations above; we get:
1

2κ

n− 1

n
σ2
X

Hence, the expected welfare loss per agent in the revenue-maximizing mechanism, compared

to the social optimum, is:
1

2κ

[
1

4

n− 1

n
σ2
X

]
proving (28).

Welfare loss compared to equilibrium without subsidies: (29) follows from (27),

and the following lemma.

Lemma 9. In equilibrium without subsidies, expected gains from trade per agent are:

(n− 2)

2κ (n− 1)
σ2
X (92)

The expected welfare loss per agent, relative to the efficient allocation, is:

σ2
X

2κ (n− 1)n
(93)

Proof. In the absence of subsidies, the equilibrium conditions in proposition 1 reduce to:

a = 0, w =
d

κ+ d
, y =

κd

κ+ d

Given that di = (n− 1)κi, equilibrium bids are thus:

a = 0, w =
n− 2

n− 1
, y =

n− 2

n− 1
κ

expected holding costs for each agent are:

E

[
− 1

2κ

(
2X

(
−n− 1

n
wX +

1

n
η

)
+

(
−n− 1

n
wX +

1

n
η

)2
)]
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Taking expectations, with w = n−2
n−1

, we have:

(n− 2)

2κ (n− 1)
σ2
X

The welfare loss per agent, relative to the efficient allocation, is thus:

σ2
X

2κ (n− 1)n

B.6 An upper-bound for second best efficiency loss

For general parameter values, when efficiency is not obtainable, finding the optimal subsidy

scheme subject to expected budget balance is analytically intractable. Nonetheless, we are

able to provide a lower bound on the efficiency loss which becomes tight as risk capacities

become proportional to the means of traders’ endowments. The lower bound is obtained

constructively—for each γ ∈ R, we solve for the subsidy scheme such that each trader i

purchases γq∗i where q∗i is the efficient trade quantity:

q∗i = −Xi +
κi∑
j∈N κj

∑
j∈N

Xj.

We next solve for the γ such that allocative efficiency is highest (sum of traders’ holding

costs is lowest) subject to expected budget balance.

To start, we solve for a set of demand schedule coefficients such that trader i purchases

γq∗i units. By revenue equivalence, it suffices to consider implementing any choice of demand

schedule coefficients in this set. It is straightforward to see that coefficients of the form

wi = γ,

yi =
κi∑
j∈N κj

Θ,

and

ai = 0

where Θ is an arbitrary positive constant work. For simplicity, we set Θ = 1. By an earlier
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Proposition (fill in), the implementing subsidy scheme sets

ci = − 1

κiγi
+

1

κi
− 1∑

j 6=i κj

1

γi
+

2
∑

j∈N κj∑
j 6=i κj

= −
∑

j∈N κj

κi
∑

j 6=i κj

1

γ
+

1

κi
+

2
∑

j∈N κj∑
j 6=i κj

(94)

and
Ri

σ2
ηi

=
1∑

j 6=i κjγ
−
∑

j∈N κj∑
j 6=i κj

. (95)

and

τi =

∑
j 6=i µj∑
j 6=i κj

[1− γ
∑
j∈N

κj]. (96)

Given this subsidy scheme, we seek to compute the expected cost of operation. Since

we can always charge each trader i the cost of the slope subsidies up front as participation

fees, this entails computing the maximum chargeable participation fees net of slope-subsidy

costs, the cost of the quadratic subsidies, and the cost of the linear subsidies.

To compute maximum participation fees net of the cost of the linear subsidies we solve

minXiE[− 1

2κi
(Xi + qi)

2 − pqi +
c

2
q2
i + τiqi|Xi] +

1

2κi
X2
i

⇔

minXiE[− 1

2κi
(X2

i + 2Xiqi + q2
i )− pqi +

c

2
q2
i + τiqi|Xi] +

1

2κi
X2
i

Recall that

qi = −γXi −
κi∑
j∈N κj

p

⇔

p = −qi + γXi
κi∑
j∈N κj

.

Then we have

minXiE[− 1

2κi
(X2

i + 2Xiqi + q2
i ) +

∑
j∈N κj

κi
(γXi + qi)qi +

ci
2
q2
i + τiqi|Xi] +

1

2κi
X2
i

⇔

minXiE[− 1

2κi
(2Xiqi + q2

i ) +

∑
j∈N κj

κi
(γXi + qi)qi +

ci
2
q2
i + τiqi|Xi]

To compute the relevant moments in the objective, we recall that
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E[qi|Xi] = γ[−
∑

j 6=i κj∑
j∈N κj

Xi +
κi∑
j∈N κj

∑
j 6=i

µj].

and

E[q2
i |Xi] = γ2(−

∑
j 6=i κj∑
j∈N κj

Xi +
κi∑
j∈N κj

∑
j 6=i

µj)
2 + γ2(

κi∑
j∈N κj

)2
∑
j 6=i

σ2
jε.

Substituting into the objective and taking a first order condition, we find that the mini-

mizing Xi is

Xmin =
κi
∑

j 6=i µj∑
j 6=i κj

.

For this value of Xi

E[qi|Xi = Xmin] = 0

and

E[q2
i |Xi = Xmin] = γ2(

κi∑
j∈N κj

)2
∑
j 6=i

σ2
jε.

Substituting these moments into the objective, we find that the minimum participation

fee which can be charged is[
1

κi
− 1

κi
∑

j 6=i κj

1

γ
+

1∑
j 6=i κj

]
γ2 κ2

i∑
j∈N κj

∑
j 6=i

σ2
jε

⇔[ ∑
j∈N κj

κi
∑

j 6=i κj
− 1

κi
∑

j 6=i κj

1

γ

]
γ2 κ2

i∑
j∈N κj

∑
j 6=i

σ2
jε

⇔

γ2 κi∑
j 6=i κj

∑
j 6=i

σ2
jε − γ

κi∑
j 6=i κj

∑
j∈N κj

∑
j 6=i

σ2
jε.

We now compute the cost of the quadratic subsidy and linear subsidy. We have

E[
ci
2
q2
i ]

= [−
∑

j∈N κj

2κi
∑

j 6=i κj

1

γ
+

1

2κi
+

∑
j∈N κj∑
j 6=i κj

][γ2(−
∑

j 6=i κj∑
j∈N κj

µi+
κi∑
j∈N κj

∑
j 6=i

µj)
2+γ2(

κi∑
j∈N κj

)2
∑
j 6=i

σ2
jε]
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and

E[τiqi] =

∑
j 6=i µj∑
j 6=i κj

[1− γ
∑
j∈N

κj]γ[−
∑

j 6=i κj∑
j∈N κj

µi +
κi∑
j∈N κj

∑
j 6=i

µj].

Thus the total cost of unit and quadratic subsidies is

E[
ci
2
q2
i ] + E[τiqi] = Aγ +Bγ2

where

A = [−
∑

j∈N κj

2κi
∑

j 6=i κj
][(−

∑
j 6=i κj∑
j∈N κj

µi +
κi∑
j∈N κj

∑
j 6=i

µj)
2 + (

κi∑
j∈N κj

)2
∑
j 6=i

σ2
jε]

+

∑
j 6=i µj∑
j 6=i κj

[−
∑

j 6=i κj∑
j∈N κj

µi +
κi∑
j∈N κj

∑
j 6=i

µj]

and

B = −
∑

j 6=i µj∑
j 6=i κj

[−
∑
j 6=i

κjµi + κi
∑
j 6=i

µj]

+[
1

2κi
+

∑
j∈N κj∑
j 6=i κj

][(−
∑

j 6=i κj∑
j∈N κj

µi +
κi∑
j∈N κj

∑
j 6=i

µj)
2 + (

κi∑
j∈N κj

)2
∑
j 6=i

σ2
jε]

Next, we observe that the γ which is most efficient must exactly budget the balance.

This is because the expected sum of holding costs has a single trough as a function of γ—in

fact is quadratic in γ:

Lemma 10. The expected sum of holding cost as a function of γ is single troughed since it

is a quadratic function of γ.

Proof. The expected sum of holding costs is

E[
∑
i∈N

κi[(1− γ)Xi + γ
κi∑
j∈N κj

∑
j∈N

Xj]
2].

Thus if the most efficient γ did not satisfy budget balance, it could either be increased

or decreased to improve efficiency while still balancing the budget which is a contradiction.

The budget balance condition is∑
i∈N

Ai + γ
∑
i∈N

Bi = γ
∑
i∈N

κi∑
j 6=i κj

∑
j 6=i

σ2
jε −

∑
i∈N

κi∑
j 6=i κj

∑
j∈N κj

∑
j 6=i

σ2
jε
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Note to arrive at the above condition we divided γ from both sides so γ = 0 was also always

a valid solution which is intuitively obvious.

Solving for the γ for which the above holds gives

γ∗ =

∑
i∈N Ai +

∑
i∈N

κi∑
j 6=i κj

∑
j∈N κj

∑
j 6=i σ

2
jε∑

i∈N
κi∑
j 6=i κj

∑
j 6=i σ

2
jε −

∑
i∈N Bi

.

Thus the most efficient γ is either γ∗ or 0. We therefore have a bound on inefficiency

given by substituting γ∗ into the expected sum of holding costs.

C Proofs and Supplementary Material for Section 7

C.1 Proof of Proposition 7

Proof. By inspection, a linear equilibrium with ai = 0, yi = γiΘ and wi = 1 achieves the

stationary allocation (γi)i. Thus, it suffices to compute the stationary subsidy scheme that

implements this equilibrium. To do this we consider trader i’s optimal demand submis-

sion problem and derive conditions on the stationary subsidy scheme such that there is no

profitable one shot deviation from the equilibrium strategy of submitting

qit(pt) = −Xi − γiΘpt

in each period.

We observe that a one shot deviation in period t will have no effects on the expected

flow utility in period t + 1 and onward. This is because trader i reverts to the equilibrium

strategy in period t + 1 so her post trade inventory in period t + 1 will be γi
∑

j∈N Xj,t+1.

Thus in period t+ 2

qi,t+2 = γi(
∑
j∈N

Xj
t+2 −

∑
j∈N

Xj
t+1) = γi

∑
j∈N

εj,t+2

regardless of the deviation. Thus her expected transfers from the time t + 2 linear subsidy

is zero since qit+2 is in expectation zero and conditionally independent of τt. The expected

transfers from the slope and quadratic subsidy are also unaffected by the deviation since qit+2

is unaffected.

In light of this it suffices to show there is no one shot deviation in period t which achieves

a higher expected value of the sum of flow utilities in periods t and t + 1 than under the

69



equilibrium strategy. That is, it suffices to consider the objective

Et[
1∑
s=0

e−rs(− 1

2κi
(Xi,t+s + qi,t+s)

2 − pt+sqi,t+s + ciq
2
i,t+s + τ isqi,t+s +Ri

q′i,t+s∑
j∈N q

′
j,t+s

)]. (97)

The subscript t means that the expectation is conditional on the past history of prices

and quantities traded by trader i and on the residual supply in period t. In order to derive an

optimality condition for qit, we will transform the objective function to look like the objective

function in the static case (but with different coefficients) in order to apply Proposition 1.

This entails rewriting the flow utility in period t+ 1 in terms of qit, p
i
t and X i

t .

Note that

Ri
(qi,t+1)′∑
j∈N(qj,t+1)′

= Riγi

and

(X i
t+1 + qit+1) = γi

∑
j∈N

Xj
t+1.

Neither of these terms are affected by qit so we can drop them from consideration in the

objective function. Thus it suffices to rewrite

−pt+1q
i
t+1 + ci(q

i
t+1)2 + τ it+1q

i
t+1

in terms of qit, p
i
t and X i

t . We split this task into two steps. In the first step, we rewrite

−pt+sqit+s + ci(q
i
t+s)

2 + τ isq
i
t+s − ωiqis−1q

i
s and in the second step we rewrite ωiq

i
s−1q

i
s.

Step 1: For s > t we have

psq
i
s =

1

Θ
(−
∑
j∈N

Xs
j )(γi

∑
j∈N

Xj
s −X i

s) =
1

Θ
[−γi(

∑
j∈N

Xj
s )

2 +X i
s

∑
j∈N

Xj
s ], (98)

(qis)
2 = (γi

∑
j∈N

Xj
s −X i

s)
2 = γ2

i (
∑
j∈N

Xj
s )

2 + (X i
s)

2 − 2γiX
i
s

∑
j∈N

Xj
s (99)

and

τ isq
i
s − ωiqis−1q

i
s = ζi

∑
j 6=i

Xj
s−1(γi

∑
j∈N

Xj
s −X i

s)

= ζi
∑
j 6=i

Xj
s−1(γi

∑
j 6=i

Xj
s−1 − (1− γi)X i

s − γiqis−1 + γi
∑
j 6=i

εsj)

= ζiγi(
∑
j 6=i

Xj
s−1)2 − ζi(1− γi)

∑
j 6=i

Xj
s−1X

i
s − γiζi

∑
j 6=i

Xj
s−1q

i
s−1 + ζiγi

∑
j 6=i

Xj
s

∑
j 6=i

εsj, (100)
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Using the above equations, we derive that for s > t,

τ isq
i
s − ωiqis−1q

i
s + ci(q

i
s)

2 − psqis =

(
γi
Θ

+ ciγ
2
i )(
∑
j∈N

Xj
s )

2 − ζi(1− γi)
∑
j 6=i

Xj
s−1X

i
s + ci(X

i
s)

2

− γiζi
∑
j 6=i

Xj
s−1q

i
s−1 − (2ciγi +

1

Θ
)X i

s

∑
j∈N

Xj
s + ζiγi(

∑
j 6=i

Xj
s−1)2 + ζiγi

∑
j 6=i

Xj
s

∑
j 6=i

εsj. (101)

Next for s = t + 1 we express the right hand side of the above equation in terms of

qit, X
i
t , and pit. This will allow us to transform the objective function into a form that is

similar to the objective function in the static case so that we can apply Proposition 1. The

terms in (101) that we will re-express are (
∑

j∈N X
j
s )

2,
∑

j 6=iX
j
s−1X

j
s , (X i

s)
2,
∑

j 6=iX
j
s−1q

i
s−1,

X i
s

∑
j∈N X

j
s , and (

∑
j 6=iX

j
s−1)2 for s = t+ 1.

At date t+ 1, of these terms, the only ones whose expectation will be affected by qit are

(≈ indicates a term which does not depend on qit in expectation given the time t information

set is dropped)20:∑
j 6=i

Xj
tX

i
t+1 =

∑
j 6=i

Xj
t (X

i
t + qit + εi,t+1) ≈

∑
j 6=i

Xj
t q
i
t ≈ (qit)

2 − ptqitΘ(1− γi)21 (102)

(X i
t+1)2 ≈ (X i

t + qit)
2 (103)∑

j 6=i

Xj
t q
i
t = (qit)

2 − ptqitΘ(1− γi) (104)

X i
t+1

∑
j∈N

Xj
t+1 = (X i

t + qit)
∑
j∈N

Xj
t ≈ X i

tq
i
t + (qit)

2 − ptqitΘ(1− γi) (105)

Using equations (102)—(105) with (101) we find that the part of τ isq
i
s + ci(q

i
s)

2− psqis for

s = t+ 1 whose time t expectation depends on qit can be expressed as

[(qit)
2 − ptqitΘ(1− γi)](−ζi − 2ciγi −

1

Θ
)− (2ciγi +

1

Θ
)X i

tq
i
t + ci(X

i
t + qit)

2. (106)

20Any terms on the right hand side which do not depend on qit can be dropped from consideration since
a period t deviation in the choice qit will not affect them.

21We use the fact that ptΘ(1− γi)− qit = −
∑
j 6=iX

j
t
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Step 2: For s > t

ωiq
i
s−1(γi

∑
j∈N

Xj
s −X i

s) = ωiq
i
s−1[γi

∑
j 6=i

Xj
s−1 − (1− γi)X i

s − γiqis−1 + γi
∑
j 6=i

εsj]

= ωiγi
∑
j 6=i

Xj
s−1q

i
s−1 − ωi(1− γi)qis−1X

i
s − γiωi(qis−1)2 + γiωiq

i
s−1

∑
j 6=i

εsj. (107)

Inspecting the above equation, the terms we must work with are
∑

j 6=iX
j
s−1q

i
s−1, X i

sq
i
s−1,

and (qis−1)2. At date t+ 1, of these terms the ones whose time t expectation are effected by

qit are

(qit)
2

and

qitX
i
t+1 = qit(X

i
t + qit + εi,t+1) = X i

tq
i
t + (qit)

2

and ∑
j 6=i

Xj
t q
i
t = (qit)

2 − ptqitΘ(1− γi)

Inserting these expressions into (107) gives

−γiωi(qit)2 − ωi(1− γi)(Xtq
i
t + (qit)

2) + ωiγi[(q
i
t)

2 − ptqitΘ(1− γi)]

or equivalently,

− ωi(qit)2 − ωi(1− γi)Xtq
i
t + ωiγi[(q

i
t)

2 − ptqitΘ(1− γi)] (108)

Combining the results of steps 1 and 2:

By summing equations 106 and 108, the part of τ it+1q
i
t+1 + ci(q

i
t+1)2 − pt+1q

i
t+1 whose time t

expectation depend on qit is

[(qit)
2 − ptqitΘ(1− γi)](−ζi − 2ciγi −

1

Θ
+ ωiγi)

− (2ciγi +
1

Θ
+ ωi(1− γi))X i

tq
i
t + ci(X

i
t + qit)

2 − ωi(qit)2. (109)

Using this expression and inserting it into the objective (97), we find that it suffices, when

deriving conditions for no profitable one shot deviation, to consider the objective function

which is linear in ptqit, qit, (Xit + qit)
2, q2

it, and (qis)
′∑

j∈N (qjs)′
with the following coefficients.
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The coefficient on ptq
i
t is

− 1− e−r(−ζi − 2ciγi −
1

Θ
+ ωiγi)(1− γi)Θ (110)

The coefficient on qit is

τi − e−r(2ciγi +
1

Θ
+ ωi(1− γi))X i

t (111)

The coefficient on (X i
t + qit)

2 is

− 1

2κi
+ e−rci

The coefficient on (qit)
2 is

ci + e−r[−ζi − 2ciγi −
1

Θ
+ ωiγi − ωi]. (112)

and the coefficient on (qis)
′∑

j∈N (qjs)′
is

Ri.

Thus the objective is almost of the same form as in the static model. To get it into

that form we find it easiest to ensure that the coefficient on qit is τi. We observe that

(X i
t + qit)

2 = (X i
t)

2 + 2X i
tq
i
t + (qit)

2. Thus, ince (X i
t)

2 is unaffected by the choice of qit it

suffices to adjust the coefficients on (qit)
2 and (X i

t + qit)
2 accordingly to ensure that the co-

efficient on qit is τi. The adjusted coefficients are as follows.

The coefficient on ptq
i
t is

− 1− e−r(−ζi − 2ciγi −
1

Θ
+ ωiγi)(1− γi)Θ (113)

The coefficient on qit is

τi (114)

The coefficient on (X i
t + qit)

2 is

− 1

2κi
+ e−rci −

e−r

2
(2ciγi +

1

Θ
+ ωi(1− γi))

The coefficient on (qit)
2 is

ci + e−r[−ζi − 2ciγi −
1

Θ
+ ωiγi − ωi] +

e−r

2
(2ciγi +

1

Θ
+ ωi(1− γi)) (115)
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and the coefficient on (qis)
′∑

j∈N (qjs)′
is

Ri.

Continuing to transform the objective

Immediately by the results of the static case (after renormalizing the coefficients so that the

coefficient on ptq
i
t is -1), we see that

ζi = −ωi =
Ri∑
j 6=i σ

2
jε

22. (116)

Using this result with equations (110)-(112), we find:

The coefficient on ptq
i
t is

− 1− e−r(−ζi − 2ciγi −
1

Θ
− ζiγi)(1− γi)Θ (117)

The coefficient on qit is

τi (118)

The coefficient on (X i
t + qit)

2 is

− 1

2κi
+ e−rci −

e−r

2
(2ciγi +

1

Θ
− ζi(1− γi))

The coefficient on (qit)
2 is

ci + e−r[−ζi − 2ciγi −
1

Θ
− ζiγi + ζi]. (119)

+
e−r

2
(2ciγi +

1

Θ
− ζi(1− γi))

and the coefficient on (qis)
′∑

j∈N (qjs)′
is

Ri.

For ease of analysis, we define Aip, B
i
p, C

i
p, A

i
q, B

i
q, C

i
q, A

i
X , B

i
X , C

i
X , A

i
sq, B

i
sq, C

i
sq so that the

coefficient on ptq
i
t is

−[Aip +Bi
pζi + Ci

pc
i],

the coefficient on (X i
t + qit)

2 is

AiX +Bi
Xζi + Ci

Xc
i,

22See the equation for ai at the end of section D.2 of the Appendix in the main draft.
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and the coefficient on (qit)
2 is

1

2
[Aisq +Bi

sqζi + Ci
sqc

i].

That is,

− Aip = −1 + e−r(1− γi) (120)

−Bi
p = e−r(1− γi)Θ(1 + γi) (121)

− Ci
p = 2e−rγi(1− γi)Θ (122)

AiX = − 1

2κi
− e−r

2

1

Θ
(123)

Bi
X =

e−r

2
(1− γi) (124)

Ci
X = e−r − e−rγi (125)

Aisq = −e−r 1

Θ
(126)

Bi
sq = 2[−e−rγi −

e−r

2
(1− γi)] (127)

⇔

Bi
sq = −e−r(1 + γi)

Ci
sq = 2[1− γie−r] (128)

Using the static case of Proposition 1 to derive optimality conditions:

Define
1

2κ̃i
= − [AiX +Bi

Xζi + Ci
Xc

i]

Aip +Bi
pζi + Ci

pc
i

and

c̃i =
Aisq +Bi

sqζi + Ci
sqc

i

Aip +Bi
pζi + Ci

pc
i

and

R̃i =
Ri

Aip +Bi
pζi + Ci

pc
i
.
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Here we have simply renormalized the objective function so that the coefficient on ptq
i
t is -1

and relabeled the coefficients to parallel those of the objective function in the static case.

Then by the results of the static case we have the following opitmality conditions:

1 =
1
κ̃i

1
κ̃i

+ 1
(1−γi)Θ − c̃i −

R̃i
σ2
ηi

, (129)

γiΘ =
1 + (1− γi)Θ R̃i

σ2
ηi

1
κ̃i

+ 1
(1−γi)Θ − c̃i −

R̃i
σ2
ηi

(130)

where

σ2
ηi
≡
∑
j 6=i

σ2
εj,

Earlier, we had already used the condition

τ it = (
∑
j 6=i

Xj
t−1 − qit−1)

Ri∑
j 6=i σ

2
jε

to deduce that ζi = −ωi = Ri∑
j 6=i σ

2
jε

to derive (116).

Using the optimality conditions to solve for ci and ζi

Using (129) and (130) we derive that

1

(1− γi)Θ
− c̃i −

R̃i

σ2
ηi

= 0 (131)

and

γiΘ = κ̃i + κ̃i(1− γi)Θ
R̃i

σ2
ηi

. (132)

Then using (131) we have

1

(1− γi)Θ
−
Aisq +Bi

sqζi + Ci
sqc

i

Aip +Bi
pζi + Ci

pc
i
− ζi
Aip +Bi

pζi + Ci
pc
i

= 0

⇔

(Aip +Bi
pζi + Ci

pc
i)

1

(1− γi)Θ
= Aisq +Bi

sqζi + Ci
sqc

i + ζi

⇔

ci[C
i
p

1

(1− γi)Θ
− Ci

sq] = −
Aip

(1− γi)Θ
+ Aisq + (Bi

sq + 1−Bi
p

1

(1− γi)Θ
)ζi (133)
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⇔

2ci =
−1

(1− γi)Θ
+ ζi

By (132) we also have the condition that

−2γiΘ
(AiX +Bi

Xζi + Ci
Xc

i)

Aip +Bi
pζi + Ci

pc
i

= 1 + (1− γi)Θ
ζi

Aip +Bi
pζi + Ci

pc
i

⇔

−2γiΘ(AiX +Bi
Xζi + Ci

Xc
i) = Aip +Bi

pζi + Ci
pc
i + (1− γi)Θζi

⇔

ci[−2γiΘC
i
X − Ci

p] = 2γiΘA
i
X + Aip + [2γiΘB

i
X + (1− γi)Θ +Bi

p]ζi

⇔

0 = 2γiΘA
i
X + Aip + [2γiΘB

i
X + (1− γi)Θ +Bi

p]ζi

⇔

2γiΘ(− 1

2κi
− e−r

2

1

Θ
) + 1− e−r(1− γi)

+ [2γiΘ
e−r

2
(1− γi) + (1− γi)Θ− e−r(1− γi)Θ(1 + γi)]ζi = 0 (134)

⇔

ζi = − 1

Θ

− 1
κi

Θγi − e−rγi + 1− e−r(1− γi)
γie−r(1− γi) + (1− γi)− e−r(1− γi)(1 + γi)

⇔

ζi = − 1

Θ

1

1− γi
− 1
κi

Θγi − e−rγi + 1− e−r(1− γi)
γie−r + 1− e−r(1 + γi)

⇔

ζi = − 1

Θ

− 1
κi

Θγi + 1− e−r

1− γi
1

1− e−r

Then using (133) we have an explicit expression for ci:

2ci = − 1

(1− γi)Θ
− 1

Θ

− 1
κi

Θγi + 1− e−r

1− γi
1

1− e−r

⇔
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2ci =
1

(1− γi)Θ
[−2 +

1
κi

Θγi

1− e−r
].

Thus we have derived the implementing stationary subsidy scheme.

C.2 Proof of Proposition 8

Proof. By setting Θ = 2(1− e−r)
∑

j∈N κj it is possible to implement the efficient allocation

without quadratic subsidies(ci = 0). Since

E[qi0] = E[
κi∑
j∈N κj

∑
j∈N

Xj
0 −X i

0] = 0

the expected cost of the linear subsidy is 0 in period 0 if traders’ means of initial inventories

is proportional to risk capacities. (We set
∑

j 6=iX
i
s−1 to

∑
j 6=i µj for each j in period 0 and

qs−1 to 0 in period 0). It is also zero in all future periods as well since the efficient allocation

satisfies this condition. Since R-subsidy costs can always be recouped with a participation

costs budget balance is achievable in the case when µi and κi are proportional. We give

a more formal proof below that gives a sufficient condition on model primitives for budget

balanced trade.

We set Θ = 2(1− e−r)
∑

j∈N κj. Then

E[p0qi0|Xi0] = − 1

Θ
E[γi(

∑
j∈N

Xj0)2 −Xi0

∑
j∈N

Xj0]

= −γi
Θ

[
(Xi0 +

∑
j 6=i

µj)
2 +

∑
j 6=i

σ2
jε

]
+

1

Θ
[X2

i0 +Xi0

∑
j 6=i

µj]. (135)

We compute the net present value of all future payments. We have for t > 0

qit = −(1− γi)εit + γi
∑
j 6=i

εjt

since trader i unloads a fraction 1− γi of his own inventory shock and absorbs a fraction γ

of the other traders’ inventory shocks. The price is

pt = −
∑

j∈N Xjt

2
∑

j∈N κj(1− e−r)
=
−
∑

j∈N Xj,t−1 −
∑

j∈N εjt

2
∑

j∈N κj(1− e−r)
.
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We therefore have, for t > 0

− E[ptqit|Xi0] =
−(1− γi)σ2

iε + γi
∑

j 6=i σ
2
jε

2
∑

j∈N κj(1− e−r)
=
−

∑
j 6=i κj∑
j∈N κj

σ2
iε + κi∑

j∈N κj

∑
j 6=i σ

2
jε

2
∑

j∈N κj(1− e−r)
. (136)

Then

E[
∑
t>0

−e−rtptqit|Xi0] = −
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

. (137)

Next, we compute the net present value of quadratic holding costs. Using,

E[(
∑
j∈N

Xjt)
2|Xi0]

= E[(
∑
j∈N

Xj0 +
t∑

s=1

∑
j∈N

εjt)
2|Xi0] = (Xi0 +

∑
j 6=i

µj)
2 +

∑
j 6=i

σ2
jε + t

∑
j∈N

σ2
jε. (138)

we have

− γ2
i

2κi
E[
∞∑
t=0

e−rt(
∑
j∈N

Xjt)
2|Xi0]

= − 1

2κi
γ2
i

(Xi0 +
∑

j 6=i µj)
2 +

∑
j 6=i σ

2
jε

1− e−r
− 1

2κi
γ2
i

∑
j∈N

σ2
jε

e−r

(1− e−r)2
(139)

Next we compute the expected cost of the τ -subsidies. The expected cost is zero for all

t > 0 so we only need to compute the expected cost of the τ -subsidies at t = 0.

E[τ i0qi0] =
1

2(1− e−r
∑

j 6=i κj

∑
j 6=i

µj[−
∑

j 6=i κjµi∑
j∈N κj

+
κi∑
j∈N κj

∑
j 6=i

µj]. (140)

Therefore the total sum of costs due to τ -subsidies is

∑
i∈N

τ i0qi0 = −
∑

i∈N µi
∑

j 6=i µj

2(1− e−r)
∑

j∈N κj
+
∑
i∈N

1

2(1− e−r)
κi∑

j∈N κj
∑

j 6=i κj
(
∑
j 6=i

µj)
2. (141)

The expected cost of the τ -subsidies for a trader of type Xi0 is

E[τ i0qi0|Xi0] =
1

2(1− e−r)
∑

j 6=i κj

∑
j 6=i

µj[−
∑

j 6=i κjXi0∑
j∈N κj

+
κi∑
j∈N κj

∑
j 6=i

µj]. (142)
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The expected utility of trader i if he does not partcipate in the mechanism is

− [
1

2κi

1

1− e−r
X2
i0 +

1

2κi
σ2
iε

e−r

(1− e−r)2
]. (143)

The maximum participation fee is the minimum over Xi0 of

1

2κi

1

1− e−r
X2
i0 +

1

2κi
σ2
iε

e−r

(1− e−r)2

+
1

2(1− e−r)
∑

j 6=i κj

∑
j 6=i

µj[−
∑

j 6=i κjXi0∑
j∈N κj

+
κi∑
j∈N κj

∑
j 6=i

µj]

−
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

+
κi

2(1− e−r)(
∑

j∈N κj)
2

[
(Xi0 +

∑
j 6=i

µj)
2 +

∑
j 6=i

σ2
jε

]
− 1

2(1− e−r)
∑

j∈N κj
[X2

i0 +Xi0

∑
j 6=i

µj]

− κi
2(
∑

j∈N κj)
2

(Xi0 +
∑

j 6=i µj)
2 +

∑
j 6=i σ

2
jε

1− e−r
− κi

2(
∑

j∈N κj)
2

∑
j∈N

σ2
jε

e−r

(1− e−r)2
. (144)

or equivalently, the minimum over Xi0 of

1

2κi

1

1− e−r
X2
i0 +

1

2κi
σ2
iε

e−r

(1− e−r)2

+
1

2(1− e−r)
∑

j 6=i κj

∑
j 6=i

µj[−
∑

j 6=i κjXi0∑
j∈N κj

+
κi∑
j∈N κj

∑
j 6=i

µj]

−
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

− 1

2(1− e−r)
∑

j∈N κj
[X2

i0 +Xi0

∑
j 6=i

µj]−
κi

2(
∑

j∈N κj)
2

∑
j∈N

σ2
jε

e−r

(1− e−r)2
. (145)

Taking a first order condition with respect to Xi0 we have

1

κi
Xi0 −

1∑
j∈N κj

∑
j 6=i

µj −
1∑

j∈N κj
Xi0 = 0

⇔∑
j 6=i κj

κi
Xi0 −

∑
j 6=i

µj = 0

⇔
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Xi0 =
κi
∑

j 6=i µj∑
j 6=i κj

.

We now substitute into the expression for the participation cost to obtain

1

2κi

1

1− e−r
X2
i0 +

1

2κi
σ2
iε

e−r

(1− e−r)2

−
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

− 1

2(1− e−r)
∑

j∈N κj
[X2

i0 +Xi0

∑
j 6=i

µj]−
κi

2(
∑

j∈N κj)
2

∑
j∈N

σ2
jε

e−r

(1− e−r)2
(146)

⇔

κi
2(
∑

j 6=i κj)
2

1

1− e−r
(
∑
j 6=i

µj)
2 +

1

2κi
σ2
iε

e−r

(1− e−r)2

−
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

− 1

2(1− e−r)
κi

(
∑

j 6=i κj)
2
(
∑
j 6=i

µj)
2 − κi

2(
∑

j∈N κj)
2

∑
j∈N

σ2
jε

e−r

(1− e−r)2
(147)

⇔

1

2κi
σ2
iε

e−r

(1− e−r)2

−
e−r
∑

j 6=i κj

2(
∑

j∈N κj)
2(1− e−r)2

σ2
iε +

e−rκi
∑

j 6=i σ
2
jε

2(
∑

j∈N κj)
2(1− e−r)2

− κi
2(
∑

j∈N κj)
2

∑
j∈N

σ2
jε

e−r

(1− e−r)2
(148)

⇔
e−r

2(1− e−r)2
(− 1∑

j∈N κj
+

1

κi
)σ2

iε > 0.

Note that since (µi)i were arbitrary, given our infinite horizon setting, the above implies that

it is also individually rational for traders to pay the participation fee equal to the value of

the R-subsidy at all future dates. Comparing this expression with the expected cost of the

τ0 subsidies gives the expression in the statement of the proposition.
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D Proofs and Supplementary Material for Section 8

D.1 Proof of lemma 5

From lemma 1, in any linear equilibrium, the quantity agent i trades is:

qi = ai − wixi −
yi∑n
j=1 yj

(
n∑
j=1

(aj − wjxj)

)

Rearranging, we can write this as:

qi =

(
ai −

yi∑n
j=1 yj

n∑
j=1

aj

)
− wi

(
1− yi∑n

j=1 yj

)
xi +

yi∑n
j=1 yj

 ∑
{j∈N |j 6=i}

wjxj

 (149)

This corresponds to a k-A allocation function, with intercept vector:

k =


a1 − y1∑n

j=1 yj

∑n
j=1 aj

. . .

an − yn∑
yi

∑
j aj


The sum of these elements is:

∑
i

(
ai −

yi∑n
j=1 yj

n∑
j=1

aj

)
=

(∑
i∈N

ai

)
−

n∑
j=1

aj

(∑
i∈N

yi∑n
j=1 yj

)
= 0

Hence, (32) always holds. Moreover, from (149), the elements of the A matrix are:

aij =
dqi
dxj

=
wjyi∑
j yj
∀j 6= i

aii =
dqi
dxi

= −wi

(
1− yi∑n

j=1 yj

)
∀i

Hence, (33) and (34) hold with

si ≡
yi∑n
j=1 yj

Note that yi ≥ 0 implies that si ≥ 0, and
∑

i∈N si = 1 always holds.
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D.2 Proof of lemma 6

For any allocation rule of the form 31, we have:

∂qi
∂xk
∂qj
∂xk

=
aik
ajk

=
siwk
sjwk

=
si
sj

∂qi
∂xl
∂qj
∂xl

=
ail
ajl

=
siwl
sjwl

=
si
sj

D.3 Details on numerical results

In Appendices D.4.2 and D.4.3, we derive analytical expressions for expected welfare and

revenue, allowing us to express (37) and (38) as analytical, though very complex, optimization

problems. We thus solve these problems numerically, using convex optimization routines.

One issue for implementing the optimization problem is problem (37) searches over the

3N -dimensional space of linear equilibria; as lemma 7 shows, the space of allocation rules is

only 3N − 2-dimensional. From the revenue equivalence results of propositions 2 and 3, any

two linear equilibria induce identical allocations will also produce identical revenue for both

the platform operator and all agents. Hence, we need to impose two constraints so that we

do not search over equilibria which induce identical allocations; we normalize a1 to 0, and

we normalize the sum of all yi to equal 1. As the start point for finding the second-best

mechanism, we use the equilibrium values of {(ai, yi, wi)} with no subsidies.

To construct Figure 1, we solve problem (37) under three sets of parameter assumptions

stated in the extensions section of the main text. Table 1 shows the second-best subsidies and

equilibrium parameters for different choices of primitives. The main difference between the

second-best mechanism and the no-subsidy equilibrium is that the second-best mechanism

increases wi, inventory sensitivities, for all agents, fixing the bid shading distortion; in fact,

wi is quite close to 1 for all choices of primitives we tried. ai is nonzero at the second-best

mechanism, while it is 0 for the no-subsidy mechanism. In terms of transfers, net revenue for

the platform is positive for the agent with µXi = 0, and negative to agents with positive and

negative values of µXi: on average, the platform operator takes revenue from the agent who

is neither a net buyer or seller, who expects with high probability to profit from trade, and

uses it to subsidize the agents with extremal values of µXi, who are net buyers and sellers,

and thus tend to distort their bids more.

Similarly, we solve the revenue-maximization problem, (38), using a convex optimization

algorithm. Analogous to the second-best mechanism, we normalize a1 to 0, and we normalize

the sum of all yi to equal 1. To construct Figure 2 we then solve (38) under the same three
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sets of parameter settings that we use for the efficiency maximization problem, (37). As the

start point of the optimization, we use the second-best values of {(ai, yi, wi)}, which have

total revenue equal to 0. Table 2 shows the second-best subsidies and equilibrium parameters

for different choices of primitives.

D.4 Analytical expressions for welfare and revenue

D.4.1 Residual supply, implementing subsidies, trade quantities

Given any vector {(ai, yi, wi)}, and primitives {(κi, µXi, σ2
Xi)}, we can calculate the residual

supply parameters
{(
di, µηi, σ

2
ηi

)}
facing agents, using lemma 2. Using proposition 2, we can

then find the unique set of subsidies {(Ri, ci, τi)} which implements {(ai, yi, wi)}.
We can then express trade quantities and prices, from each agents’ perspective, as func-

tions of Xi and ηi. Setting bids equal to residual supply, we have:

qi (Xi, p) = qRS (i)

=⇒ a− wX − yp = η + dp

we have omitted i subscripts for simplicity; through all of the derivations in this section,

expressions apply to individual agents, so we will omit subscripts i. Solving for prices and

quantities, we have the following lemma:

Lemma 11. Trade quantities and prices are:

p (X, η) =
a− wX − η

d+ y
(150)

And:

q (X, η) =
ad− dwX + yη

d+ y
(151)

D.4.2 Welfare

The net welfare from a mechanism can be calculated as the sum of agents’ holding costs,

ignoring all transfers. The decrease in holding costs of agent i for buying q units of the asset

is:

− 1

2κ

[
(X + q)2 −X2

]
− 1

2κ

(
2Xq + q2

)
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Substituting for q using (151), we have:

ad(d(w − 1)− y)

κ(d+ y)2
X − y(d(w − 1)− y)

κ(d+ y)2
ηX − a2d2

2κ(d+ y)2
−

ady

κ(d+ y)2
η − (d2(w − 2)w − 2dwy)

2κ(d+ y)2
X2 − y2

2κ(d+ y)2
η2

Taking expectations over X and η, we have:

ad(d(w − 1)− y)

κ(d+ y)2
µX +

y(d(w − 1)− y)

κ(d+ y)2
µXµη −

a2d2

2κ(d+ y)2
− ady

κ(d+ y)2
µη−

(d2(w − 2)w − 2dwy)

2κ(d+ y)2

(
µ2
X + σ2

X

)
− y2

2κ(d+ y)2

(
µη + σ2

η

)
(152)

The total welfare gain is the sum of (152) over agents i.

D.4.3 Revenue

Total revenue of the platform operator can be calculated as the total entry fees that can be

charged to agents, minus the total net payments spent on subsidies.

Revenue
(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
=∑

i∈N

Entryfeesi
(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
−Paymentsi

(
{(ai, yi, wi)} ;

{(
κi, µXi, σ

2
Xi

)})
D.4.4 Entry fees

The entry fees that the platform operator can charge to each agent are pinned down by IR

constraints: the worst-off type X of each agent must have nonnegative expected utility gains

from the mechanism. The total utility gain of type X of an agent is:

E [U | X] = E

[
− 1

2κ

(
2Xq + q2

)
− pq + τq +

c

2
q2 +R

y

d+ y
| X
]

(153)

Substituting for q and p using lemma 11, and taking expectations over η, we can write the

expectations of each piece in (153) as:

E

[
− 1

2κ

(
2Xq + q2

)
| X
]

=

−
d2(a− (w − 2)X)(a− wX) + 2dy(a(µη +X) +X(µη(−w) + µη − wX)) + y2

(
µ2
η + 2µηX + σ2

η

)
2κ(d+ y)2
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E [−pq | X] =
y(µη(−a+ µη + wX) + σ2

η)− d(a− wX)(a− µη − wX)

(d+ y)2

E [τq | X] =
τ(ad− dwX + µηy)

d+ y

E
[ c

2
q2 | X

]
=
c
(
d2(a− wX)2 + 2dµηy(a− wX) + y2

(
µ2
η + σ2

η

))
2(d+ y)2

E

[
R

y

d+ y
| X
]

= R
y

d+ y

To find the worst-off type, we differentiate the sum of the five pieces above with respect to

X, set the derivative to 0, and solve for X, to get:

Xmin =
ad(dw(cκ− 1) + d− 2κw + y) + dµη(wy(cκ− 1) + κw + y) + d2κτw + dκτwy + µηy(y − κw)

dw(d(w(cκ− 1) + 2) + 2(y − κw))

We plug Xmin into (153) to calculate the total entry fees we can charge an agent. We also

have to ensure that utility is a convex function of X, so in the optimization process, we

require the second derivative of (153) with respect to X to be nonnegative, that is:

dw(κw(cd− 2) + d(−w) + 2d+ 2y)

κ(d+ y)2
≥ 0

D.4.5 Payments

The total amount paid out by the platform operator to agents is the sum over all three

subsidies:

τq +
c

2
q2 +R

y

d+ y

Again, we substitute for q using lemma 11, and take expectations over X and η. These

subsidies can be written as:

τE [q] +
c

2

{
E [q]2 + V ar [q]

}
+R

y

d+ y

Where, using lemma 11,

E (q) =
ad− dwµX + yµη

d+ y

V ar (q) =
d2w2σ2

X + y2σ2
η

(d+ y)2
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