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1 Introduction

This paper analyzes the possibility of using price controls to improve social welfare through
improved risk sharing in incomplete markets. We build a model in which money and
commodities are traded in spot markets, which achieve allocative efficiency by redistributing
the commodity across agents to maximize its money-equivalent value. Spot markets allocate
commodities efficiently, but do not generally distribute wealth efficiently across uncertain
states of the world. The role of idealized financial markets is to transform the wealth
generated by efficient spot markets into state-contingent payoffs that optimally share risks
across agents.

When financial markets are absent or incomplete, market outcomes are allocatively
efficient, but risks generated by spot markets are not optimally shared across agents. In
such settings, interventions in spot markets that reduce allocative efficiency can be welfare-
enhancing, if they sufficiently improve risk sharing. We then show that price controls in
commodity markets can be Pareto-improving, in expected-utility terms, through their benefits
for risk-sharing.

Our model has two goods: “money”, and a real commodity, such as oil, wheat, or steel.
Agents have a concave production technology which converts the commodity into money-
equivalents: in other words, conditional on shock realization, agents’ utility is quasilinear
over the commodity and money. Ex-ante, agents are risk-averse over money, with CARA
utility with potentially different risk aversions. The only source of uncertainty in the economy
is agents’ random endowments of the commodity. This setting is very general, but can be
thought of as modelling trade and monetary risk sharing in any real factor of production.

What is the social first-best outcome? The social planner, in this setting, essentially
solves a two-stage problem. Conditional on any realization of shocks, market outcomes should
be allocatively efficient: commodities should be in the hands of those agents who have the
most efficient technologies to convert them into money-equivalent consumption, in order to
maximize the consumption available to society in each state of the world. Risk sharing should
be optimal: shocks to aggregate inventory, optimally filtered through agents’ production tech-
nologies, imply that society faces risky aggregate money-equivalent consumption; aggregate
consumption shocks should be divided proportionally across agents according to their risk
aversions, following Borch (1962) and Wilson (1968).

There is a simple and classical Arrow-Debreu implementation of the first-best outcome,
which can be thought of as a backward induction process. Allocative efficiency is achieved
through spot markets, markets which open after inventory shocks are realized, in which money
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and commodities are traded for each other. Agents’ preferences over goods are quasilinear,
so Walrasian equilibrium in spot markets is unique and maximizes society’s aggregated
money-metric utility, as in the social planner’s problem. Risk sharing is achieved through
financial markets: when agents can trade contingent claims on states of the world – the entire
vector of inventory shocks – then financial markets decentralize the social planner’s first-best
solution.

The core departure point of our paper, as in the classic literature on incomplete markets,
is that financial markets are likely incomplete in practice, so the planner’s first-best is likely
unattainable. When there are no financial markets, spot markets are allocatively efficient, but
the distributions of wealth induced by Walrasian equilibria in spot markets fail to efficiently
distribute risk among agents. A simple way to see why this must be the case is that spot
market equilibria are functions only of realized inventory shocks and production technologies;
they do not depend on risk aversions, and thus spot market equilibria cannot possibly share
monetary risk according to risk aversions.

The inefficiency of spot markets in our model implies that price controls can be Pareto-
improving. Price controls unambiguously decrease allocative efficiency, as they induce
rationing and deadweight loss. However, they can improve risk-sharing, since they redistribute
wealth towards agents with extreme inventory shocks, who have high marginal utility of
wealth. When these insurance benefits are larger than the allocative efficiency losses, all
agents achieve higher expected utility under price controls relative to free spot markets.

This current paper builds on the model of Han, Hu and Zhang (2026). Sections 2 and
3, and parts of Section 4 are identical to Han, Hu and Zhang (2026); we include them here
so the current paper is self-contained. The substantively new results in this paper are in
Sections 5 and 6.

2 Model

The model in this paper is identical to that of Han, Hu and Zhang (2026); we repeat the
model exposition unchanged here for completeness. Notationally, we will use bold symbols
for vectors, for example writing x to mean the vector (x1 . . . xN).

There are N “types” of consumers indexed by i, with a representative consumer of each
type who behaves competitively, ignoring price impact.1 For expositional simplicity, we will
refer to the representative consumer of type i as simply “consumer i”. Consumers have CARA

1This is equivalent to assuming there is a unit measure of identical atomistic consumers of each type, who
behave competitively because their trades are too small to move prices.
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utility over monetary wealth, with possibly different risk aversions αi:

Ui (Wi) = −e−αiWi (1)

There are two goods: money, and a single commodity. i is endowed with an initial constant
amount mi of money, and all consumers can hold infinitely large positive or negative positions
in goods and money. Each consumer i has a quadratic “production technology”, which
converts any positive or negative quantity yi of goods into wealth:

Wi = mi + ψyi − y2
i

2κi︸ ︷︷ ︸
Production Technology

(2)

CARA utility implies that money endowments mi have no effect on i’s behavior, since mi

simply scales Ui (Wi) in (1) by a constant factor; thus, we proceed to set mi = 0 for all i, so
we can write Wi simply as a function of yi:

Wi (yi) = ψyi − y2
i

2κi
(3)

Wealth Wi (yi) consists of a linear component ψyi, which pays the consumer ψ per unit of the
commodity; and a quadratic “inventory cost” component y2

i

2κi
, which implies that the marginal

monetary value of the good is decreasing in the amount of the good held. Consumers with
higher κi have lower inventory costs, and thus more elastic demand for the good. We will
allow the edge case of κi = 0: we interpret such a consumer as having no capacity to hold the
commodity, so she has perfectly inelastic demand for exactly yi = 0 units of the commodity,
and attains −∞ wealth under any other value of yi.

We call Wi (yi) a “production technology” because it is intuitive to think of yi being
literally transformed into units of consumable wealth. After “transformation” of yi, the
economy reduces to a single-good problem: each consumer has some amount of produced
wealth, which can be redistributed across consumers arbitrarily, since money is tradable and
consumers have deep pockets. Of course, it is isomorphic to think of Wi (yi) as a preference
function for yi rather than a production technology; in these terms, consumer i gets utility
equivalent to having Wi (yi) extra dollars from having yi units of the commodity.

Uncertainty in the model arises from inventory shocks: consumer i begins with a random
endowment xi of the commodity. We assume the xi are independent normal random variables,
with means µi and variances σ2

i that may vary across consumers. If i receives inventory shock
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xi, and purchases qi of the commodity at price p per unit, her final wealth is:

Wi = ψ (xi + qi) − (xi + qi)2

2κi
− pqi (4)

We will impose the normalization that the mean of the average inventory shock is 0:

E

[
N∑
i=1

xi

]
=

N∑
i=1

µi = 0 (5)

Appendix A.1 shows that (5) is purely a normalization and has no substantive content,
because any nonzero average in inventory shocks can be absorbed into the definition of ψ.

There are two periods. The first period is a market for risk: consumers may trade financial
securities which alter their endowments of goods or money in future states of the world. In
the following sections, we will analyze two financial market structures: complete financial
markets with Arrow securities; and no financial markets. We ignore consumption in the first
period, so all asset trades in the first period transfer consumption across future states of the
world.

Before the second period begins, consumers’ inventory shocks xi are realized. The second
period is a market for goods, or in traditional terms, a spot market: conditional on financial
securities trades in period 1 and inventory shock realizations x1 . . . xN , consumers trade
money for the commodity.

3 The First-Best Outcome

Conditional on any vector of inventory shocks x, the social planner can freely reallocate
commodities across consumers; that is, the social planner chooses functions y1 (x) to yN (x),
satisfying, pointwise in x, the aggregate resource constraint:

N∑
i=1

yi (x) =
N∑
i=1

xi (6)

It is of course equivalent to assume that the social planner chooses net trade amounts qi (x)
rather than final inventories yi (x). The social planner can also freely reallocate wealth across
agents, pointwise in x. Conditional on the planner’s choice of final inventories, society’s
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aggregate wealth is:

W (y (x)) ≡
N∑
i=1

Wi (yi (x)) =
N∑
i=1

ψyi (x) − (yi (x))2

2κi
(7)

The social planner thus chooses final monetary wealths of agents, which we will call Gi (x),
subject to the constraint, pointwise in x, that:

N∑
i=1

Gi (x) ≤ W (y (x)) (8)

Thus, in sum, the social planner chooses commodity allocations yi (x) and money allocations
Gi (x), satisfying (6) and (8). An allocation is Pareto efficient if it is not expected-utility
dominated by some other allocation; formally, under our assumption of CARA utility, G̃i (x)
Pareto-dominates Gi (x) if:

E
[
−e−αiG̃i(x)

]
≥ E

[
−e−αiGi(x)

]
∀i, and E

[
−e−αiG̃i(x)

]
> E

[
−e−αiGi(x)

]
for some i

(9)
To handle probability-zero edge cases, we will additionally strengthen this definition by saying
that G̃i (x) Pareto-dominates Gi (x) if G̃i (x) ≥ Gi (x) for all i and all realizations of x, and
G̃i (x) > Gi (x) for some i and x, even if the set of x values on which the inequality is strict
has measure zero.

Notice that, while commodity allocations yi (x) do not explicitly enter into (9), they
matter because they constrain money allocations Gi (x) through the wealth constraint (8).

Proposition 1. Pareto-efficient commodity allocations y∗
i (x) and money allocations G∗

i (x)
are characterized by two conditions: spot market allocative efficiency, and optimal risk-sharing.
Spot market allocative efficiency requires that commodity allocations y∗

i (x) satisfy:

y∗
i (x) = κi∑N

j=1 κj

N∑
j=1

xj (10)

In any efficient spot market allocation, society’s aggregate wealth is:

W ∗ (x) ≡ W (y∗ (x)) = ψ
N∑
i=1

xi −

(∑N
i=1 xi

)2

2∑N
i=1 κi

(11)
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Optimal risk-sharing requires that wealth is shared as:

G∗
i (x) = Ci + α−1

i∑N
j=1 α

−1
j

W ∗ (x) , (12)

where ∑N
i=1 Ci = 0.

Proof. See Appendix A.3.

Intuitively, in any Pareto-efficient allocation, spot market commodity allocations y∗
i (x)

must be efficient, in the sense that commodities are distributed in a way which optimally
produces money, given consumers’ heterogeneous production technologies Wi (yi). If this
were not the case for any realization x, society could simply reallocate goods to generate
more wealth, and redistribute this wealth to increase all consumers’ money-metric utility
in state x. Expression (10) states that, since all consumers have quadratic inventory costs,
the aggregate endowment ∑N

j=1 xj is simply divided among consumers proportional to their
inventory capacities κi; higher-κi consumers have more elastic demand, suffering lower costs
for absorbing inventory, and thus absorb a larger fraction of aggregate inventory shocks in
equilibrium.

Through the optimal spot market allocations, society simply transforms commodities
x into some total monetary wealth W ∗ (x), characterized by (11). Intuitively, when spot
markets function optimally, the N consumers’ wealth is equivalent to a single representative
consumer with inventory capacity:

K ≡
N∑
i=1

κi

Conditional on spot market optimal allocations, society then faces a simple one-good risk-
sharing problem: there is some random total monetary wealth W ∗ (x) which is to be divided
amongst risk-averse consumers. Then, Pareto efficiency requires the equalization of the ratio
of marginal utility across states. Under our assumption of CARA utility, the classic results
of Borch (1962) and Wilson (1968) imply that any Pareto-efficient allocations redistribute
risks in wealth, driven by uncertainty in x, affinely according to consumers’ risk aversions, as
in (12).

Proposition 1 shows that Pareto efficiency is a very restrictive criterion in our model:
consumers’ spot market outcomes are fully pinned down, and wealths are pinned down across
states up to consumer-specific constants. Thus, with slight abuse of terminology, we will
occasionally refer to the outcomes described in Proposition 1 as “the first-best outcome” in
singular form, implicitly ignoring the constant terms in (12).
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4 Spot Market Equilibrium

We next solve for equilibrium in spot markets, and illustrate why spot markets fail to
implement the first-best outcome.

After inventory shocks xi are realized, there is no remaining uncertainty, and our setting
reduces to a simple quasilinear-utility Walrasian equilibrium, where the only goods are money
and the commodity. From (4), i’s wealth is:

Wi = Ci + ψ (xi + qi) − (xi + qi)2

2κi
− pqi (13)

where qi is the amount of the commodity i purchases at market price p, and Ci is any
monetary endowment i may have attained through financial asset trade in the first period.
Differentiating (13) with respect to qi, we have:

∂Wi

∂qi
= ψ − xi + qi

κi
− p (14)

(14) depends on xi and qi, but not Ci: preferences are quasilinear, so there are no income
effects. Thus, arbitrarily wealth transfers in financial markets have no effect on spot market
demand, and thus equilibrium prices and quantities.

Wi is concave in qi; thus, setting (14) to zero and solving for qi, we obtain consumers’
demand for the good as a function of the spot price p, in terms of money:

qi (p) = −xi − κi (p− ψ) (15)

Hence, the inventory shock xi determines the intercept of the demand curve, and inventory
capacity κi determines the slope.

Spot market equilibrium is characterized by a market-clearing scalar price p. Summing
consumers’ demand and setting to zero, we require:

N∑
i=1

[xi + κi (p− ψ)] = 0

The spot market clearing price is thus simply a function of consumers’ inventory shocks:

pSpot (x) − ψ = −
∑N
i=1 xi∑N
i=1 κi

(16)

Intuitively, the equilibrium price deviation from ψ is simply the aggregate inventory shock
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∑N
i=1 xi, divided by the aggregate “inventory capacity”, or alternatively the slope of aggregate

demand, ∑N
i=1 κi. Plugging (16) into consumer demand (15), we can calculate consumers’

equilibrium inventories:

xi + qSpoti (x1 . . . xN) = κi∑N
j=1 κj

N∑
j=1

xj (17)

That is, i ends up holding a fraction κi∑
j=1 κj

of the aggregate inventory shock ∑
j=1 xj,

implementing the first-best outcome (10). Intuitively, conditional on the realization of
inventory shocks, the two-good money-and-commodities market is trivially complete, and
the welfare theorems hold. Spot market competitive equilibria are thus allocatively efficient,
in the sense of always allocating commodities in a way which maximizes society’s aggregate
monetary wealth.

Let W 0
i represent i’s welfare in autarky, from consuming her endowment xi:

W 0
i = Ci + ψxi − x2

i

2κi
(18)

Taking the difference between (13) and (18), plugging in (15), and simplifying, i’s money-
metric welfare gains from trade are simply:

Wi −W 0
i = q2

i

2κi
(19)

Since preferences are quadratic, expression (19) is just i’s consumer surplus triangle: it is
half the product of her trade quantity, qi, and her marginal WTP for the good when trading
nothing, qi

κi
. Quasilinear preferences in second-stage markets imply that compensating and

equivalent variation are equal to each other, and to the integral of Marshallian demand over
prices, which is (19). Society’s total monetary welfare gains from trade are simply the sum of
surplus triangles over all consumers.

Note also that our normalization in (5) implies that:

N∑
i=1

E [xi] =
N∑
i=1

µi = 0

This conveniently implies from (16) that the mean of the spot price is equal to ψ, and also
that i’s expected spot market purchase quantity is equal to −µi, since:

E
[
qSpoti (x)

]
= −E [xi] + κi∑

j=1 κj

N∑
j=1

E [xj] = −µi (20)
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We can calculate the wealth distribution induced by competitive equilibria in spot markets,
by plugging equilibrium quantities (17) and prices (16) into consumers’ wealth, (13). In
Appendix A.2, we show that this simplifies to:

W Spot
i = ψxi + κi∑N

j=1 κj

(∑N
j=1 xj

)2

2∑N
j=1 κj

− xi

∑N
j=1 xj∑N
j=1 κj

(21)

where we have omitted the constant money term, Ci, for convenience. Alternatively, substi-
tuting (16) for pSpot (x) into (21) and rearranging, we have:

W Spot
i = pSpot (x)xi + κi

2
(
pSpot (x) − ψ

)2
(22)

where for convenience we do not explicitly write the dependence of W Spot
i on x.

4.1 Arrow-Debreu Securities and the First-Best Outcome

In the first period, suppose agents can trade Arrow securities, denominated in units of wealth,
which fully span the state space. Markets are then complete, the welfare theorems hold, and
market equilibrium implements the first-best outcome.

Working with Arrow securities in high-dimensional state-spaces is somewhat technically
involved; while we will carefully define these objects here, note that we will not work with
Arrow securities outside this subsection. Since our state space x is continuous, Arrow security
prices constitute a state price density (Duffie, 2010, ch. 2), which we will refer to as π (x).2

Let θi (x) denote the security demand function of consumer i; that is, consumer i purchases
securities paying her a net amount θi (x) in state x. Since there is no first-stage consumption,
agents trade money across states of the world by buying Arrow securities in some states
and selling them in other states. i’s budget constraint is that her total expenditures must
integrate to 0 across states: ˆ

π (x) θi (x) dx = 0 ∀i (23)

Note that, following tradition in the literature, we absorb the physical probability density
f (x) into the definition of the state price density π (x).

Agents purchase Arrow securities to maximize expected utility subject to (23). We will
require market clearing pointwise in x; since Arrow securities are financial assets in zero net

2A subtle difference between our model and the canonical setting is that, since we assume there is no
first-period consumption, there is no natural numeraire in our setting. Thus, we leave π (x) defined only up
to scale. An equivalent alternative approach would be to choose some arbitrary value of x as the numeraire
good.
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supply, asset demands must sum to zero across agents:

N∑
i=1

θi (x) = 0 ∀x (24)

Equilibrium is described by a state price density π (x) and security demands θ (x), such that
all consumers are maximizing utility, and markets for Arrow securities clear.

Proposition 2. When Arrow securities are available, the unique equilibrium state price
density is:

π (x) = C · exp
(

− W ∗ (x)∑N
j=1 α

−1
j

)
· f (x) (25)

where C is an arbitrary positive constant. Agents’ asset demands are:

θi (x) = W ∗
i (x) −W Spot

i (x) (26)

where:

W ∗
i (x) =

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)
·
(
W Spot
i − α−1

i∑N

j=1 α
−1
j

W ∗
)]

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)] + α−1
i∑N

j=1 α
−1
j

W ∗ (x) (27)

The equilibrium with Arrow securities is Pareto-efficient.

Technically, Proposition 2 is simply the classical welfare theorems, applied to our setting:
if financial markets are complete, and the first-best outcome described in Proposition 1 is
attainable through financial asset trading, then the first-best outcome must be an equilibrium.

Intuitively, spot markets and financial markets bring us from autarky to first-best efficiency
in two stages, corresponding to the two efficiency conditions in Proposition 1. Spot market
equilibrium implements the allocative efficiency condition (11), reallocating goods across
consumers in each state of the world to optimally convert goods to wealth. This reduces the
two-good problem to a one-good problem, where each consumer is effectively endowed with
W Spot
i (x) dollars in state x. However, spot markets do not efficiently distribute this wealth

across agents.

Financial market equilibrium implements the risk-sharing condition (12), optimally sharing
state-dependent shocks to aggregate wealth W ∗ (x) across consumers. Note that equilibrium
wealth with Arrow securities, (27), takes the form of first-best wealth (12), dividing aggregate
wealth across agents according to their inverse risk aversions. Equilibrium Arrow security
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demands (26) are very simple: agents simply purchase the difference between their first-best
wealths W ∗

i (x) and their spot-equilibrium wealths W Spot
i (x).

Financial markets are needed because spot market wealths W Spot
i (x) generally differ

from first-best outcomes W ∗
i (x). In particular, risk aversions αi influence first-best wealth

allocations W ∗
i (x), but not spot market outcomes W Spot

i (x); clearly, spot market outcomes
cannot implement first-best outcomes in general. Spot market outcomes occur after all
inventory shock uncertainty x is realized, and thus clearly cannot allow consumers to share
x-related risk.3

5 Price Controls Can Be Pareto-Improving

When financial markets are missing, price controls in spot markets can be Pareto-improving,
because the benefits they induce for risk-sharing can outweigh their costs for allocative
efficiency.

We assume a policymaker can set a price ceiling pceil, which is constant and does not
depend on the realization of x. The price ceiling imposes an upper bound on market prices,
which induces costless rationing when it is binding. Formally, suppose the unconstrained
market clearing price exceeds pceil. Let AB be the set of agents who purchase at pceil, that
is, qi (pceil) > 0, and let AS be those agents with qi (pceil) < 0. We assume all trade occurs
at pceil, total trade volume equals total supply at pceil, and trade volume is rationed across
buyers according to their relative demands at pceil. Formally,

qceili (pceil) = qi (pceil) ∀i ∈ AS (28)

qceili (pceil) = qi (pceil)
(

−
∑
i∈AS

qi (pceil)∑
i∈AB

qi (pceil)

)
∀i ∈ AB (29)

Analogously, a price floor pfloor sets a lower bound on market prices; when binding, total
trade volume equals total demand at pfloor, and quantity is rationed across sellers according
to relative supply amounts:

qfloori (pfloor) = qi (pfloor)
(

−
∑
i∈AB

qi (pfloor)∑
i∈AS

qi (pfloor)

)
∀i ∈ AS (30)

3Another way to see this is that, in a two-good spot market after x is realized, utility is ordinal rather
than cardinal: a consumer’s preferences are fully described by indifference curves between money and goods,
which are traced out by (13). Expression (21) for W Spot

i (x) is thus valid regardless of what consumers’
preferences over wealth are: (21) holds for any choice of CARA-utility risk aversions, or indeed any other
classes of risk-averse preferences over wealth.
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Evaluating welfare under price controls is straightforward. Given any inventory shocks
x, we solve for equilibrium prices, imposing price controls if they bind. We then use (28)
and (29), and their analogs for price floors, to calculate equilibrium quantities; we then
plug prices and quantities into (13) to calculate agents’ equilibrium wealth levels, and thus
CARA-utility levels, for any realization of x. Expected utility under the price control regime
is then calculated by integrating over the distribution of shocks.

Numerical Example. Suppose there are two consumers, with ψ = 0, α = 2, κ = 1, and
symmetrically distributed inventory shocks x1, x2 ∼ N (0, σ2) with σ2 = 0.45. Consumers
are fully symmetric, so their ex-ante expected utilities are always identical. Figure 1 plots
consumers’ expected utility, in unconstrained spot markets (blue) and under varying levels
of symmetric price controls (red), where we set a price ceiling pceil = p̄ and a price floor
pfloor = −p̄. Price controls can be Pareto-improving: both consumers’ expected utility is
higher, for any value of p̄ greater than around 1.2, relative to free spot markets.

The intuition for this result is illustrated in Figure 2. Spot markets alone fail to achieve
perfect risk-sharing: consumers’ marginal utilities are not equalized across states. Panel A
plots the normalized difference in spot-equilibrium marginal utility, as a function of inventory
shocks x:

∆MU (x) = MU1 (x) −MU2 (x)
MU1 (x) +MU2 (x) (31)

In unconstrained spot market equilibrium, consumers with more extreme inventory shocks
end up with lower wealth and higher marginal utility: 1’s MU is greater towards the right
and left, and 2’s is greater upwards and downwards.4 Thus, risk-sharing could improve, and
aggregate welfare could increase, if wealth could be transferred from 2 to 1 on the right and
left sides of the figure, and from 1 to 2 towards the top and bottom.

Panel B plots the net wealth transfer induced by the price control policy, defined as:

WealthTransfer (x) =

[
W PC

1 (x) −W Spot
1 (x)

]
−
[
W PC

2 (x) −W Spot
2 (x)

]
2 (32)

In words, (32) is a double-difference, measuring whether price controls increase 1’s wealth
more than they increase 2’s wealth. The transfers induced by price controls are directionally
consistent with improved risk-sharing. 1 is the net transfer recipient towards the left and
right of the plot, and 2 is the net recipient towards the top and bottom. Intuitively, when x1

is large and positive and x2 is near 0, 1 is a net seller and 2 is a net buyer. Thus, a price
4Intuitively, spot market outcomes are qualitatively similar to no-trade outcomes in this case: if each

consumer consumed their endowment, due to quadratic costs, consumers’ marginal utilities of wealth would
be decreasing in the magnitude of their inventory shocks.
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floor tends to increase 1’s welfare at the expense of 2, at the cost of some deadweight loss.
This does not induce a net transfer ex-ante, because the reverse transfer occurs when x2 is
high and x1 is near zero. Analogously, price ceilings transfer welfare towards 1 when x1 is
very negative and x2 is near 0, and towards 2 in the reverse case.

Panel C of Figure 2 plots the deadweight loss from price controls, defined simply as the
change in total social wealth:

DeadweightLoss (x) =

[
W Spot

1 (x) +W Spot
2 (x)

]
−
[
W PC

1 (x) +W PC
2 (x)

]
2 (33)

Deadweight loss is always positive, and tends to be greater when the net wealth transfer
induced by price controls is larger. However, it is also in these regions that the risk-sharing
benefits of price controls are greatest.

Figure 1: Price Controls and Expected Utility

This figure plots consumers’ expected utility in unconstrained spot markets (blue) as well as
under symmetric price floors and ceilings (red), where we set pceil = −pfloor = p̄ ≥ 0. Higher
values of p̄, on the x-axis, thus correspond to looser price controls. For each p̄ we calculate
utility for a grid of x-values, and numerically integrate to find expected utility.

In models without uncertainty, price controls are transfer instruments: price ceilings
transfer surplus to buyers, and price floors to sellers. Our model introduces a distinct
risk-sharing role for price controls. In our stylized example, both agents are symmetric, and
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Figure 2: Price Controls: Mechanisms

In each panel, consumers’ inventory shocks x1 and x2 are shown on the x and y axes
respectively. Panel A shows (31), the normalized difference between 1 and 2’s marginal
utility of wealth, induced by unconstrained spot market equilibrium outcomes. Panel B
plots (32), the net wealth transfer from 2 to 1 induced by price controls, defined as the
difference between 1’s wealth gain under price controls relative to unconstrained spot market
equilibrium, and 2’s wealth gain. Price controls can improve risk sharing because they tend
to transfer wealth in the direction of MU differences: wealth is transferred to 1 towards the
right and left, where 1’s marginal utility is higher, and to 2 towards the top and bottom,
where 2’s marginal utility is higher. Panel C plots (33), price control-induced deadweight
loss, defined as total social wealth in spot market equilibrium minus total wealth under price
controls. DWL is always positive, and is higher when price controls are more binding and
induce larger transfers between agents. In both panels B and C, we consider a symmetric
price control pceil = −pfloor = 0.5.
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neither is a buyer or seller on average: price controls induce exactly offsetting transfers across
uncertain states of the world, which can have the effect of improving both agents’ ex-ante
welfare. This is true even though price controls are harmful for allocative efficiency: social
aggregate wealth unambiguously decreases whenever price controls are binding.

Market incompleteness is crucial for this result. Complete financial markets perfectly
equalize agents’ marginal utilities across states, leaving no further room for improvements
in risk sharing. In incomplete financial markets, agents’ marginal utilities may differ across
states, leaving room for price stabilization policies to be welfare-improving.

Our results can be thought of as an instance of the “theorem of the second best”: price
controls are unambiguously welfare-reducing in the frictionless complete-market benchmark,
but can be welfare-improving in the more realistic setting of incomplete financial markets.

6 Pointwise Optimal Price Controls

Next, we characterize optimal state-dependent price controls. While this is a much less realistic
policy than state-independent price controls, the state-dependent problem is analytically
simpler, and thus helps develop intuition about the comparative statics underlying the
state-independent problem. Building on these results, Appendix A.5.2 then derives an
analytical, though complex, first-order-condition for the optimal state-independent price
controls; intuitively, the preferred fixed price controls optimally trades off positive and
negative deviations from the pointwise optimal controls at each x.

In the general case, we will allow state-dependent price floors pfloor (x) and ceilings
pceil (x), though only one of the two will bind at any realization of x. To present the main
idea in a simplified manner, we first ignore price floors and consider the choice of a state-
specific price ceiling policy, pceil (x). Any Pareto-efficient price ceiling policy must maximize
the sum of agents’ weighted expected utilities:

N∑
i=1

λiE [Ui (Wi (pceil (x) ,x))] (34)

where we write Wi (pceil,x) to mean i’s wealth when inventory shocks are x and the price
ceiling is pceil. Since pceil is chosen separately for each x, (34) simplifies to the pointwise
optimization of pceil for each x:

max
pceil

N∑
i=1

λiUi(Wi(pceil,x)) (35)
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where for simplicity we suppress dependence of pceil on x. In the two-agent case we analyze
in most of Section 5, (35) is simply:

λ1U1 (W1 (pceil,x)) + λ2U2 (W2 (pceil,x)) (36)

for some weights λ1, λ2 > 0. Differentiating (36), if there is a binding optimal choice of pceil,
it is characterized by the first-order condition:

0 = λ1α1e
−α1W1(pceil,x) · ∂W1 (pceil,x)

∂pceil
+ λ2α2e

−α2W2(pceil,x) · ∂W2 (pceil,x)
∂p

(37)

Intuitively, (37) requires that small changes in pceil do not change weighted social welfare,
(36), to first-order. Rearranging, we have:

−∂W1(pceil,x)
∂pceil

∂W2(pceil,x)
∂pceil

= λ2α2e
−α2W2(pceil,x)

λ1α1e−α1W1(pceil,x) (38)

The LHS of (38) is the marginal inefficiency of pceil as a transfer tool: it measures how much
1’s wealth decreases for each dollar that 2’s wealth increases, as pceil increases. The RHS
is the product of 2’s relative utility weight λ = λ2/λ1, and the ratio of marginal utilities of
wealth of 2 and 1. Intuitively, (38) states that, at the optimal pceil, the ratio between 1 and
2’s marginal utilities of wealth (adjusted by λ) must be equal to the marginal DWL of pceil.

While (38) captures the intuition behind optimal statewise price control policies, the full
problem is slightly more notationally complex because floors and ceilings will never be in
use simultaneously. Thus, the optimal policy must be characterized casewise, depending
on which of pceil and pfloor is binding. We state this in the following proposition, proved in
Appendix A.5.

Proposition 3. Consider the two-agent case with symmetric α, κ.

For any state x = (x1, x2), define M = arg max {x1, x2} and m = arg min {x1, x2}.
Further define h (x) = W Spot

M (x) −W Spot
m (x) − (ln λM − ln λm) /α.

If x1 = x2 or h (x) = 0, the spot market equilibrium price pSpot (x) characterizes the
optimal price and neither price floor nor price ceiling is needed.

If h (x) > 0, the optimal price ceiling policy pceil (x) solves

κ
(
p− pSpot (x)

)
+ xM −xm

2

3κ (p− pSpot (x)) + xM −xm

2
= xM + κ (p− ψ)
x1 + x2 + xM + 3κ (p− ψ) = λm

λM
· e

−αWm(p,x)

e−αWM (p,x) (39)
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If h (x) < 0, the optimal price floor policy pfloor (x) solves

κ
(
p− pSpot (x)

)
− xM −xm

2

3κ (p− pSpot (x)) − xM −xm

2
= xm + κ (p− ψ)
x1 + x2 + xm + 3κ (p− ψ) = λM

λm
· e

−αWM (p,x)

e−αWm(p,x) (40)

Proposition 3, intuitively, is simply the FOC in (38), substituting analytical expressions
for the marginal transfer efficiency term on the LHS. Proposition 3 delivers two comparative
statics results for the case λ = 1. The results are proved in Appendix A.5.1.

Firstly, an increase in risk aversion (α ↑) leads to tighter optimal price controls: pceil
decreases when it is binding, and pfloor increases when it is binding. Intuitively, risk aversion
increases the marginal utility gaps implied by a given wealth gap, moving the ratio on the
RHS of (38) away from 1; tighter price controls, inducing larger transfers and thus greater
marginal inefficiency, are optimal as a result.

Secondly, an increase in ψ leads to a tighter optimal price ceiling and a looser optimal
price floor: pSpot − pceil increases when pceil is binding, and pfloor − pSpot decreases when pfloor
is binding. Intuitively, higher ψ delivers a good news for the consumer who has a big positive
inventory shock (thus, the net supplier in the market) and decreases the marginal utility gap
when the price is relatively low; while it delivers a bad news for the consumer who has a big
negative shock and increases the marginal utility gap when the price is relatively high.

In the following claim, we derive state-dependent bounds on the optimal price controls.

Claim 1. Still consider the two-agent case with symmetric α, κ. We have

pceil (x) ∈
(
ψ − x1 + x2 + max {x1, x2}

3κ , ψ − x1 + x2

2κ

)
and

pfloor (x) ∈
(
ψ − x1 + x2

2κ , ψ − x1 + x2 + min {x1, x2}
3κ

)
(41)

where pceil (x) indicates that the optimal policy is a binding price ceiling and pfloor (x)
indicates that it is a binding price floor.

The proof of Claim 1 is embedded in that of Proposition 3. The intuition behind Claim
1 is fairly simple: as price controls tighten, the deadweight loss they induce can become
large to the point that further tightening price controls causes both consumers’ utilities to
decrease. As a result, for any given x, the price controls which maximize a single consumer’s
utility is interior. The set of Pareto-efficient price control policies, which maximize the sum
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of consumers’ weighted utilities, thus interpolate between these interior extremal points.

7 Conclusion

This paper has demonstrated that price controls can be Pareto-improving in the model of
Han, Hu and Zhang (2026).
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Internet Appendix

A Omitted Proofs and Derivations

Appendices A.1, A.2, A.3, and A.4 are directly copied from Han, Hu and Zhang (2026). We
include them here for expositional completeness.

A.1 Justification of Mean-Zero Inventory Shocks

It is without loss of generality to assume (5) – that the aggregate inventory shock, ∑N
i=1 xi,

has mean 0 – because of a redundancy in the way we specify consumers’ wealth Wi: the
linear term ψ and the inventory shock xi can be renormalized in a way that keeps consumer
utility unchanged. We state this in the following simple claim, which we prove in Appendix
A.1.1 below.
Claim 2. For any constant A, define:

ψ̃ ≡ ψ + A, x̃i ≡ xi + κiA (42)

Then consumer i’s wealth – ignoring the price term −pqi, which is unaffected – can be written
as:

Wi = ψ̃ (x̃i + qi) − (x̃i + qi)2

2κi
+ Ci (A) (43)

where Ci (A) is a constant that does not depend on qi or xi.

Claim 2 implies that we can “renormalize” the constant term ψ, increasing it by any
constant A across all consumers, as long as we correspondingly renormalize inventory shocks
xi. Intuitively, since ψxi is simply a linear component of preferences, increasing ψ by A

can be offset by shifting each xi by κiA, up to an additive constant in wealth. Since the
scaling in (42) is linear in A, this immediately implies that, for any set of original inventory
shocks xi which do not have 0 mean across consumers, we can find some A to normalize ψ
and inventory shocks, which leads the resultant inventory shocks to have zero mean across
consumers. This choice of A is simply:

N∑
i=1

E [x̃i] =
N∑
i=1

E [xi] + A
N∑
i=1

κi = 0

=⇒ A = −
∑N
i=1 E [xi]∑N
i=1 κi
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As a result, it is completely without loss of generality – that is, it is simply a renormalization
of agents’ utility functions – to assume that the expected sum of inventory shocks across
consumers is 0, as we do in (5). As we show in (20) of Section 4, (5) is a natural normalization,
because it implies that µi is equal to negative i’s expected trade volume in spot markets.

A.1.1 Proof of Claim 2

Note that (42) implies:
xi + qi = (x̃i + qi) − κiA

Substituting for (xi + qi), we can write Wi as:

Wi = ψ ((x̃i + qi) − κiA) − ((x̃i + qi) − κiA)2

2κi

= ψ (x̃i + qi) − ψκiA− (x̃i + qi)2

2κi
+ A (x̃i + qi) − κiA

2

2

= (ψ + A) (x̃i + qi) − (x̃i + qi)2

2κi
− κi

(
ψA+ A2

2

)

This is the RHS of (43), with the constant:

Ci (A) ≡ −κi
(
ψA+ A2

2

)

A.2 Derivation of Spot Market Equilibrium Wealth (21)

Copying (13), consumers’ wealth is:

Wi = ψ (xi + qi) − (xi + qi)2

2κi
− pqi (44)

Rearranging slightly, we have:

Wi = ψxi − (xi + qi)2

2κi
− (p− ψ) qi

Substituting equilibrium quantities (17) and prices (16), we have:

Wi = ψxi −

(
κi∑N

j=1 κj

∑N
j=1 xj

)2

2κi
−
(

−
∑N
j=1 xj∑N
j=1 κj

) κi∑N
j=1 κj

N∑
j=1

xj − xi


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Simplifying, we attain (21).

A.3 Proof of Proposition 1

After the realization of shocks, consumers’ utility is quasilinear in money, implying that all
Pareto-efficient outcomes must maximize the sum of consumers’ monetary-equivalent values
of goods; any non-maximizing allocation is Pareto-dominated with transfers. That is, efficient
allocations must solve:

max
yi

N∑
i=1

Wi (yi) = max
yi

N∑
i=1

ψyi − y2
i

2κi

s.t.
N∑
i=1

yi =
N∑
i=1

xi

The Lagrangian is:

Λ = max
yi

[
N∑
i=1

ψyi − y2
i

2κi

]
− λ

(
N∑
i=1

yi −
N∑
i=1

xi

)

The first-order condition is:
0 = ∂Λ

∂yi
= ψ − yi

κi
− λ

Implying simply that consumers’ marginal rate of substitution between wealth and goods,
∂Wi

∂yi
= ψ − yi

κi
, must be equated:

yi
κi

= ψ + λ

Combining this with the resource constraint (6), we get (10), which uniquely characterizes
the allocations y∗

i (x) which maximize aggregate wealth, conditional on any inventory shock
realization x. Plugging (10) into consumers’ production technology (3) and summing, we
then get (11).

To show that (10) is necessary for Pareto efficiency, suppose yi (x) does not satisfy (10)
for some i and x. For any realization x where (10) is violated, replacing y (x) with y∗ (x)
increases total social wealth W (y (x)) and loosens the constraint (8). We can thus increase
Gi (x) for all i, leading to a Pareto improvement. We can also conclude from the above
analysis that (8) must be binding.

Suppose now that yi (x) does satisfy (10). The optimal risk-sharing condition is simply
the result of Borch (1962) in our setting. Pareto efficiency requires agents to equate the ratio
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of their marginal utilities across all states:

wj
wi

= U ′
i (Gi (x))

U ′
j (Gj (x)) = αie

−αiGi(x)

αje−αjGj(x) ,

where wi is the weight for i’s utility. Combining this with the binding constraint (8), we get
(12), following Wilson (1968). Hence, the wealth allocation is uniquely characterized up to
agent-specific, state-independent constants.

A.4 Proof of Proposition 2

Spot market equilibrium endows agent i with W Spot
i (x) wealth in state x. When agents can

trade Arrow securities, markets are trivially complete, so the first welfare theorem implies that
equilibrium allocations are Pareto-efficient. We use W ∗

i (x) to denote i’s total equilibrium
wealth in state x: this is the sum of spot wealth W Spot

i (x) and any Arrow security payoffs
θi (x). Agents’ FOC for optimal security demand implies that the state price density is
determined by agents’ marginal utilities at W ∗

i (x):

π (x)
π (x′) = m (x) · f (x)

m (x′) · f (x′) = U ′
i (W ∗

i (x)) · f (x)
U ′
i (W ∗

i (x′)) · f (x′) ·

Using the representation of first-best wealth allocations in (12) of Proposition 1, we have:

U ′
i (W ∗

i (x)) · f (x)
U ′
i (W ∗

i (x′)) · f (x′) =
exp

(
− W ∗(x)∑N

j=1 α
−1
j

)
· f (x)

exp
(

− W ∗(x′)∑N

j=1 α
−1
j

)
· f (x′)

(45)

which gives (25). Notice that, under CARA utility, all Pareto efficient allocations imply the
same state-price density: the constant terms in (12) fall out of the ratio in (45).

To calculate equilibrium Arrow security demands, note that spot market equilibrium
endows i with wealth W Spot

i (x) in state x, and Pareto-efficient wealth allocations W ∗
i (x)

have the form in (12) of Proposition 1. In order for θi (x) to induce Pareto-efficient wealth
allocations, we must have, for each i:

θi (x) = W ∗
i (x) −W Spot

i (x) = Ci + α−1
i∑N

j=1 α
−1
j

W ∗ (x) −W Spot
i (x) . (46)
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for some Ci. We can find Ci using the budget constraint (23), substituting (25) and (46):

C

ˆ (
Ci + α−1

i∑N
j=1 α

−1
j

W ∗ (x) −W Spot
i (x)

)
· exp

(
− W ∗ (x)∑N

j=1 α
−1
j

)
f (x) dx = 0

Solving, we have:

Ci =
E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)
·
(
W Spot
i − α−1

i∑N

j=1 α
−1
j

W ∗
)]

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)]

This gives (27).

A.5 Proof of Proposition 3

We first derive the wealth levels for any given price p for any state x = (x1, x2) under the
rationing policy given in Section 5.

For simplicity we suppress dependence of demand on x. The demand for consumer i is
given by qi (p) = −κ (p− ψ) −xi. Market clears at pSpot (x) = ψ− x1+x2

2κ . If x1 = x2, then we
have q1 (p) = q2 (p) for every p, which implies trade never occurs in the good market. This is
an edge case where no price control policy is needed. Below we focus on x1 ̸= x2. We have
four cases.

• If p ≤ ψ − xM

κ
, qm (p) > qM (p) ≥ 0. No trade occurs and we have Wi (p,x) = W 0

i =
ψxi − x2

i

2κ , the wealth level in autarky.

• If ψ − xM

κ
< p ≤ ψ − x1+x2

2κ , qM (p) < 0 < −qM (p) ≤ qm (p) and p is a binding price
ceiling. Consumer M ’s demand is unchanged while that of consumer m needs to be
rationed: qceilM (pceil) = −qceilm (pceil) = −κ(pceil − ψ) − xM . The wealth is given by

WM (pceil,x) = pceilxM + κ (ψ − pceil)2

2 and

Wm (pceil,x) = pceilxm − 3κ (ψ − pceil)2

2 + 2 (ψ − pceil) (x1 + x2) − (x1 + x2)2

2κ

• If ψ− x1+x2
2κ < p < ψ− xm

κ
, qM (p) < 0 < qm (p) < −qM (p) and p is a binding price floor.

Consumer m’s demand is unchanged while that of consumer M needs to be rationed:
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−qfloorM (pfloor) = qfloorm (pfloor) = −κ(pfloor − ψ) − xm. The wealth is given by

WM (pfloor,x) = pfloorxM−3κ (ψ − pfloor)2

2 +2 (ψ − pfloor) (x1 + x2)−
(x1 + x2)2

2κ and

Wm (pfloor,x) = pfloorxm + κ (ψ − pfloor)2

2

• If p ≥ ψ − xm

κ
, qM (p) < qm (p) ≤ 0. No trade occurs and we have Wi (p,x) = W 0

i =
ψxi − x2

i

2κ .

Note that Wi (p,x) peaks at ψ − x1+x2+x−i

3κ and is decreasing on both sides. Hence, we get
the bound in (41) and conclude Claim 1.

Now that we get the wealth for any p and x, we can plug it in the FOC in (37).

If the optimal price control policy lies within ψ − x1+x2+xM

3κ and ψ − x1+x2
2κ , it is a binding

price ceiling. The optimal price ceiling policy pceil (x) solves

0 = λM (xM + κ (p− ψ)) e−αWM (p,x) − λm (x1 + x2 + xM + 3κ (p− ψ)) e−αWm(p,x). (47)

Rearranging, we have

xM + κ (p− ψ)
x1 + x2 + xM + 3κ (p− ψ) = λm

λM
· e

−αWm(p,x)

e−αWM (p,x) = eα(WM (p,x)−Wm(p,x))−(lnλM −lnλm) (48)

Within
(
ψ − x1+x2+xM

3κ , ψ − x1+x2
2κ

)
, the LHS of (48) is decreasing in p and achieves 1 at

p = ψ − x1+x2
2κ , while the RHS of (48) is increasing in p. Hence, if h (x) = W Spot

M (x) −
W Spot
m (x)−(ln λM − ln λm) /α ≤ 0, the RHS is always smaller than the LHS. This implies that

a binding price ceiling policy is not optimal and we should look for a price floor policy instead.
If h (x) > 0, FOC in (48) has a unique solution within

(
ψ − x1+x2+xM

3κ , ψ − x1+x2
2κ

)
,which

gives the optimal price ceiling policy pceil (x) .

If the optimal price control policy lies within ψ − x1+x2
2κ and ψ − x1+x2+xm

3κ , it is a binding
price floor. The optimal price floor policy pfloor (x) solves

0 = −λM (x1 + x2 + xm + 3κ (p− ψ)) e−αWM (p,x) + λm (xm + κ (p− ψ)) e−αWm(p,x) (49)

Rearranging, we have
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xm + κ (p− ψ)
x1 + x2 + xm + 3κ (p− ψ) = λM

λm
· e

−αWM (p,x)

e−αWm(p,x) = e−α(WM (p,x)−Wm(p,x))−(lnλM −lnλm) (50)

Within
(
ψ − x1+x2

2κ , ψ − x1+x2+xm

3κ

)
, the LHS of (50) is increasing in p and achieves 1 at

p = ψ − x1+x2
2κ , while the RHS of (50) is decreasing in p. If h (x) ≥ 0, the RHS is always

smaller than the LHS. This implies that a binding price floor policy is not optimal and we
should look for a price ceiling policy instead. If h (x) < 0, FOC in (50) has a unique solution
within

(
ψ − x1+x2

2κ , ψ − x1+x2+xm

3κ

)
,which gives the optimal price floor policy pfloor (x) .

In all, if h (x) = 0, the spot market equilibrium price pSpot (x) solves the FOC in (37)
and characterizes the optimal price. This is also an edge case where no price control policy
is needed, like x1 = x2. If h (x) > 0, the optimal policy is a binding price ceiling which
solves (48). If h (x) < 0, the optimal policy is a binding price floor which solves (50). This
concludes the proof of Proposition 3.

A.5.1 Proof of Comparative Statics of Pointwise Optimal Price Controls

In this section, we derive the two comparative statics results with λ1 = λ2.

Risk aversion parameter. We begin with the risk aversion parameter α. When λ1 = λ2,
the sign of h (x) is irrelevant of α. That is, if state x associates with an optimal price ceiling
(floor) policy at some α, then it must associate with an optimal price ceiling (floor) policy at
any level of risk aversion. If h (x) > 0, taking derivatives w.r.t. α for both sides of (48), we
get

∂LHS

∂p
· ∂p
∂α

= ∂RHS

∂p
· ∂p
∂α

+ ∂RHS

∂α
.

Rearrange, we get

(
∂LHS

∂p
− ∂RHS

∂p

)
· ∂p
∂α

= ∂RHS

∂α
.

We have that the LHS is decreasing in p and the RHS is increasing in p. Also, ∂RHS/∂α > 0
at pceil (x). Hence, ∂p/∂α < 0. Note that we have a binding price ceiling for this case and
the negative derivatives implies a tighter optimal price control when α increases.

If h (x) < 0, we take derivatives w.r.t. α for both sides of (50). Following similar analysis
as above, we get ∂p/∂α > 0. Note that we have a binding price floor for this case and
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the positive derivatives implies a tighter optimal price control when α increases. In all, we
concludes that an increase in risk aversion (α ↑) leads to tighter optimal price controls: pceil
decreases when it is binding, and pfloor increases when it is binding.

Value parameter ψ. We now turn to the parameter ψ. Note that the sign of h (x) changes
with ψ. Here, we focus on the case where changes in ψ does not flip the sign of h (x): that is, if
state x associates with an optimal price ceiling (floor) policy at some ψ, then it also associates
with an optimal price ceiling (floor) policy when we consider changes in ψ. Also, when ψ

changes, the spot market equilibrium price pSpot (x) changes simultaneously, so we consider
the gap between the optimal price policy and pSpot (x) instead: pgap (x) ≡ p (x) − pSpot (x).
If h (x) > 0, we can rewrite (48) as

κpgap + xM −xm

2
3κpgap + xM −xm

2
= eα(WM (pgap,x)−Wm(pgap,x)) (51)

where

WM (pgap,x) = pgapxM +
(
ψ − x1 + x2

2κ

)
xM + κ

2

(
pgap − x1 + x2

2κ

)2
and

Wm (pgap,x) = pgapxm+
(
ψ − x1 + x2

2κ

)
xm−3κ

2

(
pgap − x1 + x2

2κ

)2
−2pgap (x1 + x2)+

(x1 + x2)2

2κ .

Taking derivatives w.r.t. ψ for both sides of (51), we get

∂LHS

∂pgap
· ∂p

gap

∂ψ
+ ∂LHS

∂ψ
= ∂RHS

∂pgap
· ∂p

gap

∂ψ
+ ∂RHS

∂ψ
.

Rearranging, we get

(
∂LHS

∂pgap
− ∂RHS

∂pgap

)
· ∂p

gap

∂ψ
= ∂RHS

∂ψ
.

We have that the LHS is decreasing in p (hence also pgap) and the RHS is increasing in
p (hence also pgap). Also, ∂RHS/∂ψ = α (xM − xm) eα(WM (pgap,x)−Wm(pgap,x)) > 0. Hence,
∂pgap/∂ψ < 0. That is we have a tighter optimal price ceiling when ψ increases.

If h (x) < 0, following similar analysis as above, we get ∂pgap/∂ψ < 0. That is, we have a
looser optimal price floor.
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Inventory Shock xM and xm. We then turn to the inventory shock xM and xm. Each
time we change one of them and hold the other one fixed.

We first consider decreasing xm while holding xM fixed. Note that the sign of h (x)
changes with xm. Here, we focus on the case where xm changes within the range such that
h (x) > 0. That is an binding price ceiling policy is optimal. This corresponds to Figure 2
towards the left and bottom. Again, when xm changes, the spot market equilibrium price
pSpot (x) changes simultaneously, so we consider the gap pgap (x). Taking derivatives w.r.t.
xm for both sides of (51), we get

∂LHS

∂pgap
· ∂p

gap

∂xm
+ ∂LHS

∂xm
= ∂RHS

∂pgap
· ∂p

gap

∂xm
+ ∂RHS

∂xm
.

Rearrange, we get

(
∂LHS

∂pgap
− ∂RHS

∂pgap

)
· ∂p

gap

∂xm
= ∂RHS

∂xm
− ∂LHS

∂xm
.

We have that the LHS is decreasing in pgap and the RHS is increasing in pgap. Also,
∂LHS/∂xm > 0 given pgap < 0, and

∂RHS

∂xm
= α

(
−pgap − ψ + xm

k

)
eα(WM (pgap,x)−Wm(pgap,x)) =

α
(

−
(
pgap + xM − xm

2κ

)
− pSpot (x)

)
eα(WM (pgap,x)−Wm(pgap,x)) <

α
(

−xM − xm
3κ − pSpot (x)

)
eα(WM (pgap,x)−Wm(pgap,x)) < 0

given that h (x) > 0 is equivalent to pSpot (x) > 0 under λ1 = λ2. Hence, ∂pgap/∂xm > 0.
That is we have a tighter optimal price ceiling policy when xm decreases holding xM fixed.

We then consider increasing xM while holding xm fixed. Again, the sign of h (x) changes
with xM . This time, we focus on the case where xM changes within the range such that
h (x) < 0. That is an binding price floor policy is optimal. This corresponds to Figure 2
towards the right and top. If h (x) < 0, we can rewrite (50) as

κpgap − xM −xm

2
3κpgap − xM −xm

2
= eα(Wm(pgap,x)−WM (pgap,x)) (52)
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where

WM (pgap,x) = pgapxM+
(
ψ − x1 + x2

2κ

)
xM−3κ

2

(
pgap − x1 + x2

2κ

)2
−2pgap (x1 + x2)+

(x1 + x2)2

2κ and

Wm (pgap,x) = pgapxm +
(
ψ − x1 + x2

2κ

)
xm + κ

2

(
pgap − x1 + x2

2κ

)2
.

Taking derivatives w.r.t. xM for both sides of (52), we get

∂LHS

∂pgap
· ∂p

gap

∂xM
+ ∂LHS

∂xM
= ∂RHS

∂pgap
· ∂p

gap

∂xM
+ ∂RHS

∂xM
.

Rearrange, we get

(
∂LHS

∂pgap
− ∂RHS

∂pgap

)
· ∂p

gap

∂xM
= ∂RHS

∂xM
− ∂LHS

∂xM
.

We have that the LHS is increasing in p (hence also pgap) and the RHS is decreasing in p

(hence also pgap). Also, ∂LHS/∂xM < 0 given pgap > 0, and

∂RHS

∂xM
= α

(
−pgap − ψ + xM

k

)
eα(Wm(pgap,x)−WM (pgap,x)) =

α
(

−
(
pgap − xM − xm

2κ

)
− pSpot (x)

)
eα(Wm(pgap,x)−WM (pgap,x)) >

α
(
xM − xm

3κ − pSpot (x)
)
eα(Wm(pgap,x)−WM (pgap,x)) > 0

given that h (x) < 0 is equivalent to pSpot (x) < 0 under λ1 = λ2. Hence, ∂pgap/∂xM > 0.
That is we have a tighter optimal price floor policy when xM increases holding xm fixed.

A.5.2 FOC for Fixed Optimal Price Controls

We analyze price controls in a two-agent economy with symmetric parameters: identical α, κ,
and independent, mean-zero inventory shocks x1, x2 ∼ N (0, σ2). We consider the price floor
and ceiling policy: (pceil, pfloor). Define the welfare gain from this policy as a function of the
pair (pceil, pfloor):

∆ (pceil, pfloor) = E
[
U1
(
W

floor=pfloor,ceiling=pceil

1 (x)
)]

− E
[
U1
(
W Spot

1 (x)
)]
.

Then we can find the optimal (pceil, pfloor) by looking at the first-order conditions of ∆.
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The explicit form of ∆ (pceil, pfloor) is given by:

∆ (p̄) = −
¨
x1∈A, x2∈A

exp
(

−α
(
ψx1 − x2

1
2κ

))
dF (x1) dF (x2)

−
¨
x1∈Ac, x1+x2∈B

exp
(

−α
(1

2κp̃
2
floor + pfloorx1

))
dF (x1) dF (x2)

−
¨
x2∈Ac, x1+x2∈B

exp
(
α

(
3
2κp̃

2
floor + 2p̃floor (x1 + x2) − pfloorx1 + (x1 + x2)2

2κ

))
dF (x1) dF (x2)

+
¨
x1+x2∈B

exp
(

−α
(
ψx1 + 1

8
(x1 + x2)2

κ
− x1

(x1 + x2)
2κ

))
dF (x1) dF (x2)

−
¨
x1∈C, x2∈C

exp
(

−α
(
ψx1 − x2

1
2κ

))
dF (x1) dF (x2)

−
¨
x1∈Cc, x1+x2∈D

exp
(

−α
(1

2κp̃
2
ceil + pceilx1

))
dF (x1) dF (x2)

−
¨
x2∈Cc, x1+x2∈D

exp
(
α

(
3
2κp̃

2
ceil + 2p̃ceil (x1 + x2) − pceilx1 + (x1 + x2)2

2κ

))
dF (x1) dF (x2)

+
¨
x1+x2∈D

exp
(

−α
(
ψx1 + 1

8
(x1 + x2)2

κ
− x1

(x1 + x2)
2κ

))
dF (x1) dF (x2),

where p̃floor = pfloor−ψ, p̃ceil = pceil−ψ andA = {x > −κp̃floor} , B = {x > −2κp̃floor} , C =
{x < −κp̃ceil} , D = {x < −2κp̃ceil}.

Taking derivatives w.r.t. pfloor we get

∂∆
∂pfloor

= α

¨
x1<−κ(pfloor−ψ), x1+x2>−2κ(pfloor−ψ)

H (x1, x2,pfloor) dF (x1) dF (x2) ,

where

H (x1, x2,p) = (κ (p− ψ) + x1) exp
(

−α
(1

2κ (p− ψ)2 + px1

))

− (3κ (p− ψ) + (2x1 + x2)) exp
(
α

(
3
2κ (p− ψ)2 + 2 (p− ψ) (x1 + x2) − px2 + (x1 + x2)2

2κ

))
.

We have x1 < x2 in the entire integral region. Thus, H(x1, x2, pfloor) is the same as the RHS
of the first-order condition (49) for point-wise optimal price floor policy under λ1 = λ2 = 1.
We can interpret ∂∆/∂pfloor as the integral of the point-wise first-order condition within the
entire binding region.
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Taking derivatives w.r.t. pceil we get

∂∆
∂pceil

= α

¨
x1>−κ(pceil−ψ), x1+x2<−2κ(pceil−ψ)

H (x1, x2,pfloor) dF (x1) dF (x2) .

This time, we have x1 > x2 in the entire integral region. Thus, H(x1, x2, pceil) is the same as
the RHS of the first-order condition (47) for point-wise optimal price ceiling policy under
λ1 = λ2 = 1. We can interpret ∂∆/∂pceil as the integral of the point-wise first-order condition
within the entire binding region.

An interior optimal price floor policy satisfy the first-order condition ∂∆/∂pfloor = 0,
while an interior optimal price ceiling policy satisfy the second-order condition ∂∆/∂pceil = 0.
In addition, if we consider symmetric price floor and ceiling, where we set pceil − ψ =
ψ − pfloor = p̄ ≥ 0. Then an interior optimal symmetric price control policy satisfy the
first-order condition:

0 = d∆
dp̄

= ∂∆
∂pfloor

· dpfloor
dp̄

+ ∂∆
∂pceil

· dpceil
dp̄

= −∂∆ (ψ + p̄, ψ − p̄)
∂pfloor

+ ∂∆ (ψ + p̄, ψ − p̄)
∂pceil

= −α
¨
x1<κp̄, x1+x2>2κp̄

H (x1, x2,ψ − p̄) dF (x1) dF (x2)+

α

¨
x1>−κp̄, x1+x2<−2κp̄

H (x1, x2,ψ + p̄) dF (x1) dF (x2).

Though we could get clean comparative statics for the point-wise price policy case, when
pfloor and pceil enter the limits of the integration, things get complex. For example, an
increase in α asks for a tighter point-wise optimal policy control, but in the fixed price control
setting, a tighter policy (a lower pceil or a higher pfloor) also enlarges the regions where the
price ceiling or floor is binding. Hence, we see the U shape in the comparative statics figure
for the optimal fixed price control policy.
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