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1 Introduction

Consider the Myerson and Satterthwaite [1] (henceforth MS) second-best optimization problem. Fix buyer
and seller value distributions FB, FS satisfying marginal revenue/cost regularity. For simplicity suppose
FB, FS are commonly supported on [0, 1]. The optimization problem for second-best welfare, which we will
call SBW (FB, FS), is:

SBW (FB, FS) = max
x(vB,vS)

ˆ
1

0

ˆ
1

0

(vB − vS) x (vB, vS)dFB (vB)dFS (vS)

s.t.
ˆ

1

0

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
−

(
vS +

FS (vS)

fS (vS)

)
x (vB, vS)dFB (vB)dFS (vS) > 0

Note that, in the unconstrained problem of maximizing first-best trade, it is clear that optimal welfare is
monotone under first-order stochastic dominance shifts of the distributions of buyer and seller values. It is
not immediately clear that this monotonicity also applies to the second-best problem; the issue is that it is
not immediately clear whether the revenue constraint behaves well under stochastic dominance shifts.

In this note I prove Claim 1, that second-best welfare increases when we FOSD-increase the distribution
FB. Note that a similar statement for lowering FS follows essentially symmetrically – we will for simplicity
only analyze the buyer case.

Claim 1. F̃B >FOSD FB implies that SBW
(
F̃B, FS

)
>FOSD SBW (FB, FS)

2 Intuition

We will prove Claim 1 by taking the optimal quantile trade function associated with FB, and showing that it
satisfies constraints and achieves weakly higher welfare under F̃B. In Subsection 3.1, I show that weakly
higher welfare is achieved, which is straightforwards. I show constraint satisfaction in 3.2. This is more
difficult; it is not immediately clear why the quantile trade function should behave well with respect to the
constraints, since the constraints involve marginal revenues and costs which are relatively complex nonlinear
functions of value distributions. However, while marginal revenues and marginal costs are not necessarily
monotone with respect to FOSD-shifts of the distributions FS and FB, certain integrals of MR’s and MC’s
are. With a few integration-by-parts tricks, the constraints for the second-best optimization problem can be
written only in terms of these integrals, and we use this to demonstrate constraint satisfaction.

3 Proof

We will prove Claim 1 by taking the optimal x (vB, vS) function under FB, FS and using it to construct a
candidate x (vB, vS) function for F̃B, FS which is feasible, and attains weakly higher welfare. We will refer
to the optimal x (·, ·) function under FB, FS as x∗ (·, ·).
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Define the inverse quantile functions

ṽB (qB) = F̃−1

B (qB) , vB (qB) = F−1

B (qB) , vS (qS) = F−1

S (qS)

We construct a candidate x̃ (·, ·) function for F̃B, FS as follows:

Definition 1. Define x̃ (·, ·) as:
x̃ (vB, vS) = x∗

(
vB

(
F̃B (vB)

)
, vS

)
in words, x̃ (·, ·) and x∗ (·, ·) are the same in quantile space; that is, x̃ (ṽB, vS) is equal to x∗ (vB, vS)

evaluated at vB equal to the F-quantile equal to the F̃ (ṽ). Or, in other words, if the 50th percentile buyer
and seller trade under x∗ (·, ·), they also trade under x̃ (ṽB, vS).

We will prove Claim 1 by showing that:

Claim 2. Under distributions F̃B, FS,

1. The constructed x̃ (vB, vS) attains weakly higher welfare than SBW (FB, FS).

2. The constructed x̃ (vB, vS) attains nonnegative expected revenue.

We separately prove 1. and 2.

3.1 Proof of 1

Note that we can specify both x∗ (·, ·) and x̃ (·, ·) in quantile space; that is, define

y (qB,qS) = x∗ (vB (qB) , vS (qS))

Note that, by construction of x̃ (·, ·), we also have that

y (qB,qS) = x̃ (ṽB (qB) , vS (qS))

Now consider the objective function of the optimization problem, which we will call:

SW (x (·, ·) , FB (·) , FS (·)) =
ˆ

1

0

ˆ
1

0

(vB − vS) x (vB, vS)dFB (vB)dFS (vS)

We can change variables to quantile space, writing:

SW (x (·, ·) , FB (·) , FS (·)) =
ˆ

1

0

ˆ
1

0

(vB (qB) − vS (qS))y (qB,qS)dqBdqS

Likewise,

SW
(
x̃ (·, ·) , F̃B (·) , FS (·)

)
=

ˆ
1

0

ˆ
1

0

(ṽB (qB) − vS (qS))y (qB,qS)dqBdqS

By definition, F̃B >FOSD FB implies that all quantiles of F̃B are higher than those of FB, that is,
ṽB (qB) > vB (qB) for all qB. Hence,

ṽB (qB) − vS (qS) > vB (qB) − vS (qS) ∀qB,qS

Hence, since all other terms in the integral are identical, we have that

SW
(
x̃ (·, ·) , F̃B (·) , FS (·)

)
> SW (x (·, ·) , FB (·) , FS (·))

proving part 1 of Claim 2.
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3.2 Proof of 2

We write total revenue as:

Rev (x (·, ·) , FB, FS) =
ˆ

1

0

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
−

(
vS +

FS (vS)

fS (vS)

)
x (vB, vS)dFB (vB)dFS (vS)

And, we need Rev (x (·, ·) , FB, FS) > 0. First, note that we can split this into the buyer and seller pieces:

Rev (x (·, ·) , FB, FS) =
ˆ

1

0

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
x (vB, vS)dFB (vB)dFS (vS)

−

ˆ
1

0

ˆ
1

0

(
vS +

FS (vS)

fS (vS)

)
x (vB, vS)dFB (vB)dFS (vS)

For the seller piece, we can write:
ˆ

1

0

ˆ
1

0

(
vS +

FS (vS)

fS (vS)

)
x∗ (vB, vS)dFB (vB)dFS (vS) =

ˆ
1

0

ˆ
1

0

(
vS (qS) +

FS (vS (qS))

fS (vS (qS))

)
y (vB, vS)dqBdqS

=

ˆ
1

0

ˆ
1

0

(
vS +

FS (vS)

fS (vS)

)
y (vB, vS)dF̃B (vB)dFS (vS)

So, the revenue from sellers is the same under x∗ (·, ·) and x̃ (·, ·). In words, if we hold fixed the quantile
trade function y (vB, vS) when moving from FB to F̃B, all seller types face the same marginal probability of
trade, hence revenue from sellers is unchanged.

So, we only need to show that revenue from buyers is weakly greater under x̃, F̃, that is:

ˆ
1

0

ˆ
1

0

(
vB −

1 − F̃B (vB)

f̃B (vB)

)
x̃ (vB, vS)dF̃B (vB)dFS (vS) >

ˆ
1

0

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
x∗ (vB, vS)dFB (vB)dFS (vS)

(1)

3.2.1 Buyer Revenue

For arbitrary implementable x (·, ·), the buyer revenue is:

BRev (x (·, ·) , FB (·)) =
ˆ

1

0

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
x (vB, vS)dFB (vB)dFS (vS)

In this notation, the constraint (1) can be written as:

BRev
(
x̃ (·, ·) , F̃B (·)

)
> BRev (x∗ (·, ·) , FB (·)) (2)

We will rearrange this doing a few integrations by parts. First, since the seller term dFS (vS) doesn’t
enter into the integrand, we integrate it out. Define

p (vB; x (·, ·)) =
ˆ

1

0

x (vB, vS)dFS (vS)

In the remainder of this subsection, we will suppress the dependence of p (·) on x (·, ·), but this will be
important later.

Implementability requires that p (·) is nondecreasing. Hence, we have

BRev =

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)(ˆ
1

0

x (vB, vS)dFB (vB)

)
dFS (vS) =

ˆ
1

0

(
vB −

1 − FB (vB)

fB (vB)

)
p (vB)dFB (vB)
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Now, we’ll replace p (vB) by
´ p(vB)

0
dp, giving:

BRev =

ˆ
1

0

ˆ p(vB)

0

(
vB −

1 − FB (vB)

fB (vB)

)
dpdFB (vB)

The benefit of writing this is that we can interchange the order of integration. Defining v̄B (p) = p−1 (vB),
this gives us:

BRev =

ˆ
1

0

ˆ
1

v̄B(p)

(
vB −

1 − FB (vB)

fB (vB)

)
dFB (vB) dp

This is measure-theoretically legitimate assuming marginal revenue is bounded, and the bounds are correct
because p (vB) is an increasing function.

Now, we focus on the inner integral. For some p, consider:

dBRev =

ˆ
1

v̄B(p)

(
vB −

1 − FB (vB)

fB (vB)

)
dFB (vB)

=

ˆ
1

v̄B(p)

(
vB −

1 − FB (vB)

fB (vB)

)
fB (vB)dvB

=

ˆ
1

v̄B(p)
vBfB (vB)dvB − (1 − FB (vB))dvB

Now, ˆ
1

v̄B(p)
vBfB (vB)dvB = E [vB | vB > v̄B (p)]P [vB > v̄B (p)]

ˆ
1

v̄B(p)
(1 − FB (vB))dvB = E [vB − v̄B (p) | vB > v̄B (p)]P [vB > v̄B (p)]

Hence,
ˆ

1

v̄B(p)
vBfB (vB)dvB − (1 − FB (vB))dvB = E [v̄B (p) | vB > v̄B (p)]P [vB > v̄B (p)]

= v̄B (p) (1 − FB (v̄B (p)))

In sum, we have shown that

BRev =

ˆ
1

0

dBRevdp =

ˆ
1

0

v̄B (p) (1 − FB (v̄B (p))) dp (3)

3.2.2 Properties of p (vB; x (·, ·) , FB)

Now, by our definition of p (vB; x∗ (·, ·)), we have:

p (vB; x∗ (·, ·)) =
ˆ

1

0

x∗ (vB, vS)dFS (vS)

=

ˆ
1

0

y (FB (vB) , FS (vS))dqS

Whereas,

p (vB; x̃ (·, ·)) =
ˆ

1

0

y
(
F̃B (vB) , FS (vS)

)
dqS
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Hence, p (vB; x̃ (·, ·)) = p
(
vB

(
F̃ (vB)

)
; x∗ (·, ·)

)
. We have that p (vB; x∗ (·, ·)) is an increasing function

of vB, and by FOSD, vB
(
F̃ (vB)

)
6 vB, hence

p (vB; x̃ (·, ·)) 6 p (vB; x∗ (·, ·)) ∀vB

This is slightly hard to follow; essentially what we are saying is that, if we have fixed x∗ (·, ·) , x̃ (·, ·) to
have the same quantile trade function y (·, ·), then since quantiles of F̃ are higher than those of F, marginal
trade probabilities of any fixed value vB are lower for x̃ (·, ·) , F̃ than x∗ (·, ·) , F.

Construct the inverse functions as v̄B (p; x∗ (·, ·)) = p−1 (vB; x∗ (·, ·)), and likewise for v̄B (p; x̃ (·, ·)).
Then, we have that:

v̄B (p; x̃ (·, ·)) > v̄B (p; x∗ (·, ·)) ∀p (4)

Finally, note that

v̄B (p; x∗ (·, ·)) =
{
vB :

ˆ
1

0

y (FB (vB) , FS (vS))dqS = p

}

v̄B (p; x̃ (·, ·)) =
{
vB :

ˆ
1

0

y
(
F̃B (vB) , FS (vS)

)
dqS = p

}
This immediately implies that

FB (v̄B (p; x∗ (·, ·))) = F̃B (v̄B (p; x̃ (·, ·))) ∀p (5)

Finally, we are done. Combining inequality (4) and equality (5), and plugging into expression (3) for
BRev, we have that

BRev (x∗ (·, ·) , FB (·)) =
ˆ

1

0

v̄B (p; x∗ (·, ·)) (1 − FB (v̄B (p))) dp

6
ˆ

1

0

v̄B (p; x̃ (·, ·))
(
1 − F̃B (v̄B (p))

)
dp = BRev

(
x̃ (·, ·) , F̃B (·)

)
This proves the inequality in (2), proving part 2 of Claim 2 and thus the original Claim 1.
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