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1 Introduction

What are the distinct roles of markets for goods, and markets for risk?

This paper develops a tractable model to answer this question. Money and commodities
are traded in spot markets, which achieve allocative efficiency by redistributing the commodity
across agents to maximize its money-equivalent value. Spot markets allocate commodities
efficiently, but do not generally distribute wealth efficiently across uncertain states of the
world. The role of idealized financial markets is to transform the wealth generated by efficient
spot markets into state-contingent payoffs that optimally share risks across agents.

When financial markets are absent or incomplete, market outcomes are allocatively efficient,
but risks generated by spot markets are not optimally shared across agents. In such settings,
interventions in spot markets that reduce allocative efficiency can be welfare-enhancing, if
they sufficiently improve risk sharing. We show that price controls in commodity markets
can be Pareto-improving, in expected-utility terms, through their benefits for risk-sharing.

Our model has two goods: “money”, and a real commodity, such as oil, wheat, or steel.
Agents have a concave production technology which converts the commodity into money-
equivalents: in other words, conditional on shock realization, agents’ utility is quasilinear
over the commodity and money. Ex-ante, agents are risk-averse over money, with CARA
utility with potentially different risk aversions. The only source of uncertainty in the economy
is agents’ random endowments of the commodity. This setting is very general, but can be
thought of as modelling trade and monetary risk sharing in any real factor of production.

What is the social first-best outcome? The social planner, in this setting, essentially
solves a two-stage problem. Conditional on any realization of shocks, market outcomes should
be allocatively efficient: commodities should be in the hands of those agents who have the
most efficient technologies to convert them into money-equivalent consumption, in order to
maximize the consumption available to society in each state of the world. Risk sharing should
be optimal: shocks to aggregate inventory, optimally filtered through agents’ production tech-
nologies, imply that society faces risky aggregate money-equivalent consumption; aggregate
consumption shocks should be divided proportionally across agents according to their risk
aversions, following Borch (1962) and Wilson (1968).

There is a simple and classical Arrow-Debreu implementation of the first-best outcome,
which can be thought of as a backward induction process. Allocative efficiency is achieved
through spot markets, markets which open after inventory shocks are realized, in which money
and commodities are traded for each other. Agents’ preferences over goods are quasilinear,
so Walrasian equilibrium in spot markets is unique and maximizes society’s aggregated
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money-metric utility, as in the social planner’s problem. Risk sharing is achieved through
financial markets: when agents can trade contingent claims on states of the world – the entire
vector of inventory shocks – then financial markets decentralize the social planner’s first-best
solution.

The core departure point of our paper, as in the classic literature on incomplete markets,
is that financial markets are likely incomplete in practice, so the planner’s first-best is likely
unattainable. We thus consider two more realistic cases: no financial markets, and financial
markets limited to simple commodity derivative contracts.

When there are no financial markets, spot markets are allocatively efficient, but the
distributions of wealth induced by Walrasian equilibria in spot markets fail to efficiently
distribute risk among agents. A simple way to see why this must be the case is that spot
market equilibria are functions only of realized inventory shocks and production technologies;
they do not depend on risk aversions, and thus spot market equilibria cannot possibly share
monetary risk according to risk aversions.

What is the nature of these distortions? In the socially optimal division of wealth between
agents, all agents’ monetary wealths scale linearly with aggregate inventory shocks, with
a quadratic “aggregate concavity” term. The equilibrium outcome features a number of
distortions. “Market makers” are paid positively for volatility exposure, and correspondingly
“liquidity takers” overpay for noise in aggregate inventory. There is a pecuniary risk externality:
agents who tend to be net buyers or sellers suffer risk because they buy or sell at noisy prices.

The inefficiency of spot markets in our model implies that price controls can be Pareto-
improving. Price controls unambiguously decrease allocative efficiency, as they induce
rationing and deadweight loss. However, they can improve risk-sharing, since they redistribute
wealth towards agents with extreme inventory shocks, who have high marginal utility of
wealth. When these insurance benefits are larger than the allocative efficiency losses, all
agents achieve higher expected utility under price controls relative to free spot markets.

We next analyze the case of realistically incomplete financial markets. Suppose agents can
trade cash-settled futures contracts, whose payouts are proportional to realized spot prices.
We analytically solve for equilibria with spot markets and futures contracts, for arbitrary
sets of agents’ primitives. We can then evaluate the extent to which futures contracts can
approximate the first-best outcome of complete markets and perfect risk sharing.

Futures contracts allow agents to trade directional price risk. Agents who expect to be
buyers suffer from price increases, and agents who expect to be sellers suffer from price
decreases; ex-ante futures trade allows buyers and sellers to cross-insure these price risk
exposures. Futures markets are Pareto-improving relative to spot markets alone. However,
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they generally cannot implement first-best outcomes, since they span only a one-dimensional
subspace of the N -dimensional space of inventory shocks.

What drives the pricing of futures contracts? A classic idea, going back to Keynes (1930),
is that futures risk premia reflect hedging demand: if most futures activity is driven by
commodity buyers hedging, their long positions push futures prices up, creating a premium
for liquidity providers on the short side. Hirshleifer (1990) shows that this idea does not
survive in general equilibrium. We extend this result to incomplete markets, and offer a
new intuition for it. In our model, individual agents’ futures demand is driven by hedging
pressure: optimal futures positions move one-for-one with expected spot market purchases.
But spot markets must clear, so expected spot market purchases always sum to zero: what
buyers expect to buy, sellers expect to sell. This implies that buy-side and sell-side hedging
demands always exactly cancel. Hedging pressure thus drives trade volume in futures market,
but does not influence futures risk premia.

Rather than demand pressure, futures risk premia in our model – just as in the complete-
markets model of Hirshleifer (1990) – derive from consumption correlations. Futures contracts
pay more when spot prices are high; when the commodity has positive value, spot prices are
high in states where aggregate inventory is low, society’s wealth is low, and marginal utility
is high. Since futures are valuable insurance against consumption risk, agents are willing to
accept low expected returns on futures contracts, causing risk premia to be negative.

In our model, futures markets do not eliminate the gains from price controls. There are
settings where futures markets are not used in equilibrium, but price controls are Pareto
improving. There are also settings where price controls increase welfare when imposed
alongside functioning futures markets.

Our primary contribution is a tractable incomplete-markets general equilibrium model,
which distinguishes the roles of spot markets and financial markets in achieving efficient
outcomes under uncertainty, and shows where realistic financial securities fall short of idealized
Arrow securities. While straightforward, our model is, to our knowledge, new to the literature.
Technically, we borrow some elements from Zhang (2022), who studies the setting of derivative
market manipulation.

We contribute to a classic literature on general equilibrium in incomplete markets, surveyed
in Geanakoplos (1990) and Magill and Quinzii (2002). Our model imposes two important
restrictions relative to this literature.

First, we assume agents’ preferences between goods and money are quasilinear. This creates
a clean analytical separation between the roles of spot and financial markets: spot markets
can be thought of as “converting” goods into wealth, and financial markets have the simple
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role of optimally dividing this “produced” aggregate wealth across agents. Quasilinearity
removes income effects, thus avoiding many of the pathologies in the classic GEI literature,
such as the possibility of equilibrium indeterminacy (Hart, 1975) and constrained inefficiency
(Stiglitz, 1982; Geanakoplos and Polemarchakis, 1986). Equilibrium outcomes in our setting
are constrained-efficient in the sense of Geanakoplos and Polemarchakis, since financial trades
do not affect spot prices and thus do not generate pecuniary externalities. We explore a
different kind of intervention: we show that direct distortions to spot markets, which cause
outcomes to deviate from competitive-equilibrium allocations, can be Pareto improving if
they sufficiently improve risk-sharing.

Second, we further assume inventory shocks are normally distributed, the production
technology is quadratic, and agents have CARA utility over wealth. These strong assumptions
allow us to solve our model analytically.

We contribute to a classic literature on futures contracts, by analyzing futures in a GEI
setting. A closely related paper is Hirshleifer (1990), who analyzes futures risk premia
assuming complete markets. By imposing stronger functional-form restrictions on utility
and the distributions of inventory shocks, we can solve our model in the case of incomplete
markets; this allows us to explicitly analyze the gap between futures equilibrium outcomes
and first-best outcomes, and how policies such as price controls can complement futures
markets in improving welfare.

In decomposing total welfare into allocative-efficiency and risk-sharing components, we
also relate to Dávila and Schaab (2022) and Dávila and Schaab (2023), who propose a general
framework to decompose welfare effects in heterogeneous-agent models; our “allocative
efficiency” and “risk-sharing” notions correspond to the “aggregate efficiency” and “risk-
sharing” components of the general setting of Dávila and Schaab (2022).

We are loosely related to a literature on incomplete markets and credit cycles. Krishna-
murthy (2003) and Lorenzoni (2008) analyze the role of market incompleteness in amplifying
credit cycles, and Dávila and Korinek (2018) characterize externalities and optimal corrective
policy in such settings. Our model ignores borrowing and capital accumulation, focusing
instead on the pecuniary externalities generated by spot markets.

The paper proceeds as follows. Section 2 introduces the model. Section 3 characterizes
first-best outcomes. Section 4 analyzes outcomes in spot markets, together with complete
Arrow securities, and then in autarky in the absence of financial markets. Section 5 analyzes
price controls. Section 6 analyzes outcomes with futures markets. We discuss our results and
conclude in Section 7.
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2 Model

Notationally, we will use bold symbols to represent vectors, writing for example x to mean
the vector (x1 . . . xN).

There are N “types” of consumers indexed by i, with a representative consumer of each
type who behaves competitively, ignoring price impact.1 For expositional simplicity, we will
refer to the representative consumer of type i as simply “consumer i”. Consumers have CARA
utility over monetary wealth, with possibly different risk aversions αi:

Ui (Wi) = −e−αiWi (1)

There are two goods: money, and a single commodity. Consumer i is endowed with an initial
constant amount mi of money, and all consumers are allowed to hold infinitely large positive
or negative positions in goods and money. We think of each consumer i as having a quadratic
“production technology”, which converts any positive or negative quantity zi of goods into
wealth:

Wi = mi + ψzi − z2
i

2κi︸ ︷︷ ︸
Production Technology

(2)

Initial constant money endowments mi have no effect on behavior under CARA utility, since
mi simply scales Ui (Wi) in (1) by a constant factor. Thus, we proceed to set mi = 0 for all i,
so we can write Wi simply as a function of zi:

Wi (zi) = ψzi − z2
i

2κi
(3)

Wealth Wi (zi) consists of a linear component ψzi, which pays the consumer ψ per unit of the
commodity; and a quadratic “inventory cost” component z2

i

2κi
, which implies that the marginal

monetary value of the good is decreasing in the amount of the good held. Consumers with
higher κi have lower inventory costs, and thus more elastic demand for the good. We will
allow the edge case of κi = 0: we interpret a consumer with κi = 0 as having perfectly
inelastic demand for exactly zi = 0 units of the commodity, attaining −∞ wealth if she
finishes with any other value of zi.

In the baseline model, we assume the only source of uncertainty is that consumers receive
inventory shocks. Consumer i begins with a random endowment xi of the commodity. We
assume the xi are independent normal random variables, but the mean µi and variance σ2

i of
1This is equivalent to assuming there is a unit measure of identical atomistic consumers of each type, who

behave competitively because their trades are too small to move prices.

5



inventory shocks may vary across consumers. If i receives inventory shock xi, and purchases
qi of the commodity at price p per unit, her final wealth is:

Wi = ψ (xi + qi) − (xi + qi)2

2κi
− pqi (4)

We call Wi (zi) a “production technology” because it is intuitive to think of zi being
literally transformed into units of consumable wealth. After “transformation” of zi, the
economy reduces to a single-good problem: each consumer has some amount of produced
wealth, which can be redistributed across consumers arbitrarily, since money is tradable and
consumers have deep pockets. Of course, it is isomorphic to think of Wi (zi) as a preference
function for zi rather than a production technology; in these terms, consumer i gets utility
equivalent to having Wi (zi) extra dollars from having zi units of the commodity.

There are two periods. The first period is a market for risk: consumers may trade financial
securities which alter their endowments of goods or money in future states of the world. In
the following sections, we will analyze three financial market structures: complete financial
markets with Arrow securities; no financial markets; and commodity futures contracts, which
we will show constitute an incomplete financial market. We ignore consumption in the first
period, so all asset trades in the first period transfer consumption across future states of the
world.

In the second period, consumers’ inventory shocks xi are realized. The second period is a
market for goods, or in traditional terms, a spot market: conditional on financial securities
trades made in period 1, and inventory shock realizations x1 . . . xN , consumers trade money
for the commodity.

2.1 Discussion of Model Assumptions

Formally, our setting is a simple case of general equilibrium with incomplete markets, sometimes
referred to as GEI. Our key simplification is that we assume consumers’ preferences over
goods and money are quasilinear. In (3), consumers’ wealth is the sum of money and a
concave function of commodity holdings. Thus, in spot markets, we have a partial-equilibrium
supply-demand model, in the spirit of Marshall (1920). Equilibria in spot markets are unique;
equilibrium prices and quantities are unaffected by the distribution of “money” across agents;
and equilibria increase society’s money-metric welfare by an amount equal to the classic
consumer and producer surplus triangle areas.

Our model can be thought of as a generalization of partial equilibrium analysis to settings
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with risk. We do this simply by assuming that consumers have concave utility over the
money-metric wealth generated by spot market allocations. This drives the clean separation
in our model between the roles of markets for goods and markets for risk. Spot markets
facilitate allocative efficiency, maximizing the sum of money-metric wealth Wi (zi) across
consumers. Financial markets facilitate risk-sharing, redistributing this wealth depending on
consumers’ risk preferences. This clean decomposition is possible because of quasilinearity:
in the general case with income effects, spot markets and financial markets are entangled in
ways that make it difficult to isolate the respective roles they play.

Quasilinearity also eliminates many of the known pathologies in the GEI literature. In
general GEI models, there may be multiple equilibria, and equilibria need not be efficient or
even constrained-efficient (Magill and Quinzii, 2002). These pathologies are mainly driven by
income effects, which link financial market trades to spot market outcomes. Since our model
has no income effects, equilibria are unique and are always constrained-efficient in the sense
of Geanakoplos and Polemarchakis (1986), though we will discuss a different sense in which
equilibria are inefficient.

In summary, our setting can be thought of as a partial equilibrium incomplete-market
model. Its main benefits are that it is intuitive and tractable relative to general GEI models.
Like classic partial-equilibrium models, our setting is less appropriate for studying goods that
are “large” enough that income effects on demand are important.

Normal Shocks, Quadratic Technologies, CARA Utility. In addition to quasilin-
earity, we assume that inventory shocks are normally distributed, production technologies are
quadratic, and utility is CARA. These assumptions yield analytic expressions for expected
utility, and allow us to explicitly solve for futures market outcomes in Section 6. Relaxing
any subset of these assumptions, while retaining quasilinearity, would preserve existence,
uniqueness, and constrained optimality of equilibria. The model would still admit a clean
separation between allocative efficiency and risk-sharing, and could in principle be solved
numerically.

Differences from CARA-Normal Models. There are subtle, but very important,
differences between our model and the standard “CARA-normal” setting. In many models,
zi is thought of as a financial asset, which has risky direct monetary payoffs ψzi, where ψ is
a random variable. This generates a risk-sharing motive for trade in financial markets: prior
to the realization of ψ, holding zi is risky, so consumers trade the financial asset according to
their risk aversions. However, there is no spot market in these models: after ψ is realized,
the financial asset is equivalent to money, and there is no further motive for trade.

Our model is different because zi represents not a financial asset, but a generalized
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commodity, which is distinct from money even after uncertainty is realized. The good is
converted to money (or money-equivalents), through the quadratic agent-dependent production
technology in (2). After inventory shocks xi are realized, even though there is no residual
uncertainty, consumers trade to improve allocative efficiency, moving goods into the hands
of those who are most effective at converting goods into money. In reality, our model could
be thought of as representing commodities such as oil or wheat being sold from producers
and intermediaries to consumers. For simplicity, we assume ψ is constant, so all price risk is
generated by inventory shocks xi.

Our model also abstracts entirely from common values, information frictions, and other
forces analyzed in the rational expectations equilibrium literature following Grossman and
Stiglitz (1980). We assume futures are traded before agents receive any signals, so there is no
scope for adverse selection. The only imperfection is market incompleteness: Arrow-style
state-contingent contracts exist, but fail to span the full state space.

3 The First-Best Outcome

Conditional on any vector of inventory shocks x, the social planner can freely reallocate
commodities across consumers; that is, the social planner chooses functions z1 (x) to zN (x),
satisfying, pointwise in x, the aggregate resource constraint:

N∑
i=1

zi (x) =
N∑
i=1

xi (5)

It is of course equivalent to assume that the social planner chooses the net trade amounts
qi (x) rather than the final inventories. Second, the social planner can freely reallocate wealth
across agents, pointwise in x. Conditional on the planner’s choice of final inventories, society’s
aggregate wealth is:

W (z (x)) ≡
N∑
i=1

Wi (zi) =
N∑
i=1

ψzi (x) − (zi (x))2

2κi
(6)

The social planner thus chooses final monetary wealths of agents, which we will call Gi (x),
subject to the constraint, pointwise in x, that:

N∑
i=1

Gi (x) ≤ W (z (x)) (7)
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Thus, in sum, the social planner chooses commodity allocations zi (x) and money allocations
Gi (x), satisfying (5) and (7). An allocation is Pareto efficient if it is not expected-utility
dominated by some other allocation; formally, under our assumption of CARA utility, G̃i (x)
Pareto-dominates Gi (x) if:

E
[
−e−αiG̃i(x)

]
≥ E

[
−e−αiGi(x)

]
∀i, and E

[
−e−αiG̃i(x)

]
> E

[
−e−αiGi(x)

]
for some i

(8)
To handle probability-zero edge cases, we will additionally strengthen this definition by saying
that G̃i (x) Pareto-dominates Gi (x) if G̃i (x) ≥ Gi (x) for all i and all realizations of x, and
G̃i (x) > Gi (x) for some i and x, even if the set of x values on which the inequality is strict
has measure zero.

Notice that, while commodity allocations zi (x) do not explicitly enter into (8), they
matter because they constrain money allocations Gi (x) through the wealth constraint (7).

Proposition 1. Pareto-efficient commodity allocations z∗
i (x) and money allocations G∗

i (x)
are characterized by two conditions: spot market allocative efficiency, and optimal risk-sharing.
Spot market allocative efficiency requires that commodity allocations z∗

i (x) satisfy:

z∗
i (x) = κi∑N

j=1 κj

N∑
j=1

xj (9)

In any efficient spot market allocation, society’s aggregate wealth is:

W ∗ (x) ≡ W (z∗ (x)) = ψ
N∑
i=1

xi −

(∑N
i=1 xi

)2

2∑N
i=1 κi

(10)

Optimal risk-sharing requires that wealth is shared as:

G∗
i (x) = Ci + α−1

i∑N
j=1 α

−1
j

W ∗ (x) , (11)

where ∑N
i=1 Ci = 0.

The intuition behind Proposition 1 is straightforward. In any Pareto-efficient allocation,
spot market commodity allocations z∗

i (x) must be efficient, in the sense that commodities
are distributed in a way which optimally produces money, given consumers’ heterogeneous
production technologies Wi (zi). If this were not the case for any realization x, it would
be possible to simply generate more wealth for society, and redistribute this wealth in
a way that increases consumers’ utility. Expression (9) is intuitive: since all consumers
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have quadratic inventory costs, the aggregate endowment ∑N
j=1 xj is simply divided among

consumers proportional to their inventory capacities κi; higher-κi consumers have more elastic
demand, suffering lower costs for absorbing inventory, and thus absorb a larger fraction of
aggregate inventory shocks in equilibrium.

Through the optimal spot market allocations, society simply transforms commodities x

into some total monetary wealth W ∗ (x), characterized by (10). This expression has a simple
interpretation: when spot markets function optimally, the N consumers’ wealth is equivalent
to a single representative consumer with inventory capacity:

K ≡
N∑
i=1

κi

Conditional on spot market optimal allocations, society then faces a simple one-good risk-
sharing problem: there is some random total monetary wealth W ∗ (x) which is to be divided
amongst risk-averse consumers. Then, Pareto efficiency requires the equalization of the ratio
of marginal utility across states. Under our assumption of CARA utility, the classic results
of Borch (1962) and Wilson (1968) imply that any Pareto-efficient allocations redistribute
risks in wealth, driven by uncertainty in x, affinely according to consumers’ risk aversions, as
in (11).

Proposition 1 shows that Pareto efficiency is a very restrictive criterion in our model:
consumers’ spot market outcomes are fully pinned down, and wealths are pinned down across
states up to consumer-specific constants. Thus, with slight abuse of terminology, we will
occasionally refer to the outcomes described in Proposition 1 as “the first-best outcome” in
singular form, implicitly ignoring the constant terms in (11).

We now formally prove Proposition 1.

Proof. After the realization of shocks, consumers’ utility is quasilinear in money, implying
that all Pareto-efficient outcomes must maximize the sum of consumers’ monetary-equivalent
values of goods; any non-maximizing allocation is Pareto-dominated with transfers. That is,
efficient allocations must solve:

max
zi

N∑
i=1

Wi (zi) = max
zi

N∑
i=1

ψzi − z2
i

2κi

s.t.
N∑
i=1

zi =
N∑
i=1

xi
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The Lagrangian is:

Λ = max
zi

[
N∑
i=1

ψzi − z2
i

2κi

]
− λ

(
N∑
i=1

zi −
N∑
i=1

xi

)

The first-order condition is:
0 = ∂Λi

∂zi
= ψ − zi

κi
− λ

Implying simply that consumers’ marginal rate of substitution between wealth and goods,
∂Wi

∂zi
= ψ − zi

κi
, must be equated:

zi
κi

= C

Combining this with the resource constraint (5), we get (9), which uniquely characterizes
the allocations z∗

i (x) which maximize aggregate wealth, conditional on any inventory shock
realization x. Plugging (9) into consumers’ production technology (3) and summing, we then
get (10).

To show that (9) is necessary for Pareto efficiency, suppose zi (x) does not satisfy (9)
for some i and x. For any realization x where (9) is violated, replacing zi (x) with z∗

i (x)
increases total social wealth W (z (x)) and loosens the constraint (7). We can thus increase
Gi (x) for all i, leading to a Pareto improvement. We can also conclude from the above
analysis that (7) must be binding.

Suppose now that zi (x) does satisfy (9). The optimal risk-sharing condition is simply
the result of Borch (1962) in our setting. Pareto efficiency requires agents to equate the ratio
of their marginal utilities across all states:

wi
wj

= U ′
i (Gi (x))

U ′
j (Gj (x)) = αie

−αiGi(x)

αje−αjGj(x) ,

where wi is the weight for i’s utility. Combining this with the binding constraint (7), we get
(11), following Wilson (1968). Hence, the wealth allocation is uniquely characterized up to
agent-specific, state-independent constants.

4 Spot Market Equilibrium

We next solve for equilibrium in spot markets, and illustrate why spot markets fail to
implement the first-best outcome.

After the realization of inventory shocks xi, there is no residual uncertainty; the problem
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reduces to a simple quasilinear-utility Walrasian equilibrium, where the only goods are money
and the commodity. From (4), consumer i’s wealth, as a function of the quantity qi of the
commodity she purchases, is:

Wi = Ci + ψ (xi + qi) − (xi + qi)2

2κi
− pqi (12)

where Ci is some money endowment that i may have attained, through pre-spot market
trade. Consumers’ marginal rate of substitution between qi and wealth can be derived by
differentiating (12) with respect to qi:

∂Wi

∂qi
= ψ − xi + qi

κi
− p (13)

The marginal wealth value of qi thus depends on xi and qi, but not Ci: preference quasilinearity
implies that there are no income effects, so wealth transfers do not affect spot market demand,
and thus spot market equilibrium prices and quantities.

Wi is concave in qi, so consumers simply purchase until the marginal wealth value of
purchasing becomes negative. Setting (13) to zero and solving for qi, we obtain consumers’
demand for the commodity, as a function of the spot price p of commodities in terms of
money:

qi (p) = −xi − κi (p− ψ) (14)

Hence, the inventory shock xi determines the intercept of the demand curve, and inventory
capacity κi determines the slope.

Spot market equilibrium is characterized by a scalar price p which leads spot markets to
clear. Summing over consumers’ demand, we need:

N∑
i=1

qi (p) = 0

implying:
N∑
i=1

[xi + κi (p− ψ)] = 0

The spot market clearing price is thus simply a function of consumers’ inventory shocks:

pSpotEqm (x) − ψ = −
∑N
i=1 xi∑N
i=1 κi

(15)

Intuitively, the equilibrium price deviation from ψ is simply the aggregate inventory shock
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∑N
i=1 xi, divided by the aggregate “inventory capacity”, or alternatively the slope of aggregate

demand, ∑N
i=1 κi. As in standard partial-equilibrium settings, pSpotEqm (x1 . . . xN) can be

interpreted as society’s marginal monetary value of having an additional unit of the commodity,
which depends only on the aggregate amount of the commodity society is endowed with,∑N
i=1 xi.

Plugging (15) into consumer demand (14), we can calculate consumers’ equilibrium
inventories:

xi + qSpotEqmi (x1 . . . xN) = κi∑
i κi

∑
i

xi (16)

That is, consumer i ends up holding a fraction κi∑
i
κi

of the aggregate inventory shock ∑i xi,
implementing the first-best outcome (9). Intuitively, conditional on the realization of inventory
shocks, the two-good money-and-commodities market is trivially complete, and the welfare
theorems hold. Spot market competitive equilibria are allocatively efficient, in the sense
of always allocating commodities in a way which maximizes society’s aggregate monetary
wealth.

Let W 0
i represent i’s welfare in autarky, from consuming her endowment xi:

W 0
i = Ci + ψxi − x2

i

2κi
(17)

Taking the difference between (12) and (17), plugging in (14), and simplifying, i’s money-
metric welfare gains from trade are simply:

Wi −W 0
i = q2

i

2κi
(18)

Since preferences are quadratic, expression (18) is just i’s consumer surplus triangle: it is
half the product of her trade quantity, qi, and her marginal WTP for the good when trading
nothing, qi

κi
. Quasilinear preferences in second-stage markets imply that compensating and

equivalent variation are equal to each other, and to the integral of Marshallian demand over
prices, which is (18). Society’s total monetary welfare gains from trade are simply the sum of
surplus triangles over all consumers.

We can also calculate the wealth distribution induced by competitive equilibria in spot
markets, by plugging equilibrium quantities (16) and prices (15) into consumers’ wealth, (12).
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In Appendix A.1, we show that this simplifies to:

W SpotEqm
i = mi + ψxi︸︷︷︸

Wealth Shocks

+ κi∑N
j=1 κj

(∑N
j=1 xj

)2

2∑N
j=1 κj︸ ︷︷ ︸

Inventory Absorption

− xi

∑N
j=1 xj∑N
j=1 κj︸ ︷︷ ︸

Price Exposure

(19)

4.1 Arrow-Debreu Securities, and Implementation of First-Best

Suppose agents can trade Arrow securities, denominated in units of wealth, which fully
span the state space. Markets are then complete, the welfare theorems hold, and market
equilibrium implements the first-best outcome.

Since our state space x is continuous, Arrow security prices constitute a state price density
(Duffie, 2010, ch. 2), which we will refer to as π (x).2 Let θi (x) denote the security demand
function of consumer i; that is, consumer i purchases securities paying her a net amount θi (x)
in state x. Since there is no first-stage consumption, agents trade money across states of the
world by buying Arrow securities in some states and selling them in other states. Agents’
budget constraint is that their total expenditures must integrate to 0 across states:

ˆ
π (x) θi (x) dx = 0 ∀i (20)

Note that, as is traditional in the literature, we absorb the physical probability density dF (x)
into the definition of π (x).

Agents purchase Arrow securities to maximize expected utility subject to (20). We will
require market clearing pointwise in x; since Arrow securities are financial assets in zero net
supply, asset demands must sum to zero across agents:

N∑
i=1

θi (x) = 0 ∀x (21)

Equilibrium is described by a state price density π (x) and security demands θ (x), such that
all consumers are maximizing utility, and markets for Arrow securities clear.

Proposition 2. When Arrow securities are available, the unique equilibrium state price
2A subtle difference between our model and the canonical setting is that, since we assume there is no

first-period consumption, there is no natural numeraire in our setting. Thus, we leave π (x) defined only up
to scale. An equivalent alternative approach would be to choose some arbitrary value of x as the numeraire
good.
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density is:

π (x) = C · exp
(

− W ∗ (x)∑N
j=1 α

−1
j

)
· dF (x) (22)

where C is an arbitrary positive constant. Agents’ asset demands are:

θi (x) = W ∗
i (x) −W SpotEqm

i (x) (23)

where:

W ∗
i (x) =

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)
·
(
W SpotEqm
i − α−1

i∑N

j=1 α
−1
j

W ∗
)]

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)] + α−1
i∑N

j=1 α
−1
j

W ∗ (x) (24)

The equilibrium with Arrow securities is Pareto-efficient.

Proof. Spot market equilibrium endows agent i with W SpotEqm
i (x) wealth in state x. When

agents can trade Arrow securities, markets are trivially complete, so the first welfare theorem
implies that equilibrium allocations are Pareto-efficient. We use W ∗

i (x) to denote i’s total
equilibrium wealth in state x: this is the sum of spot wealth W SpotEqm

i (x) and any Arrow
security payoffs θi (x). Agents’ FOC for optimal security demand implies that the state price
density is determined by agents’ marginal utilities at W ∗

i (x):

π (x)
π (x′) = m (x) · dF (x)

m (x′) · dF (x′) = U ′
i (W ∗

i (x)) · dF (x)
U ′
i (W ∗

i (x′)) · dF (x′) ·

Using the representation of first-best wealth allocations in (11) of Proposition 1, we have:

U ′
i (W ∗

i (x)) · dF (x)
U ′
i (W ∗

i (x′)) · dF (x′) =
exp

(
− W ∗(x)∑N

j=1 α
−1
j

)
· dF (x)

exp
(

− W ∗(x′)∑N

j=1 α
−1
j

)
· dF (x′)

(25)

which gives (22). Notice that, under CARA utility, all Pareto efficient allocations imply the
same state-price density: the constant terms in (11) fall out of the ratio in (25).

To calculate equilibrium Arrow security demands, note that spot market equilibrium
endows i with wealth W SpotEqm

i (x) in state x, and Pareto-efficient wealth allocations W ∗
i (x)

have the form in (11) of Proposition 1. In order for θi (x) to induce Pareto-efficient wealth
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allocations, we must have, for each i:

θi (x) = W ∗
i (x) −W SpotEqm

i (x) = Ci + α−1
i∑N

j=1 α
−1
j

W ∗ (x) −W SpotEqm
i (x) . (26)

for some Ci. We can find Ci using the budget constraint (20), substituting (22) and (26):

C

ˆ (
Ci + α−1

i∑N
j=1 α

−1
j

W ∗ (x) −W SpotEqm
i (x)

)
· exp

(
− W ∗ (x)∑N

j=1 α
−1
j

)
· dF (x) = 0

Solving, we have:

Ci =
E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)
·
(
W SpotEqm
i − α−1

i∑N

j=1 α
−1
j

W ∗
)]

E
[
exp

(
− W ∗∑N

j=1 α
−1
j

)]

This gives (24).

The proof of Proposition 2 illustrates cleanly the separate roles of markets for goods and
markets for risk in our model. Markets for goods – spot market equilibrium – optimally
convert commodities into wealth: the two-good problem reduces to a one-good problem,
in which each consumer is endowed with W SpotEqm

i (x) dollars in state x. This optimizes
total social wealth – the sum of W SpotEqm

i (x) is equal to W ∗ (x) – but does not efficiently
distribute this wealth across agents. Markets for risk then simply allow agents to trade from
their spot-equilibrium wealth W SpotEqm

i (x) to their first-best wealths W ∗
i (x).

Markets for risk are very generally needed for efficiency because, from comparing (19)
and (11), W SpotEqm

i (x) and W ∗
i (x) in general have very different expressions. We discuss

these distortions in detail below; one simple observation is that risk aversion α appears in
first-best wealth W ∗

i (x), but not in spot equilibrium wealth W SpotEqm
i (x). Spot markets

occur conditional on the realization of all uncertainty. Risk aversion over wealth is thus
not relevant in spot markets, and cannot influence W SpotEqm

i (x), simply because there is no
residual risk.3 Clearly, there must be some form of financial market trade, in order to allow
consumers’ risk preferences to influence their final allocations of wealth.

When financial markets are incomplete, wealth will be created efficiently, but distributed
3Another way to see this is that, in a two-good spot market after x is realized, utility is ordinal rather

than cardinal: a consumer’s preferences are fully described by indifference curves between money and goods,
which are traced out by (12). Expression (19) for WSpotEqm

i (x) is thus valid regardless of what consumers’
preferences over wealth are: (19) holds for any choice of CARA-utility risk aversions, or indeed any other
classes of risk-averse preferences over wealth.
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inefficiently. We demonstrate this first in the simple case where there are no financial markets,
so consumers’ final wealth is simply their spot market equilibrium wealth.

4.2 Wealth Distortions induced by Spot Markets

What are the deviations between the spot market-induced wealth outcomes, W SpotEqm
i in

(19), and the first-best wealth outcomes? We illustrate the nature of these distortions within
two stylized examples, then discuss the general case.

4.2.1 Market Makers and Liquidity Takers

First suppose we have two types of agents, the liquidity taker (T ) and the market maker (M).
T has risk aversion αT , receives an inventory shock xT ∼ N (0, σT ), and has no capacity to
absorb inventory, κT = 0. M has risk aversion αM , receives no inventory shock, xM = 0, and
has positive capacity κM > 0.

In equilibrium, given that the liquidity taker has completely inelastic demand, the market
maker simply buys the entire inventory shock from the liquidity taker:

qT = −xT , qM = xT

From (11), the efficient wealths are:

W ∗
T = CT + ψ

αT
αT + αM

xT − 1
2

αT
αT + αM

x2
T

κM
(27)

W ∗
M = CM + ψ

αM
αM + αM

xT − 1
2

αM
αM + αM

x2
T

κM
(28)

From (19), equilibrium wealths are:

W eq
T = xTψ − x2

T

κM
(29)

W eq
M = 1

2
x2
T

κM
(30)

This example thus illustrates, in the setting of a totally canonical market maker-noise trader
model, the wealth distribution induced in spot market competitive-equilibrium.

Wealth Shock Sharing. In our model, the commodity is valuable on average – ignoring
the concave term, each unit of the commodity is worth ψ dollars – so inventory shocks serve
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as wealth shocks. In the first-best outcome, society is wealthier when the endowment xT is
higher, and this shock is split between T and M according to their risk aversions: this is the
linear term in (27) and (28). In contrast, in equilibrium, the entire linear term xTψ is kept
by T in (29): M has no linear exposure to the asset.

A simple way to see this is that, in the limit as κM → ∞ – a well-defined limit within our
model – T ’s wealth is linear in inventory, so there is no concavity and a unit of the commodity
is equivalent to ψ units of wealth. Inventory shocks to T are thus simply idiosyncratic wealth
shocks: a shock of xT is equivalent to ψxT units of money. Clearly, spot markets – which are
trivial in this limit – do not allow T to trade risk associated with these idiosyncratic wealth
shocks.

Volatility Exposures. In the social optimum, all agents have concave exposure to
aggregate inventory shocks, because agents receive constant proportions of society’s wealth
in the first-best outcome, and society’s aggregate wealth is a concave function of aggregate
inventory: society has decreasing marginal value for the commodity. Interestingly, in spot
market equilibrium, the sign of M ’s volatility exposure is wrong. Market makers, due to
their ability to offer spot liquidity to the market, acquire long-volatility positions in spot
market equilibrium: their expected wealth is convex in aggregate inventory shocks. Liquidity
takers thus are overexposed to volatility. In equilibrium, their wealth is even more concave in
aggregate inventory shocks than society’s wealth. Effectively, liquidity takers can be thought
of as paying both due to society’s decreasing marginal value of the commodity, and also due
to a “liquidity tax” paid to market makers.

4.2.2 Buyers and Sellers

Next, we consider an example with T,M and two additional consumers, called buyer (B) and
seller (S). B and S have nonrandom inventories, xB = −1, and xS = 1, and have no ability
to absorb capacity, κB = κS = 0. Intuitively, B and S simply want to inelastically buy and
sell a unit of the commodity, and their net demands cancel out.

The efficient allocations are:

qT = −xT , qM = xT , qB = 1, qS = −1

This allocation generates identical societal wealth to the last example, so in the first-best,
this wealth is divided between agents according to their risk aversions, for example:

W ∗
S = CS + ψ

αS
αT + αM + αB + αS

xT − 1
2

αS
αT + αM + αB + αS

x2
T

κM
(31)
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and likewise for B, T,M . Prices are exactly the same as in the previous example, so the
wealths of M and T are unchanged from (29) and (30). Equilibrium wealths for the buyer
and seller are now:

W eq
B = − xT

κM
(32)

W eq
S = xT

κM
(33)

What is happening is that, regardless of the behavior of M and T , S can be thought of as
simply selling a unit of the commodity to B. However, spot market equilibrium implies that
the price at which this S,B trade happens depends on xT , since the spot market price is xT

κM
.

When xT is random, B and S thus become exposed to commodity price risk in spot markets,
lowering their ex-ante expected utility, despite the fact that their endowments are completely
nonrandom. Their price risks exactly offset each other, and do not on net contribute to
absorbing any component of aggregate endowment risk, as in the first-best outcome (31): the
linear component of aggregate endowment risk is still completely borne by T .

4.2.3 General case

The two examples above illustrate, in a simplified way, most of the wealth distortions generated
by spot markets within our system. By rearranging (19), we can decompose wealth further
by separating consumer i’s wealth exposures to her own shock xi, and her exposure to the
aggregate shock across all other agents ∑j ̸=i xj; we show in Appendix A.2 that we can write:

W SpotEqm
i = mi + ψxi︸︷︷︸

Wealth Shock

− x2
i∑N

j=1 κj

(
1 − κi

2∑N
j=1 κj

)
︸ ︷︷ ︸

Liquidity Taking

+

1
2

κi∑N
j=1 κj

(∑−i xj)2

2∑N
j=1 κj︸ ︷︷ ︸

Market Making

− xi
∑

−i xj∑N
j=1 κj

(
1 − κi∑N

j=1 κj

)
︸ ︷︷ ︸

Product Risk

(34)

The “liquidity taking” term is negative and quadratic in xi; this can be thought of as a convex
cost that i pays to other agents for absorbing her inventory shock, generalizing the exposure
of T in the examples above. This cost is larger when x2

i is larger, when aggregate liquidity∑N
j=1 κj is low, and when i’s inventory capacity κi is small relative to aggregate liquidity.

The “market making” term is a positive exposure to the squared aggregate shock of others,
(∑−i xj)2, generalizing the exposure of M in the examples; i makes more profits from market
making when i’s inventory capacity κi is large relative to aggregate inventory. The “product
risk” term depends on the relative signs of xi and ∑

−i xj: if i buys when others are also
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buying, she pays more for what she is buying, generalizing the price risks borne by B and S
in our examples.

5 Price Controls

When financial markets are incomplete, price controls in spot markets can be Pareto-improving,
because the benefits they induce for risk-sharing can outweigh their costs for allocative
efficiency.

We assume a policymaker can set a price ceiling pceil, which is constant and does not
depend on the realization of x. The price ceiling imposes an upper bound on market prices,
which induces costless rationing when it is binding. Formally, suppose the unconstrained
market clearing price exceeds pceil. Let AB be the set of agents who purchase at pceil, that
is, qi (pceil) > 0, and let AS be those agents with qi (pceil) < 0. We assume all trade occurs
at pceil, total trade volume equals total supply at pceil, and trade volume is rationed across
buyers according to their relative demands at pceil. Formally,

qceili (pceil) = qi (pceil) ∀i ∈ AS (35)

qceili (pceil) = qi (pceil)
(

−
∑
i∈AS

qi (pceil)∑
i∈AB

qi (pceil)

)
∀i ∈ AB (36)

Analogously, a price floor pfloor sets a lower bound on market prices; when binding, total
trade volume equals total demand at pfloor, and quantity is rationed across sellers according
to relative supply amounts:

qfloori (pfloor) = qi (pfloor)
(

−
∑
i∈AB

qi (pfloor)∑
i∈AS

qi (pfloor)

)
∀i ∈ AS (37)

Evaluating welfare under price controls is straightforward. Given any inventory shocks
x, we solve for equilibrium prices, imposing price controls if they bind. We then use (35)
and (36), and their analogs for price floors, to calculate equilibrium quantities; we then
plug prices and quantities into (12) to calculate agents’ equilibrium wealth levels, and thus
CARA-utility levels, for any realization of x. Expected utility under the price control regime
is then calculated by integrating over the distribution of shocks.

Numerical Example. Suppose there are two consumers, with ψ = 0, α = 2, κ = 1, and
symmetrically distributed inventory shocks x1, x2 ∼ N (0, σ2) with σ2 = 0.45. Consumers
are fully symmetric, so their ex-ante expected utilities are always identical. Figure 1 plots
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consumers’ expected utility, in unconstrained spot markets (blue) and under varying levels
of symmetric price controls (red), where we set a price ceiling pceil = p̄ and a price floor
pfloor = −p̄. Price controls can be Pareto-improving: both consumers’ expected utility is
higher, for any value of p̄ greater than around 1.2, relative to free spot markets.

The intuition for this result is illustrated in Figure 2. Spot markets alone fail to achieve
perfect risk-sharing: consumers’ marginal utilities are not equalized across states. Panel A
plots the normalized difference in spot-equilibrium marginal utility, as a function of inventory
shocks x:

∆MU (x) = MU1 (x) −MU2 (x)
MU1 (x) +MU2 (x) (38)

In unconstrained spot market equilibrium, consumers with more extreme inventory shocks
end up with lower wealth and higher marginal utility: 1’s MU is greater towards the right
and left, and 2’s is greater upwards and downwards.4 Thus, risk-sharing could improve, and
aggregate welfare could increase, if wealth could be transferred from 2 to 1 on the right and
left sides of the figure, and from 1 to 2 towards the top and bottom.

Panel B plots the net wealth transfer induced by the price control policy, defined as:

WealthTransfer (x) = [
W PC

1 (x) −W SpotEqm
1 (x)

]
−
[
W PC

2 (x) −W SpotEqm
2 (x)

]
2 (39)

In words, (39) is a double-difference, measuring whether price controls increase 1’s wealth
more than they increase 2’s wealth. The transfers induced by price controls are directionally
consistent with improved risk-sharing. 1 is the net transfer recipient towards the left and
right of the plot, and 2 is the net recipient towards the top and bottom. Intuitively, when x1

is large and positive and x2 is near 0, 1 is a net seller and 2 is a net buyer. Thus, a price
floor tends to increase 1’s welfare at the expense of 2, at the cost of some deadweight loss.
This does not induce a net transfer ex-ante, because the reverse transfer occurs when x2 is
high and x1 is near zero. Analogously, price ceilings transfer welfare towards 1 when x1 is
very negative and x2 is near 0, and towards 2 in the reverse case.

Panel C of Figure 2 plots the deadweight loss from price controls, defined simply as the
4Intuitively, spot market outcomes are qualitatively similar to no-trade outcomes in this case: if each

consumer consumed their endowment, due to quadratic costs, consumers’ marginal utilities of wealth would
be decreasing in the magnitude of their inventory shocks.
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change in total social wealth:

DeadweightLoss (x) =

[
W SpotEqm

1 (x) +W SpotEqm
2 (x)

]
−
[
W PC

1 (x) +W PC
2 (x)

]
2 (40)

Deadweight loss is always positive, and tends to be greater when the net wealth transfer
induced by price controls is larger. However, it is also in these regions that the risk-sharing
benefits of price controls are greatest.

Figure 1: Price Controls and Expected Utility

This figure plots consumers’ expected utility in unconstrained spot markets (blue) as well as
under symmetric price floors and ceilings (red), where we set pceil = −pfloor = p̄ ≥ 0. Higher
values of p̄, on the x-axis, thus correspond to looser price controls. For each p̄ we calculate
utility for a grid of x-values, and numerically integrate to find expected utility.

In models without uncertainty, price controls are transfer instruments: price ceilings
transfer surplus to buyers, and price floors to sellers. Our model introduces a distinct
risk-sharing role for price controls. In our stylized example, both agents are symmetric, and
neither is a buyer or seller on average: price controls induce exactly offsetting transfers across
uncertain states of the world, which can have the effect of improving both agents’ ex-ante
welfare. This is true even though price controls are harmful for allocative efficiency: social
aggregate wealth unambiguously decreases whenever price controls are binding.

Market incompleteness is crucial for this result. Complete financial markets perfectly
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Figure 2: Price Controls: Mechanisms

In each panel, consumers’ inventory shocks x1 and x2 are shown on the x and y axes
respectively. Panel A shows (38), the normalized difference between 1 and 2’s marginal
utility of wealth, induced by unconstrained spot market equilibrium outcomes. Panel B
plots (39), the net wealth transfer from 2 to 1 induced by price controls, defined as the
difference between 1’s wealth gain under price controls relative to unconstrained spot market
equilibrium, and 2’s wealth gain. Price controls can improve risk sharing because they tend
to transfer wealth in the direction of MU differences: wealth is transferred to 1 towards the
right and left, where 1’s marginal utility is higher, and to 2 towards the top and bottom,
where 2’s marginal utility is higher. Panel C plots (40), price control-induced deadweight
loss, defined as total social wealth in spot market equilibrium minus total wealth under price
controls. DWL is always positive, and is higher when price controls are more binding and
induce larger transfers between agents. In both panels B and C, we consider a symmetric
price control pceil = −pfloor = 0.5.
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equalize agents’ marginal utilities across states, leaving no further room for improvements
in risk sharing. In incomplete financial markets, agents’ marginal utilities may differ across
states, leaving room for price stabilization policies to be welfare-improving.

Our results can thus be thought of as an instance of the “theorem of the second best”: price
controls are unambiguously welfare-reducing in the frictionless complete-market benchmark,
but can be welfare-improving in the more realistic setting of incomplete financial markets.

6 Futures Markets

The simplest possible financial security we can introduce in our setting is a commodity
futures contract. For simplicity, we will analyze a single cash-settled futures contract on
the commodity. In our model, cash-settled futures attain equivalent outcomes to “physical
delivery” contracts; we focus on the cash-settlement case because contracts which transfer
wealth across states of the world are more intuitive in our setting.5

A futures contract in our setting is a contract for differences: A consumer holding a long
contract position promises to pay some fixed pc in the second period, and in exchange receives
the uncertain commodity spot price pSpotEqm (x). The net monetary payoff to i of buying ci
net contracts at pc is thus: (

pSpotEqm (x) − pc
)
ci

Intuitively, this is valuable because the contract pays out exactly enough money to purchase c
units of the commodity, regardless of pSpotEqm (x). We call the fixed payment, pc, the contract
price. Markets clear through pc adjusting until aggregate demand for long and short contract
positions is equal.

As in the case of Arrow securities, futures contracts are straightforward to analyze in
our model because spot market equilibrium prices and quantities are unaffected by any
monetary transfers across consumers. This implies that i’s monetary payoff, from purchasing
ci contracts, is simply her anticipated spot market equilibrium wealth W SpotEqm

i plus her
5Kyle (2007) shows that cash-settled and physical-delivery derivatives are exactly equivalent whenever a

set of “microstructure fungibility” conditions hold; our model satisfies these conditions. Essentially, since
spot market outcomes are modelled simply through competitive equilibria, it is equivalent to consumer i’s
budget set whether she receives x units of the commodity through a physical-delivery contract, or xp dollars
through a cash-settled contract. Trade quantities vary – if the consumer receives an endowment of x units
of the commodity, she must adjust her net trade quantity in spot markets by x – but market clearing in
zero-net-supply futures markets imply that these net quantity adjustments cancel out across consumers,
leaving net wealths and spot market prices unchanged. This is shown formally in Section 5.4 of Zhang (2022),
in a related model to ours. The expositional advantage of using cash-settled contracts in our setting is that,
since they only transfer wealth across states of the world, they do not influence consumers’ spot market bids,
so spot market outcomes are unchanged from the previous section.
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contract payoff:
W SpotEqm
i +

(
pSpotEqm (x) − pc

)
ci (41)

Alternatively, using the expression for W SpotEqm
i (x) in (19), i’s wealth, as a function of x

and ci, is:

ψxi + κi∑N
j=1 κj

(∑N
j=1 xj

)2

2∑N
j=1 κj

− xi

∑N
j=1 xj∑N
j=1 κj

+
(
pSpotEqm (x) − pc

)
ci (42)

In the first period, consumers have no information about inventory shocks x, so each consumer
i simply chooses a scalar quantity ci of contracts to purchase. Facing futures price pc, i
chooses ci to maximize her expected utility, over second-period uncertainty in x:

max
ci

−E
[
exp

(
−αi

(
W SpotEqm
i (x) +

(
pSpotEqm (x) − pc

)
ci
))]

(43)

Each consumer i’s optimization problem defines a contract demand curve ci (pc). Futures
contracts are in net zero supply: each long contractholder is paid by a short contractholder.
Market clearing thus requires contract demand to sum to zero across consumers:

∑
ci (pc) = 0 (44)

An equilibrium in contract markets is thus defined by a scalar contract price pc under which
(44) holds.

Recall that we used µi and σ2
i to refer to the mean and variance of i’s inventory shock

xi respectively. We impose the additional normalization that the mean of the aggregate
inventory shock is zero:

E

[
N∑
i=1

xi

]
=

N∑
i=1

µi = 0 (45)

Appendix B.2 shows that (45) is without loss of generality, because any nonzero average
in inventory shocks can be absorbed into the definition of ψ. (45) is convenient because it
implies that i’s expected spot market purchase quantity is −µi: agents with µi > 0 expect to
be sellers, and agents with µi < 0 expect to be buyers.6 In addition, (45) and (15) imply

6To see this, note from (16) that:

E
[
qSpotEqm

i (x)
]

= −E [xi] + κi∑
i κi

N∑
i=1

E [xi] = −µi

Since we have
N∑

i=1
E [xi] =

N∑
i=1

µi = 0
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that the expected equilibrium spot price is E
[
pSpotEqm (x)

]
= ψ.

Technically, our setting is tractable because, given normally distributed inventory shocks,
spot equilibrium wealths W SpotEqm

i are second-order polynomials in independent normal
random variables, and thus follow noncentered chi-squared distributions. CARA-expected
utility is analytically solvable for such distribution, generalizing the standard CARA-normal
wealth setting. We impose an additional regularity condition to ensure expected utility
remains finite.

Assumption 1. We assume:

κi >
N∑
j=1

κj

(
2 −

∑N
j=1 κj

αiσ2
i

)
∀i (46)

Intuitively, when αi and σ2
i are too large relative to κi, the integral underlying (43) is not

finite. (46) imposes a lower bound on κi, to avoid this case; this lower bound is negative and
thus trivial when αi, σ

2
i are small, and becomes more binding as αi, σ2

i increase.

The following proposition shows that equilibrium outcomes in futures markets can be
solved analytically, for arbitrary combinations of κi, σi, µi. The equilibrium expressions are
complex in general case; we will illustrate outcomes through various simpler examples.

Proposition 3. There exists a unique equilibrium in spot and futures markets. Consumer
i’s futures demand is an affine function of the contract price pc, i’s ex-ante mean inventory
shock µi, and the parameter ψ:

ci (pc) = βi (ψ − pc)︸ ︷︷ ︸
Price Sensitivity

− µi︸︷︷︸
Hedging Pressure

+ ζiψ︸︷︷︸
Risk Premium

(47)

The equilibrium futures price is:

pc =
(

1 +
∑
i ζi∑
i βi

)
ψ (48)

The parameters βi and ζi are positive constants which depend on the primitives αj, κj, σj:

βi ≡ Σ2

αiA2
2 + Σ2

Σ1
αi(∑N

j=1 κj

)2
> 0, ζi ≡

(
αi∑N

j=1 κj

)(
αi∑N

j=1 κj
+ 1∑

j ̸=i
σ2

j

)
1

Σ1

αiA2
2 + Σ2

Σ1
αi(∑N

j=1 κj

)2
> 0 (49)

Σ1 ≡ 1/σ2
i + αiκi∑N

j=1 κj

(
1∑N

j=1 κj
− 2
κi

)
> 0 (50)
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Σ2 ≡ 1∑
j ̸=i σ

2
j

+ αiκi(∑N
j=1 κj

)2 −

α2
i

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


2

1/σ2
i + αiκi∑N

j=1 κj

(
1∑N

j=1 κj
− 2

κi

) > 0 (51)

A2 ≡

αi∑N

j=1 κj

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1

− 1∑N
j=1 κj

(52)

The introduction of futures contracts is Pareto-improving, weakly increasing all consumers’
expected utilities, relative to spot markets alone.

6.1 Symmetric Consumers

Suppose consumers have identical values of σi, αi, κi, but differ in their mean inventory shock
µi. In the absence of futures markets, substituting xi = µi + ϵi into consumers’ spot market
wealths (19), we get:

W SpotEqm
i = ψ (µi + ϵi) +

(∑N
j=1 µi + ϵi

)2

2N2κ
− xi

∑N
j=1 µi + ϵi

Nκ

Ignoring the constant ψµi term, and using that ∑j µj = 0, we have:

Wi = ψϵi︸︷︷︸
Wealth Shock

+

(∑N
j=1 ϵj

)2

2N2κ︸ ︷︷ ︸
Market Making

− ϵi

∑N
j=1 ϵj

Nκ︸ ︷︷ ︸
Unexpected Product Risk

− µi

∑N
j=1 ϵj

Nκ︸ ︷︷ ︸
Expected Product Risk

(53)

The first term can be thought of as i’s idiosyncratic “wealth shock” from her endowment, and
the second positive term represents i’s profits from absorbing part of the aggregate inventory
shock. The third and fourth terms depend on the relative signs of ϵi and µi, and the aggregate
inventory shock ∑N

j=1 ϵj. Intuitively, wealth is higher if i’s inventory shock happens to have
opposite sign to others’ shocks; it is more expensive to sell (ϵi > 0, µi > 0) when others are
also selling (∑N

j=1 ϵj > 0), since from (15), the equilibrium price depends linearly on the
aggregate inventory shock. This effect divides into a µi term, which reflects the expected
component of i’s purchases, and an ϵi term reflecting the unexpected component.

Suppose then that futures contracts are available. From Proposition 3, consumers’
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equilibrium futures demands are simply:

ci (pc) = β (ψ − pc) − µi + ζψ (54)

where β, ζ are constant across consumers. Plugging the equilibrium futures price (48) into
contract demand, i’s equilibrium contract purchase quantity is simply:

ci (pc) = −µi

That is, each consumer exactly purchases contracts equal to their expected inventory shocks
µi. Consumers’ equilibrium wealth with futures is:

W SpotEqm
i +

(
pSpotEqm (x) − pc

)
c

Expression (15) for pSpotEqm (x) implies:

pSpotEqm (x) − ψ = −
∑N
i=1 xi∑N
i=1 κi

= −
∑N
i=1 ϵi
Nκ

(55)

Substituting for pSpotEqm (x), and for pc using (48), and rearranging slightly, we have:

W SpotEqm
i +

(
pSpotEqm (x) − pc

)
c =

ψϵi +

(∑N
j=1 ϵj

)2

2N2κ
− ϵi

∑N
j=1 ϵj

Nκ
− µi

∑N
j=1 ϵj

Nκ
+ (−µi)

(
−
∑N
i=1 ϵi
Nκ

)
pSpotEqm (x) + µi

ζ

β
ψ

W SpotEqm
i +

(
pSpotEqm (x) − pc

)
c = ψϵi +

(∑N
j=1 ϵj

)2

2N2κ
− ϵi

∑N
j=1 ϵj

Nκ
+ µi

ζ

β
ψ (56)

Comparing (56) to (53), futures contracts simply eliminate the “expected product risk” term
from all agents’ equilibrium wealths.

There is a simple semi-technical intuition for this effect, related to our example in
Subsection 4.2.2 above. In (53), the “expected product risk” term for agent i can be written
as:

µi

∑N
j=1 ϵj

Nκ
= (−µi)

(
pSpotEqm (x) − ψ

)
Like B and S in our earlier example, i faces wealth risk due to directional exposure to prices. i
expects to buy −µi units of the commodity, at the noisy price pSpotEqm (x1 . . . xN); if −µi > 0,
i is worse off if prices tend to be higher. But this price risk can be perfectly hedged by buying
−µi units of a contract, which pays pSpotEqm (x). Moreover, contract markets naturally clear
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if all agents follow this strategy, since ∑j µj = 0 – the total expected trade quantity across
agents sums to zero. The role of futures in this setting is thus to allow agents to mutually
self-insure “expected product risk”: expected buyers take long positions, expected sellers
take short positions, and thus all agents enter spot markets with zero directional exposure to
pSpotEqm (x).

Futures contracts cannot implement the first-best outcome: agents’ equilibrium wealths
in (56) still contain wealth shocks, market-making profits, and unanticipated product risk,
all terms which do not show up in agents’ first-best wealths (11). This is because they do not
span the entire state space. We showed in Subsection 4.1 that the first-best outcome requires
financial contracts which nontrivially span the entire state space. Futures contracts span
the space of equilibrium spot prices; from (55), pSpotEqm (x) is a function of the aggregate
inventory shock ∑N

j=1 ϵj.

The fact that futures are Pareto-improving relative to spot markets alone seems intuitive;
however, it relies strongly on our assumption of quasilinearity. Since agents have no income
effects in our setting, wealth redistribution through futures contracts does not influence
spot market outcomes. Thus, consumer i can guarantee at least W SpotEqm

i , pointwise in x,
simply by not participating in futures markets, regardless of what other agents do in financial
markets. As a result, each agent i is made weakly better off, in expected utility terms, from
the introduction of futures markets. In the general case, adding incomplete financial markets
need not lead to a Pareto improvement relative to pure spot markets. The key issue is income
effects: if financial trades reallocate wealth, spot market outcomes can change in ways that
make some agents worse off than they would be in the absence of financial markets.

6.2 The Futures Risk Premium

We now depart from our symmetric example and return to the general model. We can define
the futures risk premium as the difference between the futures contract pc and the expected
spot price, E

[
pSpotEqm (x)

]
= ψ. Rearranging (48), we have:

pc − ψ =
∑
i ζi∑
i βi

ψ. (57)

Hedging Demand and Risk Premia. An idea dating to Keynes (1930) is that risk
premia in futures markets are generated by hedging pressure: if producers tend to short
futures to hedge risk, demand pressure causes futures prices to fall below expected spot
prices. Hirshleifer (1990) shows that this idea does not work in general equilibrium: in a
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complete-markets model where futures span the entire state space, hedging pressure alone
does not generate futures risk premia.

This insight also holds in our incomplete-markets setting, and we illustrate a new intuition
driving it. As we discussed in the symmetric example, hedging pressure shows up in individual
traders’ demand. This generalizes to the full model: expression (54) implies that, regardless
of parameters, traders’ contract demand increases one-for-one with expected spot purchases
µi. Thus, contract trade volumes are very generally driven by hedging demand: commodity
buyers tend to take long futures positions, and commodity sellers tend to take short positions.
In the simple symmetric example of Subsection 6.1, hedging pressures are the only drivers of
contract trade.

But hedging pressures do not create risk premia in equilibrium because spot market
clearing implies that hedging pressure always cancels out across agents. Intuitively, if i
anticipates purchasing −µi units of the commodity in spot markets, (54) shows that she
hedges by entering a long contract position of the same size. But, since ∑i µi = 0,7 the sum
of these hedging trades is always zero: for every agent that expects to buy, there is another
that expects to sell. Thus, when we calculate aggregate contract demand by summing agents’
ci (pc) functions, the µi terms always add to zero, and vanish from the sum. This holds both
in our symmetric example and in the general model.

As Hirshleifer observes, futures risk premia can emerge from hedging pressure when
futures market participation is restricted. Many models derive premia simply by imposing
participation constraints (Hirshleifer, 1988a,b; Gorton, Hayashi and Rouwenhorst, 2013;
Acharya, Lochstoer and Ramadorai, 2013; Goldstein, Li and Yang, 2014; Goldstein and Yang,
2022), often excluding commodity buyers from participation in futures markets; in such
models, risk premia tend to reflect producers’ hedging demands and financial speculators’ risk
absorption capacity, possibly in addition to other forces which are absent from our model,
such as informational frictions.

Risk Premia and Consumption Betas. Somewhat surprisingly, (57) implies that
the sign of the futures risk premium always matches the sign of ψ. Intuitively, risk premia
are driven by consumption betas. When ψ > 0, the commodity has positive average value.
Commodity spot prices are high when the aggregate inventory shock ∑N

i=1 ϵi is low, aggregate
wealth is low, and thus marginal utility is high. Futures contracts, which have payoffs linked
to spot prices, are thus valuable insurance against consumption risk, leading to a negative
risk premium, pc > ψ. Hirshleifer (1990) shows that this holds in a complete-market model

7Once again, while we assumed
∑

i µi = 0 in (45), this assumption is purely a normalization. Appendix
B.2 shows that any model in which aggregate inventory shocks are not mean-zero can be written as a model
with mean-zero inventory shocks, where we simply redefine ψ to absorb the average inventory shock.
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of futures; this logic extends quite cleanly to our incomplete-market model.

6.3 Price Controls and Futures Contracts

Futures contracts do not eliminate the potential welfare gains from price controls. A simple
way to see this is that, in the example of Section 5 where price controls improve welfare,
futures contracts would not be traded even if they were available, since agents are ex-ante
identical, and thus markets can only clear if all agents’ contract demand is identically 0.

In our setting, equilibria with only futures contracts are constrained-efficient, in the sense
of Geanakoplos and Polemarchakis (1986): no Pareto improvements are possible through first-
stage reallocations of money and futures contracts alone, maintaining competitive equilibrium
outcomes in spot markets. In incomplete-markets models, equilibria are generally constrained-
inefficient (Geanakoplos and Polemarchakis, 1986), because reallocating financial assets in
first-stage markets generally affects later-stage spot prices; these price changes induce income
transfers, which the planner can exploit to improve social welfare.8 This mechanism is
absent in our model because we assume quasilinear second-stage utility, so spot prices are
unaffected by financial market activity. Instead, we show that the planner can directly
intervene in spot markets: interventions which distort spot market allocations relative to
competitive-equilibrium outcomes, but improve risk-sharing, can be Pareto-improving.

7 Conclusion

The technical contribution of this paper is a tractable model of general equilibrium with
incomplete markets. By assuming quasilinear preferences between wealth and goods, we
eliminate income effects; equilibria in spot markets are thus unique and invariant to outcomes
in financial markets. Under the additional assumptions that shocks are normally distributed,
preferences are quadratic, and agents have CARA utility, equilibrium outcomes in both spot
and financial markets can be solved fully analytically.

Using the model, we show that markets for goods and markets for risk play distinct
roles. Markets for goods efficiently reallocate scarce resources; markets for risk distribute
the resultant wealth optimally across agents. When markets for risk are incomplete, society
generates wealth optimally, but redistributes it suboptimally. Policy interventions in spot
markets that would reduce welfare in the absence of uncertainty, such as price controls, can
be Pareto-improving in our setting, since they force goods markets to perform some of the

8See also Magill and Quinzii (2002, pp. 263–274) for a discussion of generic constrained inefficiency.
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risk-sharing functions that financial markets fail to deliver.

Markets are powerful forces for good, and our goal in this paper is not to argue that
they are not generally better than realistic alternatives. We aim simply to highlight an
underappreciated feature of classic general equilibrium theory: incompleteness in financial
markets, even in an otherwise textbook environment, can rationalize interventions in spot
markets that depart sharply from the laissez-faire benchmark.
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Internet Appendix

A Proofs and Supplementary Material for Section 4

A.1 Derivation of Spot Market Equilibrium Wealth (19)

Copying (12), consumers’ wealth is:

Wi = ψ (xi + qi) − (xi + qi)2

2κi
− pqi (58)

For convenience, we define:

X ≡
N∑
j=1

xj, K ≡
N∑
j=1

κj

We can then define equilibrium quantities (16) and prices (15) as:

pSpotEqm (x1 . . . xN) − ψ = −X

K
(59)

xi + qSpotEqmi (x1 . . . xN) = κi
K
X (60)

Rearranging (58) slightly,

Wi = ψxi − (xi + qi)2

2κi
− (p− ψ) qi

Substituting (59) and (60), we have:

Wi = ψxi −

(
κi

K
X
)2

2κi
−
(

−X

K

)(
κi
K
X − xi

)

Simplifying, we have:
Wi = ψxi + κi

K

X2

2K − X

K
xi

Substituting the definitions of X and K, we have (19).
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A.2 Rearranging Spot Market Equilibrium Wealth Into (34)

We can write (19) as:

Wi = mi + ψxi + κi∑N
j=1 κi

(
xi +∑

j ̸=i xj
)2

2∑N
j=1 κi

− xi

(
xi +∑

j ̸=i xj
)

∑N
j=1 κi

Wi = mi + ψxi + κi∑N
j=1 κi

x2
i + 2xi

∑
j ̸=i xj +

(∑
j ̸=i xj

)2

2∑N
j=1 κi

−
x2
i + xi

∑
j ̸=i xj∑N

j=1 κi

Grouping terms, we get (34).
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B Proofs and Supplementary Material for Section 6

B.1 Proof of Proposition 3

Copying (61), given a futures price pc, agents choose contract quantity ci to solve:

max
ci

−E
[
exp

(
−αi

(
W SpotEqm
i (x) +

(
pSpotEqm (x) − pc

)
ci
))]

, (61)

We will use E [Ui] as shorthand for consumers’ expected utility, (61). Plugging in (15) and
(19) for the spot market equilibrium price and wealth pSpotEqm (x) and W SpotEqm

i (x), we
have:

E [Ui] = −E

exp

−αi

mi + ψxi + κi∑N
j=1 κj

(∑N
j=1 xj

)2

2∑N
j=1 κj

− xi

∑N
j=1 xj∑N
j=1 κj

+
(
ψ −

∑N
j=1 xj∑N
j=1 κj

− pc
)
ci



 .

(62)
We assumed that xi = µi + ϵi, with the normalization from (45) that ∑N

i=1 µi = 0. Expected
utility can thus be rearranged to:

E [Ui] =

−E

exp
−αi

mi + ψ (µi + ϵi) + κi
2

(∑N
j=1 ϵj∑N
j=1 κj

)2

− (µi + ϵi)
∑N
j=1 ϵj∑N
j=1 κj

+
(
ψ −

∑N
j=1 ϵj∑N
j=1 κj

− pc
)
ci

 .
(63)

We assumed that the ϵi variables are independent mean-zero normal random variables, with
possibly different variances σ2

i . Let ϵ−i ≡ ∑
j ̸=i ϵj; we thus have that ϵ−i is also normally

distributed, N(0,∑j ̸=i σ
2
j ), and is independent of ϵi. Thus, we can write (63) as an integral

over the distributions of ϵi and ϵ−i:

E [Ui] = −e−αimi

ˆ +∞

−∞

ˆ +∞

−∞

exp
−αi

ψ (µi + ϵi) + κi
2

(
ϵi + ϵ−i∑N
j=1 κj

)2

− (µi + ϵi)
ϵi + ϵ−i∑N
j=1 κj

+
(
ψ − ϵi + ϵ−i∑N

j=1 κj
− pc

)
ci


dF (ϵi) dF (ϵ−i) , (64)
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where F (ϵi) is the cumulative distribution function of ϵi and F (ϵ−i) is the cumulative
distribution function of ϵ−i.

While (64) is complex, it is simply a double integral over a second-order polynomial in
the independent normal random variables ϵi and ϵ−i, and this is analytic in general. We first
state a general lemma characterizing the solutions to such integrals; the lemma is proved in
Appendix B.1.1 below.

Lemma 1. Let x ∼ N (0, σ2). If:
1/σ2 − 2D > 0 (65)

Then:

ˆ +∞

−∞
(Ax+B) exp

[
Dx2 + Ex+G

]
dF (x) =

AE
1/σ2−2D +B

σ
√

1/σ2 − 2D
exp

[
G+ E2

2/σ2 − 4D

]
(66)

Otherwise, if 1/σ2 − 2D ≤ 0, the integral on the LHS of (66) diverges.

We characterize the optimal contract quantity ci (pc) through consumers’ first-order
condition. Differentiating (64) and setting to 0, we have:

0 = ∂E [Ui]
∂ci

= αie
−αimi

ˆ +∞

−∞

ˆ +∞

−∞

(
ψ − ϵi + ϵ−i∑N

j=1 κj
− pc

)

exp
−αi

ψ (µi + ϵi) + κi
2

(
ϵi + ϵ−i∑N
j=1 κj

)2

− (µi + ϵi)
ϵi + ϵ−i∑N
j=1 κj

+
(
ψ − ϵi + ϵ−i∑N

j=1 κj
− pc

)
ci


dF (ϵi) dF (ϵ−i) (67)

We then evaluate the double integral in (67) by applying Lemma 1 twice. Rearranging slightly,
we can see that the inner integral takes the form in Lemma 1, with:

σ1 = σi, A1 = − 1∑N
j=1 κj

, B1 = ψ − pc − ϵ−i∑N
j=1 κj

, D1 = −αi

κi
2

(
1∑N

j=1 κj

)2

− 1∑N
j=1 κj

 ,
(68)
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E1 = −αi

ψ + κiϵ−i(∑N
j=1 κj

)2 − µi + ϵ−i∑N
j=1 κj

− ci∑N
j=1 κj

 ,
G1 = −αi

µiψ + κiϵ
2
−i

2
(∑N

j=1 κj
)2 − µiϵ−i∑N

j=1 κj
+
(
ψ − pc − ϵ−i∑N

j=1 κj

)
ci

 . (69)

Hence, applying Lemma 1 to evaluate the inner integral in (67), we have:

∂E [Ui]
∂ci

= αie
−αimi

ˆ +∞

−∞

A1E1
1/σ2

i −2c1
+B1

σi
√

1/σ2
i − 2D1

exp
[
G1 + E2

1
2/σ2

i − 4D1

]
dF (ϵ−i) , (70)

And the integral converges if and only if:

Σ1 ≡ 1/σ2
i − 2D1 = 1/σ2

i + αiκi∑N
j=1 κj

(
1∑N

j=1 κj
− 2
κi

)
> 0. (71)

Now, we can substitute the expressions in (68) and (69), to write (70) as:

∂E [Ui]
∂ci

=

αie
−αimi

σi
√

Σ1

ˆ +∞

−∞



αi∑N

j=1 κj

ψ + κiϵ−i(∑N

j=1 κj

)2 − µi+ϵ−i∑N

j=1 κj
− ci∑N

j=1 κj


Σ1

+ ψ − pc − ϵ−i∑N
j=1 κj


exp

− αi

µiψ + κiϵ
2
−i

2
(∑N

j=1 κj
)2 − µiϵ−i∑N

j=1 κj
+
(
ψ − pc − ϵ−i∑N

j=1 κj

)
ci

+

α2
i

ψ + κiϵ−i(∑N

j=1 κj

)2 − µi+ϵ−i∑N

j=1 κj
− ci∑N

j=1 κj


2

2Σ1

 dF (ϵ−i) . (72)
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Once again, (72) takes the form in Lemma 1, with:

σ2
2 =

∑
j ̸=i

σ2
j , A2 =

αi∑N

j=1 κj

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1

− 1∑N
j=1 κj

,

B2 =

αi∑N

j=1 κj

(
ψ − µi+ci∑N

j=1 κj

)
Σ1

+ ψ − pc, (73)

D2 = − αiκi

2
(∑N

j=1 κj
)2 +

α2
i

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


2

2Σ1
, (74)

E2 = αi

(
µi + ci∑N
j=1 κj

)
+

α2
i

(
ψ − µi+ci∑N

j=1 κj

) κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1

. (75)

We will not write out the full expression for G2 here: it is a constant in the exponent of (72),
so it simply scales ∂E[Ui]

∂ci
, and affects neither the sign nor the roots of ∂E[Ui]

∂ci
, and thus will

not affect the first-order condition.

We thus apply Lemma 1 to evaluate the outer integral, finding that:

∂E [Ui]
∂ci

= αie
−αimi

σi
√

Σ1

A2E2
1∑

j ̸=i
σ2

j

−2D2
+B2√∑

j ̸=i σ
2
j

√
1∑

j ̸=i
σ2

j
− 2D2

exp

G2 + E2
2

2∑
j ̸=i

σ2
j

− 4D2

 , (76)

and the integral converges if and only if:

Σ2 ≡ 1∑
j ̸=i σ

2
j

− 2D2 = 1∑
j ̸=i σ

2
j

+ αiκi(∑N
j=1 κj

)2 −

α2
i

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


2

1/σ2
i + αiκi∑N

j=1 κj

(
1∑N

j=1 κj
− 2

κi

) > 0. (77)

Using (76), we can then solve for contract demand using the first-order condition. We can
separate out components of (76) that are always positive:
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K (ci) = αie
−αimi

σi
√

Σ1

exp
[
G2 + E2

2
2Σ2

]
√∑

j ̸=i σ
2
jΣ

3/2
2

> 0. (78)

In order for the FOC ∂E[Ui]
∂ci

= 0 to hold, we must then have:

A2E2
1∑

j ̸=i
σ2

j
− 2D2

+B2 = 0

or, using (77),
A2E2 +B2Σ2 = 0

Substituting the expressions in (73), (74), and (75), we can write:

A2E2 +B2Σ2 =

A2


αi

(
µi + ci∑N
j=1 κj

)


1 −

αi

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1


+

α2
iψ

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1


+


αiψ∑N

j=1 κj

Σ1
+ ψ − pc −

αi
µi+ci(∑N

j=1 κj

)2

Σ1

Σ2

= αi

(
µi + ci∑N
j=1 κj

)

A2


1 −

αi

 κi(∑N

j=1 κj

)2 − 1∑N

j=1 κj


Σ1


− 1

Σ1

1∑N
j=1 κj

Σ2


+

ψ

Σ1

A2α
2
i

 κi(∑N
j=1 κj

)2 − 1∑N
j=1 κj

+
(

αi∑N
j=1 κj

)(
1∑

j ̸=i σ
2
j

− 2D2

)+

(
1∑

j ̸=i σ
2
j

− 2D2

)
(ψ − pc)
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= (µi + ci)

−αiA2
2 − Σ2

Σ1

αi(∑N
j=1 κj

)2

+ ψ

Σ1

(
αi∑N
j=1 κj

)(
αi∑N
j=1 κj

+ 1∑
j ̸=i σ

2
j

)
+Σ2 (ψ − pc) .

(79)
Expression (79) is a linear, downwards-sloping function of ci, since the coefficient:

−αiA2
2 − Σ2

Σ1

αi(∑N
j=1 κj

)2

is strictly negative. Thus, for any pc, there is a unique value of ci which sets (79) to zero:

ci (pc) =
Σ2 (ψ − pc) +

(
αi∑N

j=1 κj

)(
αi∑N

j=1 κj
+ 1∑

j ̸=i
σ2

j

)
1

Σ1
ψ

αiA2
2 + Σ2

Σ1
αi(∑N

j=1 κj

)2
− µi (80)

We have thus shown that (80) solves A2E2 +B2Σ2 = 0. Based on our definition of K (ci) in
(78), this implies that ci (pc) is also the unique solution to the first-order condition:

0 = ∂E [Ui]
∂ci

= K (ci) (A2E2 +B2Σ2) ,

In addition, since K (ci) is strictly positive, and (79) is linear and downwards-sloping in
ci, when ci < ci (pc), ∂E[Ui]/∂ci > 0, and when ci > ci (pc), ∂E[Ui]/∂ci < 0. Thus, the
first-order condition (80) is necessary and sufficient for optimality: ci (pc) in (80) is the unique
maximizer of E [Ui], given pc. (80) thus characterizes consumer contract demand, given pc.

Expression (80) rearranges to (47), our expression for contract demand, in Proposition 3:

ci (pc) = βi (ψ − pc) − µi + ζiψ, βi > 0, ζi > 0. (81)

Where we define βi and ζi as in (82), repeated here for clarity:

βi = Σ2

αiA2
2 + Σ2

Σ1
αi(∑N

j=1 κj

)2
> 0, ζi =

(
αi∑N

j=1 κj

)(
αi∑N

j=1 κj
+ 1∑

j ̸=i
σ2

j

)
1

Σ1

αiA2
2 + Σ2

Σ1
αi(∑N

j=1 κj

)2
> 0, (82)

and expressions (50), (51), and (52) for Σ1,Σ2, A2 correspond to the expressions (71), (73),
and (77) which we previously defined in this appendix. Ultimately, expressions (81) and (82)
express contract demand as analytic, though complex, functions of the input parameters
αj, κj, σj. This concludes the proof of the expression for contract demand, (47).
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Equilibrium contract prices. The equilibrium contract price, (48), follows immediately
from imposing market clearing (44) on contract demands (47), using (45) that ∑N

i=1 µi = 0.

Futures contracts are Pareto-improving. To show that futures contracts are Pareto-
improving relative to spot markets, note that consumers can simply choose ci = 0 in (61),
thus attaining their spot market utility:

−E
[
exp

(
−αi

(
W SpotEqm
i (x)

))]
.

Thus, the optimal choice of ci must achieve weakly greater expected utility than i achieves in
spot markets alone.

B.1.1 Proof of Lemma 1

Proof. We can substitute the normal PDF for dF (x) on the LHS of (66), to obtain:

ˆ
(Ax+B) exp

[
Dx2 + Ex+G

]
dF (x) =

1√
2πσ

ˆ +∞

−∞
(Ax+B) exp

[(
D − 1

2σ2

)
x2 + Ex+G

]
dx. (83)

Clearly, the integral on the RHS converges if 1/σ2 − 2D ≤ 0. We can further rearrange the
integral to:

ˆ
(Ax+B) exp

[
Dx2 + Ex+G

]
dF (x) =

exp
[
G+ E2

2/σ2−4D

]
σ
√

1/σ2 − 2D

ˆ +∞

−∞
(Ax+B)

√
1/σ2 − 2D

2π exp
−

( 1
2σ2 −D

)(
x− E

1/σ2 − 2D

)2
 dx.

(84)

Note that
√

1/σ2−2D
2π exp

[
−
(

1
2σ2 −D

) (
x− E

1/σ2−2D

)2
]

is the density function of the normal

distribution X ∼ N
(

E
1/σ2−2D ,

1
1/σ2−2D

)
. Hence, we can write the integral on the RHS of (84)

as:

ˆ +∞

−∞
(Ax+B)

√
1/σ2 − 2D

2π exp
−

( 1
2σ2 −D

)(
x− E

1/σ2 − 2D

)2
 dx =

EX [AX +B] = AE

1/σ2 − 2D +B.
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Plugging in to (84) and rearranging, we get:

ˆ
(Ax+B) exp

[
Dx2 + Ex+G

]
dF (x) =

AE
1/σ2−2D +B

σ
√

1/σ2 − 2D
exp

[
G+ E2

2/σ2 − 4D

]
.

B.2 Justification of Mean-Zero Inventory Shocks

It is without loss of generality to assume (45) – that the aggregate inventory shock, ∑N
i=1 xi,

has mean 0 – because of a redundancy in the way we specify consumers’ wealth Wi is specified:
the linear term ψ and the inventory shock xi can be “renormalized” in a way that keeps
consumer utility unchanged. We state this in the following simple claim, which we prove in
Appendix B.2.1 below.

Claim 1. Consumer i’s wealth function, (4), can equivalently be written as:

Wi = ψ̃ (x̃i + qi) − (x̃i + qi)2

2κi

where:
ψ̃ ≡ ψ + A (85)

x̃i ≡ xi − 2κiA (86)

Claim 1 implies that we can “renormalize” the constant term ψ, increasing it by any
constant A across all consumers, as long as we correspondingly renormalize inventory shocks
xi. Intuitively, since ψxi is simply a linear component of preferences, having a higher ψ is
equivalent to having a lower inventory shock xi, by an amount that depends on κi. Since the
scaling in (86) is linear in A, this immediately implies that, for any set of original inventory
shocks xi which do not have 0 mean across consumers, we can find some A to normalize ψ
and inventory shocks, which leads the resultant inventory shocks to have zero mean across
consumers. This choice of A is simply:

N∑
i=1

E [x̃i] = 0

=⇒
N∑
i=1

E [xi] = A
N∑
i=1

2κi
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=⇒ A =
∑N
i=1 E [x̃i]

2∑N
i=1 κi

As a result, it is completely without loss of generality – that is, it is simply a renormalization
of agents’ utility functions – to assume that the expected sum of inventory shocks across
consumers is 0, as we do in (45).

B.2.1 Proof of Claim 1

Copying (4) and ignoring the price term, consumers’ wealth as a function of xi and qi is:

Wi = Ci + ψ (xi + qi) − (xi + qi)2

2κi
(87)

where we add a constant Ci, to emphasize that constant shifts in wealth do not affect our
model outcomes. Suppose we renormalize the inventory shock xi as:

x̃i ≡ xi −M

Hence, (87) becomes:

Wi = Ci + ψ (x̃i +M + qi) − (x̃i +M + qi)2

2κi

Expanding and grouping terms, we have:

Wi = Ci + ψM − M2

2κi
+
(
ψ − M

2κi

)
(x̃i + qi) − (x̃i + qi)2

2κi

We can write this as:
Wi = C̃i + ψ̃i (x̃i + qi) − (x̃i + qi)2

2κi
where:

C̃i ≡ Ci + ψM − M2

2κi

ψ̃ ≡ ψ − M

2κi
We ignore the C̃i term, since it is a constant scaling factor for Wi under the assumption of
CARA utility, and can be factored out. Defining

A ≡ − M

2κi
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we have proved Claim 1.
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