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1 Summary

Consider a Bayesian persuasion problem in which the state of nature ω is one-dimensional, the receiver
takes an action which is a function of the posterior mean of the state of nature, and the sender has a
state-independent utility function over the receiver’s action. The sender’s problem is to choose an optimal
distribution of posterior means. A characterization theorem from Gentzkow and Kamenica [2016] shows
that the sender’s optimization problem is linear in the posterior mean distribution G, and is subject to linear
constraints on G. I show that the sender’s optimization problem can be approximated by a tractable linear
program, and I use this to numerically solve a number of examples of such Bayesian persuasion problems.

To my knowledge, the idea for applying linear programming techniques to solve optimization problems
with stochastic dominance constraints originates in Dentcheva and Ruszczynski [2003], as a method for
optimizing asset portfolios, subject to the constraint that they are preferred to some benchmark asset in
the sense of stochastic dominance. Recently, a number of other authors, including Dworczak and Martini
[2016] and Kolotilin [2016], have analyzed similar linear programming formulations of Bayesian persuasion
problems. Relative to these papers, to my knowledge, my grid approximation results of Theorem 2 are
novel, though fairly elementary.

2 Model

The model is identical to that of Gentzkow and Kamenica [2016]. The state of nature is a random variable
ω ∈ [0, 1] . There are two agents, sender and receiver, with common prior F. Sender observes ω and chooses
a signal structure π, which is a random variable jointly distributed with ω. Receiver does not observe ω,
but observes the joint distribution of π and ω, as well as the realization of π. Receiver takes an action α

which is a function of the posterior mean/conditional expectation of the state of nature E [ω | π], which
induces some state-independent utility for sender v (α (E [ω | π])). Hence, without loss of generality, we can
abstract away from the particular signals and actions, and think of the sender as choosing a distribution
G of posterior means γ = E [ω | π], which she has some utility function for: u (γ) = v (α (γ)). Sender’s
optimization problem is then to choose G to maximize:

ˆ
u (γ) dG (γ)

subject to the constraint that G can be induced as the marginal distribution of the posterior mean under
some signal structure.
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3 Characterization of feasible posterior mean distributions

In order to characterize the set of feasible posterior mean distributions G, we have to answer the following
question: given marginal distributions F and G, under what circumstances can we construct random
variables X, Y jointly distributed on some probability space (Ω, F ,µ) such that, marginally, X ∼ F, Y ∼ G,
and Y = E (X | Y)? As Gentzkow and Kamenica [2016] show, following among others Strassen [1965], there
is a fairly simple characterization theorem for this set. I summarize a number of equivalent statements of
this characterization in the following Theorem:

Theorem 1. Given marginal distributions F and G, one can construct random variables X, Y jointly distributed on
some probability space (Ω, F ,µ) such that, marginally, X ∼ F, Y ∼ G, and Y = E (X | Y), if and only if one of the
following equivalent conditions hold:

1. Kamenica-Gentzkow formulation:
ˆ a

0

F (x)dx >
ˆ a

0

G (x)dx ∀a, (1)

ˆ
1

0

F (x)dx =

ˆ
1

0

G (x)dx

2. F and G have the same mean, and for all a ∈ [0, 1]:
ˆ

1

0

(a− x) 1x6adF (x) >
ˆ

1

0

(a− x) 1x6adG (x)

3. F and G have the same mean, and for all increasing convex functions φ (x):
ˆ

1

0

φ (x)dF (x) >
ˆ

1

0

φ (x)dG (x)

4. F is a mean-preserving spread of G.

5. F second-order stochastically dominates G, and F and G have the same mean.

Remark. Equivalence between 1. and 2. can be shown by an integration by parts (see Appendix A). 3.
immediately implies 2., and 2. implies 3. because any convex function can be approximated arbitrarily
closely by linear combinations of the functions (a− x) 1x6a; see Dentcheva and Ruszczynski [2003],
Proposition 2.2, for a proof of this. 4. and 5. are equivalent to the others by definition; 4. can be defined in
terms of 1., and 5. is often defined in terms of 3.

4 An LP approximation to optimal Bayesian persuasion

Using formulation 2., the sender’s problem can be written as

max
G(·)

ˆ
u (γ)dG (γ)

s.t.
ˆ

1

0

(a− x) 1x6adG (x) 6
ˆ

1

0

(a− x) 1x6adF (x) ∀a ∈ [0, 1]

In this problem, the choice parameter G is a probability measure, which is infinite dimensional, and
there are infinitely many constraints, hence standard numerical optimization techniques don’t immediately
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apply. However, both the objective and the constraints are linear in the probability measure G, suggesting
that a linear programming approximation may be possible.

I propose to approximate this with a problem with a finite number of choice parameters and constraints.
Fix some grid width δ; for simplicity suppose δ = 1

n for some n. We will optimize over grid distributions Gδ,
which place probabilities p0,p1, . . .pn on the n+ 1 points {0, δ, 2δ . . .nδ}, and 0 probability elsewhere. We
will enforce constraints ˆ

1

0

(a− x) 1x6adG (x) 6
ˆ

1

0

(a− x) 1x6adF (x)

also only for a ∈ {0, δ, 2δ . . .nδ}. Hence, our optimization problem is:

max
p0,...pn

n∑
i=0

piui s.t. :

pi > 0 ∀i
n∑

i=0

pi = 1

j∑
i=0

(jδ− iδ)pi 6
ˆ

1

0

(jδ− x) 1x6adF (x) ∀j ∈ {0, 1, . . .n} (2)

n∑
i=0

iδpi =

ˆ
1

0

xdF (x) (3)

In the following sections I show that, under weak smoothness constraints on the objective function u (in
particular allowing for finitely many discontinuities in u, which accomodates the case in which receiver
takes finitely many discrete actions), for any exactly optimal distribution G∗, there is an approximating grid
distribution Gδ which achieves approximately the same utility, and approximately satisfies all constraints,
with both approximation errors decreasing to 0 linearly with δ. Hence the outcome of the finite optimization
problem is “close” to the solution of the original infinite problem.

4.1 Approximation Theorem

The primitives of the problem are the prior distribution F of the signal and the utility function u : [0, 1] → R.
We will require that u is discontinuous at most at a finite number of points {a1 . . .am} in the unit interval.
On all subintervals for which u is continuous, it is Lipschitz continuous with parameter K. Also, we will
assume that the grid width δ is small enough that δ < min {ai − ai−1

}, so at least one grid point falls in
every continuity interval of u.

Theorem 2. Under the assumptions above, there exists some grid distribution Gδ which achieves within Kδ of the
optimal value of G∗, and violates all constraints by at most 3δ, that is:∣∣∣∣ˆ 1

0

U (x) dG∗ (x) −

ˆ
1

0

U (x) dGδ (x)

∣∣∣∣ 6 2Kδ

∣∣∣∣ˆ 1

0

xdG∗ (x) −

ˆ
1

0

xdGδ (x)

∣∣∣∣ 6 2δ∣∣∣∣ˆ 1

0

(x− a) 1x>a dG∗ (x) −

ˆ
1

0

(x− a) 1x>a dGδ (x)

∣∣∣∣ 6 3δ ∀a

Proof. See Appendix B.
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5 Computational Results

In Figures 1-6 I show the results of the algorithm on a number of utility functions for sender. In all cases the
prior F is uniform on [0, 1].

In Figures 1, 2 and 3, the utility function is a step function. Figure 1 displays the basic BP problem
where a judge wants to convince receiver that, with above 85% probability the suspect is guilty; in this case,
an optimal solution is a 3-point distribution with support 0.85, 0.5, 0.15. Figure 2 displays the numerical
example discussed in Gentzkow and Kamenica [2016]. In Figure 3 we show a “convex-like” step function,
in which sender prefers more extreme beliefs, but in a step-function manner. The sender’s optimal solution
concentrates probability on the step-function cutoffs 0.1, 0.3, 0.7, 0.9.

Figures 4 and 5 show the standard cases where u is fully concave or convex; the optimal strategy is to
reveal no information or all information, respectively. As an example of a partially concave and partially
convex function, figure 6 shows the case where u is a sine function. The sender’s optimal strategy is,
roughly speaking, to reveal information in the convex part and not reveal information in the concave part of
the distribution. But this doesn’t exactly hold – information is revealed only above x = 0.75, not the entire
convex region, and as a result the mass point in the concave region falls at approx. x = 0.3 rather than
the peak of the sine. I believe this illustrates that, in general, the solution to this class of problems can be
complex, and it seems like in general does not admit analytical solution; hence computation seems like an
attractive approach.

In addition, in each plot I show the Lagrange multipliers from the linear program as a function of a.
In most cases, only a few Lagrange multipliers are positive, meaning only a few of the convex dominance
constraints bind. I believe the Lagrange multipliers can be interpreted roughly as saying that, to first order,
the sender would benefit from more “dispersion” in the prior locally around each a for which the Lagrange
multipliers are positive, and the magnitude of the Lagrange multiplier represents the magnitude of the
sender’s gain from local dispersion.

A Equivalence between conditions 1. and 2.

Suppose that:
ˆ a

0

F (x)dx >
ˆ a

0

G (x)dx ∀a,

ˆ
1

0

F (x)dx =

ˆ
1

0

G (x)dx

Use integration by parts:
ˆ a

0

F (x)dx = (x− a) F (x) |a
0
−

ˆ a

0

(x− a)dF (x)

=

ˆ a

0

(a− x)dF (x) =

ˆ
1

0

(a− x) 1x6adF (x)

Hence, this is equivalent to:
ˆ

1

0

(a− x) 1x6adF (x) >
ˆ

1

0

(a− x) 1x6adG (x) ∀a,

ˆ
1

0

xdF (x) =

ˆ
1

0

xdG (x)
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Figure 1: Two-level utility function
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Figure 2: Three-level utility function
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Figure 3: Five-level utility function
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Figure 4: Concave utility function
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Figure 5: Convex utility function
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Figure 6: Sine utility function
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B Proof of Theorem 2

Define the m+ 1 subintervals Ĩ1 . . . Ĩm+1 as Ĩ1 = (0,a1) , Ĩ2 = (a1,a2) . . . Ĩm+1 = (am, 1). The union of the Ĩj
intervals covers the unit interval minus the discontinuity points {a1 . . .am}. We will attach the discontinuity
points to the intervals in a way that the sender prefers. That is to say, suppose that u (a1 + ε) > u (a1 − ε).
Then we will attach a1 to the right-side interval Ĩ2, defining I2 = Ĩ2 ∪ {a1}. In similar fashion, define for each
j

Ij = Ĩj ∪
{{

aj

}
if u

(
aj − ε

)
> u

(
aj + ε

)}
∪
{{

aj−1

}
if u

(
aj−1 + ε

)
> u

(
aj−1 − ε

)}
Now each of the grid points xi = δi, i ∈ {1, 2, . . .n} lives in exactly one of the Ij intervals. Consider the

exactly optimal posterior mean distribution G∗. For each interval Ij, we will redistribute the probability
mass that falls within Ij to the point masses xi that fall within Ij, as follows. Suppose that grid points
xs, xs+1, . . . xs+t fall in Ij. Then, for each xi ∈ {xs, xs+1, . . . xs+t}, we will define an “absorption interval” Li
as follows:

• Ls = Ij ∩ [aj−1, xs + δ
2
)

• Ls+t′ = Ij ∩ [xs+t′ −
δ
2

, xs+t′ +
δ
2
) ∀t′ < t

• Ls+t = Ij ∩
[
xs+t −

δ
2

,aj

]
Then, we construct Gδ by assigning to xi all probability mass that falls in the absorption interval Li.

In constructing Gδ from G∗, we redistribute probability mass within each interval Ij, such that the points
closest to the boundaries of Ij absorb all probability mass near the boundary, and all other points absorb
probability mass within a ball of radius δ

2
. Hence, probability mass is conserved within each continuity

interval, so no probability mass “jumps” across discontinuities. Also, no unit of probability mass moves
more than δ in the x-dimension; since the objective u is Lipschitz of parameter K, this translates into a
bound for the loss in utility, as well as the differences in constraint values, from Gδ relative to G∗.

Claim. The difference between the expected utility of G∗ and Gδ is bounded above by Kδ, that is:∣∣∣∣ˆ 1

0

U (x) dG∗ (x) −

ˆ
1

0

U (x) dGδ (x)

∣∣∣∣ 6 2Kδ

The differences between the constraint values under G∗ and Gδ, that is,
∣∣´ 1

0
xdG∗ (x) −

´
1

0
xdGδ (x)

∣∣
and

∣∣´ 1

0
(x− a) 1x>a dG∗ (x) −

´
1

0
(x− a) 1x>a dGδ (x)

∣∣, are bounded above by 2δ.

Proof. For notational convenience define µ∗ (Li) =
´
Li

dG∗ (x); that is, µ∗ (Li) is the total probability mass
assigned to Li under G∗. On each Li, we have:

min
x∈Li

U (x)µδ (Li) 6
ˆ
Li

U (x) dGδ (x) 6 max
x∈Li

U (x)µδ (Li) ,

min
x∈Li

U (x)µ∗ (Li) 6
ˆ
Li

U (x) dG∗ (x) 6 max
x∈Li

U (x)µ∗ (Li) .

However, by construction µδ (Li) = µ∗ (Li). Also, by our Lipschitz assumption, since the intervals Li have
length bounded above by 2δ, maxx∈Li

U (x) − minx∈Li
U (x) 6 2Kδ. Hence,∣∣∣∣ˆ

Li

U (x) dG∗ (x) −

ˆ
Li

U (x) dGδ (x)

∣∣∣∣ 6 2Kδµ∗ (Li)

Summing over all intervals Li, and using that
∑

i µ
∗ (Li) =

´
dG∗ (x) = 1, gives the desired result for U.

For the constraints, note that the functions x and (x− a) 1x>a are Lipschitz with K = 1, hence the same
argument implies that the constraint values change by at most 2δ.
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However, the approximation scheme cannot guarantee bounded utility loss under full constraint
satisfaction; one can create examples in which any grid distribution which exactly satisfies convex dominance
constraints has arbitrarily high loss relative to G∗.

In practice, for computational convenience, we will run the optimization using a δ-grid probability
distribution as well as constraints enforced only on the δ-grid. Any function which exactly satisfies convex
dominance constraints for all a = {δ, 2δ, 3δ . . .} almost satisfies the constraints for all a, as the following
claim shows:

Claim. Here, we use formulation 1 of the convex dominance condition. Suppose that the inequalities´ a
0
F (x)dx >

´ a
0
G (x)dx hold for all a = {δ, 2δ, 3δ . . .}. Then, for any a′ ∈ [0, 1],

´ a′

0
F (x)dx + δ >´ a′

0
G (x)dx.

Proof. Any a lies in the interval [mδ, (m+ 1) δ] for some m. Then, we have:

ˆ a′

0

G (x)dx 6
ˆ (m+1)δ

0

G (x)dx 6
ˆ (m+1)δ

0

F (x)dx =

ˆ mδ

0

F (x)dx+

ˆ (m+1)δ

mδ
F (x)dx

Using that F (x) is bounded above by 1,

6
ˆ mδ

0

F (x)dx+

ˆ (m+1)δ

mδ
1dx 6

ˆ a′

0

F (x)dx+ δ

proving the desired result.
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