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This is the online appendix for “Competition and Manipulation in Derivative Contract
Markets”. Proofs for all sections are presented in section 6.

1 General functional forms

The expression for the pass-through of contract positions to demand in an agent’s best-
response bid curve, from (1) of proposition 1 in the main text, is:

∂zDi
∂yci

=
κ

κ+ d
, (1)

This expression approximately generalizes to arbitrary utility functions and random
residual supply functions. Suppose that an agent with utility u (z), holding yc contracts,
submits bid function z (p) facing a general random nonlinear residual supply function. As
in Wilson (1979), assume that, given the agent’s bid function, I describe residual supply
by a price distribution function H (p; z (p)), where H (p; z (p)) is a CDF over prices for
any bid function z (p). For any given realization of price, the agent’s utility is

U (z,p) = u (z) − pz (p) + pyc
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Hence, the agent’s expected utility given bid function z (p) is:

ˆ
u (z (p)) − pz (p) + pyc dH (p, z (p)) (2)

and the agent chooses z (p) to maximize (2).

Proposition 1. A necessary first-order condition for optimal bid functions zD (p) is:

[
u′ (zD (p)) − p

]
+ (yc − zD (p))G (p, zD (p)) = 0 (3)

Where, G (p, zD (p)) is the ratio

G (p, zD (p)) ≡ −
Hz (p, zD (p))

Hp (p, zD (p))
(4)

In words, G (p, zD (p)) is the amount that p has to increase to ensure that the probability
that the price falls below p is constant, as we increase z. Thus, it can be thought of as
the average slope of residual inverse supply through the point (p, zD (p)). When the
slope of demand is constant at d, we have G (p, zD (p)) = 1

d . The equation (3) can then
be interpreted as a markup formula, relating the difference between marginal utility and
price, u′ (zD (p)) − p, to the difference between trade quantity and contracts, yc − zD (p),
multiplied by the slope of inverse residual supply G (p, zD (p)).

Differentiating (3) and using the implicit function theorem, we have:

dzD
dyc

=
G (p, zD (p))

G (p, zD (p)) − u′′ (zD (p)) +Gz (p, zD (p)) (zD (p) − yc)
(5)

The term Gz (p, z (p)) represents the curvature of inverse residual supply – that is,
as we increase z (p), whether the slopes of inverse residual supply through the points
(p, z (p)) increases or decreases. The sign of Gz (p, z (p)) is ambiguous. Intuitively, the
pass-through dzD

dyc
is lower for net buyers, who have zD (p) − yc > 0, when Gz is positive,

so inverse residual supply is more convex; symmetrically, pass-through is lower for net
sellers, who have zD (p) − yc < 0, if inverse residual supply is more concave1. Expression

1This is related to the theory of pass-through under market power, discussed in Weyl and Fabinger
(2013).
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(5) simplifies if we disregard this curvature term Gz (p, zD (p)):

dzD
dyc

≈ G (p, zD (p))

G (p, zD (p)) − u′′ (zD (p))
(6)

Specializing to the linear-quadratic case of the baseline model, plugging in u′′ (z) =
− 1
κ ,G (p, z (p)) = 1

d , expression (6) simplifies to κ
κ+d , which is exactly the pass-through dzD

dyc

in the baseline model. Hence, (6) shows that characterization of manipulation incentives
in proposition 1 in the main text approximately generalizes to arbitrary smooth utility
and residual supply functions.

1.1 Measurement

Suppose that the econometrician observes multiple auction instances, and wishes to
estimate the pass-through of contracts into submitted bid curves, as in expression (5), or
the simpler version (6). A large body of recent work, summarized in Hortaçsu (2011),
discusses how the distribution of inverse residual supply, H (p, zD (p)), can be estimated,
even with a relatively small number of auction observations, by using resampling methods
to increase the effective size of the dataset. The estimate of H (p, z) can be differentiated
to recover Hz (p, z) and Hp (p, z), and then used to derive an estimate of the function
G (p, zD (p)) using (4)2. In principle, even the higher-order derivatives Gz (p, z) and
Gp (p, z) can be estimated, although these estimates are likely to be imprecise.

In addition to estimates of the functions G (p, zD (p)) ,Gz (p, z) ,Gp (p, z), in order to
calculate (5) or (6), the econometrician needs an estimate of the slope of agents’ marginal
utility, u′′ (z)3. Intuitively, the inverse of the slope of agents’ submitted bid curves should
be close to the slope of marginal utility, differing to the extent that agents are shading
bids. As discussed in Hortaçsu (2011), given G (p, zD (p)), the agent’s Euler-Lagrange
first-order condition (3) for optimal bidding can be inverted to recover the marginal utility
function u′ (z). The slope of marginal utility u′′ (z) can be estimated similarly.

2From an econometric standpoint, it may be preferable to directly estimate the derivatives Hz (p, zD (p))
and Hp (p, zD (p)) rather than to estimate the function H (p, z) and then take its derivatives. For example,
Larsen and Zhang (2018) discusses how local polynomial regression can be used to nonparametrically
estimate ratios of derivatives.

3Note that I call u′′ (z) the “slope of marginal utility,” which is equivalent to the “curvature of utility.”
The slope of marginal utility is more intuitive in my context, as it is the inverse of the slope of agents’
truthful demands, which is κ in the baseline model.
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Claim 1. The slope of agent’s marginal utility, u′′ (zD (p)), at any point zD (p), satisfies:

dzD
dp

=
1 − (yc − zD (p))Gp (p, zD (p))

u′′ (zD (p)) −G (p, zD (p)) + (yc − zD (p))Gz (p, zD (p))
(7)

If the curvature terms Gp (p, zD (p)) and (yc − zD (p))Gz (p, zD (p)) are ignored, this ap-
proximately simplifies to:

u′′ (zD (p)) ≈ G (p, zD (p)) −
1

z′D (p)
(8)

Plugging (7) or (8) and an estimate of G (p, z) into (5) or (6) allows us to estimate the
pass-through dzD

dyc
of contract positions into bids in general nonlinear settings.

2 Endogeneous contract positions and welfare

In this section, I endogenize agents’ contract positions, by assuming that agents contract
based on an auction to imperfectly hedge against random exposures to an uncertain state
of the world. The model shows that manipulation decreases total welfare through two
channels: by decreasing the effectiveness as the auction price as a hedge, increasing agents’
exposure to fundamental risk, and by decreasing allocative efficiency in the auction.

2.1 Model

There is a countably infinite collection of agents, i ∈ {1, 2, . . .∞}. I assume that agents have
identical demand slopes, so κi = κ ∀i. Each agent holds a productive asset which produces
an uncertain quantity xiπ of income, measured in consumption units. π ∼ N

(
µπ,σ2

π

)
represents an uncertain state of the world. xi represents agent i’s exposure to π; I assume
that xi ∼ N

(
0,σ2

x

)
. Since the mean of xi is 0, agents are equally likely to have incomes

positively and negatively correlated with π; since there is an infinite number of agents,
there is no aggregate risk in the economy. Agents have CARA utility over consumption,
with risk aversion parameter α. That is,

u (c) = − exp [−αc]
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This implies that an uncertain consumption bundle which is normally distributed with
mean µ and variance σ2 is utility-equivalent to a certain consumption bundle of size
µ− ασ2

2 .

We assume that agents can only hedge against risk by holding contracts. This is
because, as I describe in subsection 3.1 in the main text, I assume that agents observe their
own utility functions, but are not able to distinguish between demand shocks ydi and
the state of the world π. Thus, agents cannot contract directly on π; instead, they use an
auction for some underlying good z, whose value is close to π, to attempt to elicit π from
auction participants in an incentive-compatible manner. Specifically, as in the baseline
model, the consumption value of z to agents is

πz+
ydiz

κ
−
z2

2κ

where ydi ∼ N
(
0,σ2

d

)
is a demand shock. As discussed in subsection 3.1 in the main

text, I assume that the term z2

2κ represents physical holding costs or decreasing returns for
the underlying asset, rather than agents’ reluctance to take large positions in the asset
because of risk aversion.

Agents play a multi stage game, which I will refer to as the hedging auction game. The
game proceeds as follows:

1. Exposures, xi: Agents’ exposures xi ∼ N
(
0,σ2

x

)
are realized and privately observed.

2. Contract purchasing, yci: Agents decide how many unit of contracts, yci, to pur-
chase at price E (π) from a market maker.

3. State of nature, π: The state of nature π ∼ N
(
0,σ2

π

)
is realized.

4. Benchmark determination: n agents are randomly selected to participate in an
auction to determine the benchmark; they draw demand shocks ydi, and bid to
determine their allocations zi, auction payments zipb, and the price pb.

5. Contract settlement: All agents receive their asset payments xiπ and their contract
payments ycipb, and the game ends.

As in the baseline model, I assume that agents do not separately observe π and ydi. This
implies that agents are unable to contract on π directly; π must be elicited from agents
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by running an auction. The auction price is a noisy signal of π both because of agents’
demand shocks ydi and because of agents’ manipulation incentives.

I assume that not all hedging agents participate in the auction. In practice, a large
number of agents will use contract markets to hedge against aggregate uncertainty.
However, the good whose price is used to set the benchmark is often very specific – for
example, wheat futures contracts used internationally to hedge against aggregate price
fluctuations is based on delivery of wheat of particular grades, for delivery in Chicago.
Similarly, interest rate benchmarks such as SOFR, designed for use in a large variety of
floating-rate debt, such as mortgages or student loans, are set based on yields of repo
loans, a very particular kind of debt product. Hence, the assumption that a limited subset
of hedging agents are active in the market for the underlying asset is empirically justified.

The assumption that n agents are randomly selected to participate in the auction is
stylized; in practice, the set of agents who are willing to trade Chicago wheat, or repo
loans, is fixed. An alternative model would fix a set of n agents who participate in
auction. In such a model, auction participants purchase more contracts ex ante than
nonparticipants, since they anticipate being able to move prices in their favor on average.
Since this is a pure transfer, it does not affect aggregate efficiency; I assume this away to
simplify the model.

Once the game concludes, given z, xi,yci,pb, agent i’s utility is:

U (z, xi,yci,pb) = − exp
[
−α

[
πz+

ydiz

κ
−
z2

2κ
− pbz+ πxi + pbyci − µπyci

]]
(9)

In words, the auction-based hedging games combines the auction in the baseline model
to an endogeneous contract purchasing stage, in which agents purchase contracts in
order to partially hedge idiosyncratic risk. I solve the game by analyzing agents’ contract
purchasing decisions in subsection 2.2, and then their auction bidding decisions in
subsection 2.3, and characterizing an equilibrium between decisions in these two stages. I
then analyze the welfare properties of equilibrium in subsection 2.4.

2.2 Contract purchasing

From the perspective of any individual agent, the probability of being chosen to participate
in the auction game is 0, and the expected utility from participating in the auction game is
finite. Hence, agents choose contract positions in stage 2 as if they will not participate in
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the auction; setting z = 0 in 9, in stage 2, agents choose contract positions yci to maximize
the utility function:

U (zi, xi,yci,pb) = − exp [−α [πxi + pbyci − µπyci]]

Suppose that the agent forsees that, in stage 4, Var (pb) = σ2
p. In subsection 6.2.1, I show

that an agent with exposure xi to the state of the world optimally purchases:

yci = −xi
σ2
π

σ2
π + σ

2
p

(10)

Since the ratio σ2
π

σ2
π+σ

2
p
< 1, the agent imperfectly hedges. σ2

π

σ2
π+σ

2
p

increases towards 1, and

thus yci gets closer to −xi, as σ2
p decreases, so that the price is a better signal for π. Note

also that, since contract purchase decisions are linear in exposure shocks xi, contract
positions sum to 0 across all agents in any equilibrium, and the market maker ends up
with no net contract position and no net monetary transfer in any equilibrium; the stage 2
market maker always breaks even, so the game is well-defined.

Taking the variance of both sides of (10), we find the induced variance of contract
positions yci across agents:

σ2
c = σ

2
x

(
σ2
π

σ2
π + σ

2
p

)2

(11)

2.3 Benchmark determination

Once π is realized and observed by all agents, consumption and the asset z are both
riskless; thus agents’ utility in the stage 4 auction is quasilinear in z and income, and is
exactly their utility in the baseline model of section 3 in the main text:

−yciπ+
ydiz

κ
−
z2

2κ
+ πz− pbz+ pbyci

Hence, agents bid as in the symmetric equilibrium described in Appendix A.7 in the main
text. Agents’ equilibrium demand functions are:

zDi (p;ydi,yci) =
n− 2
n− 1

ydi +
1

n− 1
yci −

n− 2
n− 1

κ (p− π)
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Given yci for all agents, the market clearing price is:

pb − π =
1
nκ

n∑
i=1

ydi +
1

n (n− 2) κ

n∑
i=1

yci (12)

Taking the variance of (12), we have:

σ2
p ≡ Var (pb − π) =

σ2
d

nκ2 +
σ2
c

n (n− 2)2 κ2
(13)

Equations (11) and (13) are two relationships between σ2
c and σ2

p, which must both be
satisfied in equilibrium. In (13) σ2

p is increasing in σ2
c. In (11), σ2

c is strictly decreasing
in σ2

p, with σ2
c = σ2

x when σ2
p = 0, and σ2

c → 0 as σ2
p → ∞. Hence there is a unique

pair of positive σ2
c,σ2

p values which satisfy (11) and (13), which characterize the unique
equilibrium of the hedging auction game.

Proposition 2. There is a unique equilibrium in the hedging auction game for any collection of
parameters n, κ,σ2

x,σ2
π, in which σ2

c,σ2
p satisfy (11) and (13):

σ2
c = σ

2
x

(
σ2
π

σ2
π + σ

2
p

)2

σ2
p =

σ2
d

nκ2 +
σ2
c

n (n− 2)2 κ2

Equations (11) and (13) describe the comparative statics of equilibrium behavior. (11)
states that the extent to which agents hedge depends on σ2

π

σ2
π+σ

2
p

, which compares the

variance of the state of nature, σ2
π, to the variance in auction prices, σ2

p. Intuitively,
if the variance of auction prices is high, contracts are not an effective hedge against
fundamental uncertainty, and agents buy less contracts per unit exposure shock xi they
receive. Equation (13), which follows directly from (98) in Appendix A.7 in the main text,
states that price variance is higher when there are more contracts, less participants, and
lower slopes of demand κ. Increasing n or κ increases equilibrium contract position size
σ2
c by decreasing manipulation and thus improving the effectiveness of auction prices

for hedging. Increasing σ2
π or σ2

x also increases equilibrium contract position size σ2
c, by

increasing the demand for hedging.

Henceforth, we will hold primitives n, κ,σ2
x,σ2

π fixed, and use σ2
p and σ2

c to refer to the
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unique equilibrium values specified in proposition 2.

2.4 Hedging effectiveness

In the setting of the auction-based hedging game, there is no aggregate risk; if agents
were allowed to write contracts that paid exactly π, all agents could perfectly hedge and
achieve riskless portfolios with average payoff π. Moreover, since agents’ utilities for
the underlying asset are identical, regardless of the realization of π and the exposure
shocks xi, the optimal allocation involves no trade. The equilibrium of the auction-based
hedging game deviates from the optimal allocation in both respects. First, manipulation
makes the auction price a noisier signal of the state of nature π, so all agents are unable
to fully hedge and lose utility from increased portfolio risk. Second, the n agents who
participate in the auction accumulate nonzero net positions in the asset in order to move
prices favorably, causing a reduction in allocative efficiency.

If an agent has contract position xi, her portfolio has variance

x2
i

σ2
pσ

2
π

σ2
π + σ

2
p

where σ2
p is the equilibrium variance of auction prices. Since agents have CARA utility

with risk aversion parameter α, this causes a loss in ex ante expected utility. Taking
expectations over xi, the expected loss in expected utility, measured in consumption units,
is:

ασ2
x

2

(
σ2
pσ

2
π

σ2
π + σ

2
p

)2

Even in the absence of manipulation, the auction price is a noisy signal for π, because
there is a finite number of auction participants who are subject to demand shocks. For
comparison, assume that all auction participants bid truthfully, submitting bid curves
equal to their marginal utility for the asset, which are affected by demand shocks ydi but
not by contract positions yci. In subsection 6.2.2, I show that the variance of benchmark
prices under truthful bidding is:

σ2
p =

σ2
d

nκ2

In principle, the variance of benchmark prices in equilibrium differs from the variance
under truthful bidding for two reasons: agents’ responses to demand shocks ydi differ, and
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agents’ contract positions yci affect bids. Interestingly, if agents hold no contract positions
and bids are only affected by demand shocks, the variance of prices in equilibrium is
exactly the same as in the truthful-bidding case. This is because there are two effects
of market power on agents’ response to demand shocks: agents’ demand shocks pass
through to bids less, decreasing the variance of prices, and agents bid less elastic bid
curves, increasing the variance of prices. In equilibrium, these two effects exactly offset
each other, and the variance of prices is unchanged from the truthful-bidding case. While
this finding may not be robust to more general models, it suggests at least that the effect
of market power on price dispersion, without considering manipulation, is ambiguous.

In contrast, contract positions and manipulation unambiguously increase price disper-
sion. Subsection 6.2.2 shows that the variance of prices under both demand shocks and
contract positions is:

σ2
p =

σ2
d

nκ2 +
σ2
c

n (n− 2)2 κ2

Thus, manipulation adds variance to auction prices around π, decreasing the effectiveness
of contracts for hedging against uncertainty in π and thus decreasing aggregate welfare.

2.5 Allocative efficiency

The second source of welfare loss is that manipulation distorts the allocations of the n
agents participating in the auction. Due to demand shocks, the n agents enter into the
auction with different utilities for the asset, and gains from trade are possible; due to the
presence of asymmetric information, fully efficient reallocation is impossible, and some
welfare losses are unavoidable. For comparison, I first assume that agents in the auction
receive demand shocks but hold no contract positions. In subsection 6.2.3, I show that
agents’ expected gains from trade are, under fully truthful bidding,

σ2
d

κ

(
n− 1
n

−
1

2 (n− 1)

)
(14)

In equilibrium, expected welfare is

σ2
d

κ

(
n− 2
n

−
(n− 2)2

2n2 (n− 1)

)
(15)
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The difference between these two is n−2
n2 , which is strictly positive for n > 3. Thus, market

power lowers expected welfare, by inhibiting efficient reallocation of the asset.

From subsection 6.2.3, expected allocative welfare when agents hold contract positions
and manipulate is:

σ2
d

κ

(
n− 2
n

−
(n− 2)2

2n2 (n− 1)

)
−
σ2
c

κ

(
(n− 2)2 + 1

2n2 (n− 2)2

)
(16)

There is an additional distortion term in (16), relative to (15), which further lowers agents’
welfare. Intuitively, agents’ bids are affected by their contract positions, since they want to
influence prices to increase their contract payoffs. Since contract positions sum to 0 across
the entire set of agents, the profits of manipulators are pure transfers from other agents,
and are not relevant for welfare. Thus, from a welfare standpoint, manipulation serves to
add further independent noise to agents’ allocations, about their distorted levels under
market power, which further decreases allocative efficiency.

2.6 Discussion

The model of this section provides a simple framework for analyzing the welfare implica-
tions of price benchmarks. Agents who wish to hedge against an imperfectly observed
state of the world do so by contracting on an auction of a good whose mean value to
participants is π. The auction is a noisy signal of π both because of auction participants’
demand shocks, and because auction participants have incentives to trade in the auction
to push prices in their favor. Manipulation decreases aggregate welfare both by adding
variance to prices, decreasing the effectiveness of the auction price for hedging against
changes in π, and by decreasing allocative efficiency in the auction.

The fact that there are two distinct sources of welfare losses from manipulation
complicates welfare analysis of market outcomes. Qualitatively, more manipulation
tends to decrease both kinds of welfare, but the features of manipulation that matter
in each case are subtlely different. The variance of benchmark prices is all that matters
for hedging effectiveness in the contract market;4 benchmark bias does not influence
hedging effectiveness. For example, if underlying market participants systematically hold
short contract positions, manipulation will lower the benchmark in expectation; however,

4This depends on the assumption that all variables are normally distributed – in general, other features
of the distribution may also matter.
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if this is foreseen ex ante, the ex ante price of the contract will adjust to account for
expected bias, and agents’ ability to hedge uncertainty in π using contracts is unaffected.
However, in this example, manipulation still creates allocative distortions: during contract
settlement, in order to move settlement prices downwards, market participants must sell
the underlying asset beyond their fundamental demand to do so, distorting allocations
of the underlying asset. Similarly, if there are multiple manipulators who make exactly
offsetting manipulative trades every time contracts settle, contract hedging effectiveness is
unaffected, but allocative efficiency in the underlying market decreases.

It is thus difficult to construct a welfare metric which simultaneously accounts for
welfare from hedging in the contract market and allocative efficiency in the underly-
ing market. In the main text of the paper, I primarily focus on manipulation-induced
benchmark variance as a proxy metric for welfare. This can be thought of as putting full
weight on welfare from hedging effectiveness and no weight on allocative efficiency. This
may not be appropriate for settings in which the distortions that manipulation creates in
underlying markets are important.

3 Interdependent values

In the main text of the paper, I assumed agents have fully private values. In this subsection,
I allow agents to have partially interdependent values. There are a number of papers
studying on linear multi-unit double auctions with interdependent values (Du and Zhu,
2017; Rostek and Weretka, 2012; Vives, 2011). In this section, I study a relatively simple
model of interdependent values, loosely based on the model of Vives (2011).

3.1 Model

There are n symmetric agents, with utility functions:

U (z,p) = πz+
ydi
κ
z+

θ
∑
j 6=i ydj

nκ
z−

z2

2κ
+ pyci − zp (17)

Assume that θ ∈ (0, 1), and assume that agents have identically distributed normal
demand shocks and contract positions, ydi ∼ N

(
0,σ2

d

)
,yci ∼ N

(
0,σ2

c

)
. The difference

from the baseline model is the term
θ
∑
j6=i ydj
κ : agents’ utilities depend not only on their

own demand shocks ydi, but also on other agents’ demand shocks yjd, proportional to a
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factor θ, with 0 < θ < 1. Subsection 6.3.1 shows how this utility function can be derived
from a partially common-valued model in which agents imperfectly observe their own
value for the asset, as in Vives (2011).

3.2 Equilibrium

We conjecture the existence of a linear equilibrium, in which residual supply facing agent
i is:

zRS (p) = (p− π)d+ η (18)

When values are interdependent, agent i cares about the level of residual supply. This is
because higher levels of η imply that the demand functions zDj (p) submitted by other
agents are lower, so other agents are trying to sell; this implies that other agents’ demand
shocks ydj are likely to be low, which decreases agent i’s value for the asset. Agent i’s
optimal bidding strategy depends on E

[
θ
n

∑
j 6=i yjd | η

]
; in equilibrium, this will be linear

in η, so we can define:

α ≡
E
[
θ
n

∑
j 6=i yjd | η

]
η

(19)

When α is higher, adverse selection is worse, because shifts in residual supply are more
correlated with the expected value of other agents’ demand shocks. Fixing α, agents’
expected utility for purchasing z when the auction price is p is:

E [U (z,p) | η] = πz+
ydi
κ
z+

E
[
θ
n

∑
j 6=i ydj | η

]
κ

z−
z2

2κ
+ pyc − zp

E [U (z,p) | η] = πz+
ydi
κ
z+

αη

κ
z−

z2

2κ
+ pyc − zp (20)

Agents’ submitted bid curves must maximize (20). In contrast to the baseline model,
agents’ bid curves will no longer be ex-post best responses with respect to other agents’
ydi,yci values; this is because agents cannot distinguish between shocks to η that result
from demand shocks or contracts. The best that agents can do is to submit bid curves
which achieve the optimal choice of (p, zRSi (p,η)) every possible realization of η. In other
words, the bid curve zDi (p;ydi,yci) must pass through all points (p∗ (η) , zRSi (p∗ (η) ,η))
which satisfy:

p∗ (η) = arg max
p
E [U (zRSi (p) ,p) | η] (21)
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Hence, equilibrium bid curves must simultaneously satisfy (19) and (21). Subsection 6.3.2
shows that these two conditions are equivalent to a system of equations described in the
following proposition.

Proposition 3. Equilibrium values of α and d under interdependent values must satisfy the
following two equations:

Best Response : d =
(n− 2) κ
1 +nα

(22)

Endogeneous Toxicity : α =
d2σ2

d

κ2σ2
c + d

2σ2
d

θ

n
(23)

Equilibrium bid curves are:

zD (p) =
dyd + κyc − d (κ−αd) (p− π)

αd+ κ+ d
(24)

3.3 Comparative statics

Figure 1 depicts the best response and endogeneous toxicity equations characterizing
equilibrium. The best response equation, (22), describes the slope of residual supply
induced by agents’ best response bidding behavior, fixing a given toxicity of order flow
α. If α is higher, adverse selection is worse, meaning that upwards shifts in residual
supply η facing a given agent i are more correlated with other agents’ negative demand
shocks; agent i thus bids less aggressively, so the slope of residual supply d must be
lower. Thus, the best response equation (22) specifies a decreasing relationship between
d and α; in particular, d = (n− 2) κ when α = 0 and d → 0 as α → ∞. As a result, the
equilibrium value of d will always be lower than (n− 2) κ, the slope of residual supply
without adverse selection – this reproduces the intuition from Du and Zhu (2012) that
adverse selection causes agents to bid less aggressively.

The endogeneous toxicity equation, (23), describes average toxicity for a given level of
d. When the slope of residual supply is low, agents’ manipulation incentives are high,
so shifts in residual supply η reflect contract positions more and demand shocks less;
this implies that shifts in residual supply are less toxic, or equivalently that α is lower.
Thus, the endogeneous toxicity equation (23) specifies an increasing relationship between
d and α; in particular, d = 0 when α = 0 and d→∞ as α→ θ. Thus, for any collection of
primitives, there is a unique pair of points d,α which satisfy (22) and (23).

The primary effect of interdependent values is that it lowers the level of d, the
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equilibrium slope of residual supply for any given level of κ. In equilibrium, d =
(n−2)κ
1+nα ,

which is lower than the slope d = (n− 2) κ when values are fully private. From (24), the
relative impact of demand shocks and contracts on bidding is still governed by the ratio
of d to κ; since d is lower under interdependent values, agents manipulate more per unit
contract that they hold under interdependent values than under private values.

If we increase σ2
c, then the locus of points satisfying the endogeneous toxicity equation

(23) shifts upwards in α−d space, as shown in figure 1; this moves along the best response
curve (22), increasing d and decreasing α in equilibrium. Intuitively, as contract volume
increases, agents manipulate more; this means that most shocks to residual supply are
due to manipulation rather than demand shocks. This makes adverse selection less of
a problem, so agents bid more aggressively in equilibrium; this increases the slope of
residual supply d and decreases the amount that agents manipulate per unit contract that
they hold.

3.4 Discussion

The primary finding of this section is that adverse selection causes bid shading, which
decreases the slope of residual supply; this increases the ratio κ

κ+d and thus increases
manipulation incentives. However, as manipulation increases, adverse selection decreases,
in the sense that variation in the level of residual supply is more likely to be caused by
manipulators, who have no information about the common value of the asset, rather than
demand shocks. The intuition that manipulation decreases adverse selection was noted
by Kumar and Seppi (1992), showing that manipulation decreases bid-ask spreads in a
Kyle (1985) model of informed and uninformed trading with a competitive market maker.

A major idea in the main text of the paper is that equilibrium manipulation incentives
are related to the ratio κ

κ+d , which can be estimated in data. The results of this section
show that, in contexts where adverse selection is an important concern, the formula
κ
κ+d may understate manipulability; due to bid shading, the slope of agents’ bid curves
may be very different from their slopes of demand. Another way to put this is that
manipulation is easier in settings with significant adverse selection, as a manipulator
purchasing relatively small amounts can drive prices upwards significantly if other agents
believe the manipulator has received a large positive demand shock, indicating that the
common value of the asset is high. My framework is thus best-suited for classes of
relatively homogeneous assets, for which information is close to symmetric across market
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Figure 1: Best response and endogeneous toxicity curves

Notes. “Best Response” is the set of d,α points satisfying (22). “Endogeneous Toxicity”
is the is the set of d,α satisfying (23). The dotted line is the endogeneous toxicity curve
when σ2

c is increased to some value σ̃2
c > σ

2
c.

participants, hence trading is dominated by inventory concerns. For example, treasury
bonds and other interest-rate products likely fit this classification. The magnitude of
manipulation may be easier for classes of assets such as equities, in which asymmetric
information across agents about fundamental values is an important concern.

4 Entry

In this section, I construct a simple model of manipulation with endogeneous auction
paricipation. First, I characterize agents’ profits from participating in auctions with n
players. I assume that there are no demand shocks ydi, so all auction trade is induced by
contract positions; this simplifies the analysis but does not qualitatively affect the results.
I work with the symmetric model, in which all agents have identical slopes of demand κ.

As in the standard entry game model, I assume that identical agents i = {1 . . .∞}

sequentially decide whether to pay cost c to enter the auction, with all entry decisions
commonly observed. Once an agent enters, yci ∼ N

(
0,σ2

c

)
is realized, and the agent

purchases yci contracts at the actuarially fair price of π. I thus take agents’ contract
positions as exogeneous; this is helpful for solving the model, because the marginal profit
per unit contract is actually increasing, so agents are willing to purchase unbounded
quantities of contracts at fixed prices.
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I assume that yci is unobserved by all other agents. Once the n+ 1th agent decides not
to enter, all agents who have entered, i = {1 . . .n}, play the symmetric auction equilibrium
with n agents described in Appendix A.7 in the main text. In subsection 6.4, I show that,
in an equilibrium with n agents, before contract positions yci are known, the expected
utility of each agent is:

σ2
c

2κ (n− 1) (n− 2)
(25)

This is strictly decreasing in n. If there is a fixed cost c for agents to draw yci ∼ N
(
0,σ2

c

)
and participating in the benchmark setting auction, equilibrium in the entry game requires
that agent sequentially enter until the expected profits of the marginal entrant are lower
than cost. Letting neq represent the equilibrium number of entrants, the neqth entrant
must makes positive profits and the (neq + 1)th must make negative profits:

σ2
c

2κ (neq − 1) (neq − 2)
> c (26)

σ2
c

2κneq (neq − 1)
6 c (27)

To simplify, if we assume (27) holds with equality, we have:

neq (neq − 1) ≈ σ2
c

2κc
(28)

(28) is intuitive: more agents enter when the cost of entry c is lower; when κ is lower, so
agents can more easily trade to cause price impact and profit from contract manipulation;
and when σ2

c is higher, so agents can more easily build up large contract positions.

Increasing the size of contract positions has ambiguous effects on equilibrium manipu-
lation and the variance of benchmark prices. Holding fixed the number of entrants, n,
increasing the expected size of each entrant’s net contract position increases manipulation.
However, increasing contract position size encourages more agents to enter attempting to
manipulate; this increases the slope of residual supply in the auction, potentially decreas-
ing the variance of prices in equilibrium. In the simple symmetric model I study here,
the entry effect dominates, and increasing the size of contract positions in fact decreases
equilibrium benchmark price variance. Since we assumed Var (yci) = σ2

c,Var (ydi) = 0,
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the variance of prices in equilibrium with neq agents is

Var (pb) =
σ2
c

neq (neq − 2)2 κ2
(29)

To leading order, we have:

neq (neq − 2)2 ≈ n3
eq ≈ [neq (neq − 1)]

3
2

Thus, we can substitute (28) into (29), to find the equilibrium variance of prices as a
function of primitives σ2

c, κ, c:(
σ2
c

(n− 2)2 nκ2

)
≈ σ2

c

κ2
(
σ2
c

2κc

) 3
2
=

2
√

2c
3
2√

κσ2
c

The equilibrium variance of auction prices is thus asymptotically decreasing in the
variance of agents’ contract positions, σ2

c; the effect of increased entry dominates the effect
of increased manipulation. Figure 2 shows the behavior of the exact expressions for n
and Var (pb) as σ2

c varies; for any interval on which n is fixed, increasing σ2
c increases

Var (pb), but Var (pb) decreases whenever n increases.

4.1 Entry by non-manipulators

Manipulation also creates additional incentives for non-manipulators to participate in
the auction. Consider an equilibrium with n agents with identical demand slopes κ. A
single agent i = 1 is a non-manipulator; she holds no contract position, so yci = 0, and
has a demand shock ydi ∼ N

(
0,σ2

d

)
. The other n− 1 agents are pure manipulators, with

no demand shocks, and contract positions with variance σ2
c. In Appendix 6.4, I show

that the utility of agent i, when she is facing an uncertain affine residual supply curve
zRSi (p) = d (p− π) + η, is:

κ2σ2
η

2dκ (d+ 2κ)︸ ︷︷ ︸
RS Uncertainty

+
d2σ2

d

2dκ (d+ 2κ)︸ ︷︷ ︸
Demand Shock

(30)
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In words, agent i receives utility from two sources. The “RS Uncertainty” term represents
agent i’s utility from uncertainty in residual supply. Agent i prefers σ2

η to be higher, or
residual supply to be more uncertain: intuitively, if residual supply is subject to random
shocks, agent i benefits from being able to buy below her value and sell above her value.
The “Demand Shock” term represents agent i’s utility from trading to satisfy her demand
shock. The coefficient

d2

2dκ (d+ 2κ)

is an increasing function of d; intuitively, when agent i faces a more elastic residual supply
curve, she has less price impact, and can more cheaply buy and sell to satisfy her demand
shock, increasing her utility.

In equilibrium with n− 1 manipulators, the slope of residual supply facing agent
i = 1 is d = (n− 2) κ, and (54) in Appendix 6.4 shows that σ2

η =
σ2
c

n−1 . Plugging these
expressions into (30), i’s utility in equilibrium is:

σ2
c

2 (n− 2) (n− 1)nκ︸ ︷︷ ︸
RS Uncertainty

+
n− 2
2nκ

σ2
d︸ ︷︷ ︸

Demand Shock

(31)

The effect of increasing n on utility, holding fixed all other terms, is ambiguous. Increasing
n decreases the “RS Uncertainty” term, since it makes residual supply more certain as
manipulators manipulate less, but increases the “demand shock” term as the slope of
residual supply increases. Intuitively, if the demand shock σ2

d is small, agent i is primarily
an arbitrageur, profiting when manipulation makes the price deviates from π; she prefers
if the market is thin and prices often deviate from fundamentals. If the demand shock σ2

d

is large, agent i is primarily a trader who wishes to liquidate her position; she prefers to
be able to trade with minimal price impact.

Increasing σ2
c holding n fixed unambiguously makes i better off. The “Demand

Shock” term in utility is unaffected, and the “RS Uncertainty” term strictly increases.
Intuitively, when agents other than i manipulate more, the location of residual supply
is more uncertain, without affecting its slope. This means that non-manipulative traders
can profit more from arbitraging shifts in the location of residual supply. While I do not
solve a full equilibrium model of entry by manipulators and non-manipulators, intuitively,
non-manipulators decrease the variance of prices by increasing the slope of residual
supply, as well as trading against the average direction of manipulation; both effects
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counteract attempted manipulation, bringing auction prices closer to π.

4.2 Discussion

Designating an auction as the basis for contract settlement attracts entry into the auction.
Manipulators enter in order to profit from manipulation, until the point at which auctions
are sufficiently competitive that manipulation is unprofitable; non-manipulative traders
are attracted to the auction, both by increased liquidity provided by manipulators, and by
the possibility of profiting from arbitrage when manipulation causes prices to differ from
fundamentals. This is consistent with empirical evidence showing that liquidity tends
to increase significantly around benchmark-setting events. Stock trading is known to be
concentrated around exchange opening and closing times; Admati and Pfleiderer (1988)
develop a model in which liquidity traders’ preference for thick markets endogeneously
leads to clustering of trading over time. FX trading volume increases greatly at the
WM/Reuters 4pm London fix; in most cases volume is 10 times greater than the daily
mean (Financial Stability Board, 2014). In addition, Griffin and Shams (2018) show that
volume in SPX options spikes when option prices are used to determine the VIX. This
is consistent with my theory, in which participation and trade volume is higher when
contract positions are larger. My theory also suggests that these increases in volume do
not necessarily imply that agents are successfully manipulating, as entry tends to dampen
the effects of manipulation.

The analysis of this subsection is stylized, in order to make the qualitative point that
entry by manipulators and arbitrageurs counteracts attempted manipulation. When the
assumptions of the model are relaxed – for example, if entrants are not symmetric, with
different entry costs and slopes of demand – it is possible that the entry decision of
any particular agent can increase benchmark variance. The idea that manipulation is
tempered by competitive entry is also not novel to the literature. Kumar and Seppi (1992)
show that, as the number of manipulators increases, competition drives profits from
manipulation to 0. Hanson and Oprea (2008) show that manipulators increase the returns
to informed trading, increasing incentives for information acquisition, so they can actually
improve price discovery in equilibrium. My model is a private-values double auction
model, in contrast to the common-values competitive market maker model studied in
these two papers; the fact that both classes of models are able to reach qualitatively similar
conclusions suggest that these results are relatively robust to modelling assumptions.
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Figure 2: n and Var (pb) as functions of σ2
c

Notes. Behavior of n and Var (pb) as σ2
c changes, with κ = 1, c = 1,σ2

d = 0.

Similar ideas about manipulation and competitive entry are also present in the classic
literature on futures markets. Hieronymus (1977, pg. 328) writes: “Manipulation is its
own best cure. To manipulate a price is to put it where it doesn’t belong. The over-priced
inventory or the underpriced commitment invariably leads to losses. . . . In the actively
speculated markets the forces of countervailing power effectively prevent manipulation. It
is only in the thin markets that power plays cause minor distortions which are profitable. A
speculator of moderate scale commented, “Show me a market that someone has distorted
and I will show you a way to make money, both with him and against him.” The greater
the level of speculation, the less is the amount of hanky-panky. Let them trade out.”

5 Collusion

In this section, I show that colluding agents bid proportionately more per unit contract
they hold, since they internalize the effects that price movements have on the profits of
other agents within the cartel. I build on the asymmetric model of section 3 in the main
text. As in the baseline model of the paper, suppose that n agents have demand slopes
κ1 . . . κn. Assume that some subset of agents i ∈ {1 . . .k} bid collusively, and that they
are able to perfectly transfer money and inventory among themselves once the auction
concludes. Thus, colluding agents bid to maximize the joint physical utility of the total
quantity z̄ that they trade, plus any monetary payments they make. We can think of
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agents as bidding a single bid curve – any combination of individual bid curves which
adds up to the same overall bid curve has the same effect for all agents.

Proposition 4. If agents with κ1 . . . κk bid collusively, when they have demand shocks ydi and
contract positions yci, they bid as if they are a single agent with demand shock ȳd =

∑k
i=1 ydi,

contract position ȳc =
∑k
i=1 yci, and slope of demand κ̄ =

∑k
i=1 κi.

Proposition 4 shows that agents bid as if they constitute a single agent with demand
slope κ̄, contract position ȳc, and net demand shock ȳd. Collusion increases manipulation
– using the approximation of proposition 3 in the main text, the cartel trades approximately(∑k

i=1 yc

)(∑k
i=1 κi

)
∑n
i=1 κi

(32)

units of the asset if the cartel’s net contract position is ȳc, hence the contribution of
manipulation to price variance is approximately

(∑k
i=1 κi

)2 ∑k
i=1 σ

2
ci

(
∑n
i=1 κi)

4 (33)

If individuals bid separately, each individual agent i would only trade

κi∑n
i=1 κi

yci

if her contract position is yci. Across agents i ∈ {1 . . .k}, this leads to total manipulation-
driven trade of: ∑k

i=1 κiyci∑n
i=1 κi

(34)

Manipulation-driven price variance is: ∑k
i=1 κ

2
iσ

2
ci

(
∑n
i=1 κi)

4 (35)

(33) is always larger than (35), hence variance of trade induced by cartel bidding is
always larger than variance of trade induced by individuals’ bidding. There are two
related intuitions for why collusion increases manipulation incentives. First, colluding
agents internalize the effects of increasing their own bids on other agents’ contract profits.
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Second, the cartel as a whole has a higher slope of demand than any individual cartel
member, hence it can absorb large quantities of the underlying asset to move prices,
spreading the quantity optimally among cartel members, at lower cost than any member
could achieve by acting alone.

Many instances of benchmark manipulation observed in practice have involved col-
lusion and communication between parties. In the case of LIBOR, which is determined
by banks’ unincentized announcements, traders communicated to each other whether
they wanted higher or lower LIBOR rates (Ridley and Freifeld, 2015). In the case of the
WM/Reuters FX fixing, which is determined by actual trades, traders pooled orders and
planned how to trade during the fix to move the fixing in the desired direction (Levine,
2014).

The predictions of my theory in the main text rely strongly on the assumption that
agents are independently optimizing; if agents are colluding, manipulation could in
principle be arbitrarily large. In antitrust settings, while many features of regulation are
basically structural, collusion is regulated on a primarily behavioral basis – it is illegal
per se and is prosecuted based on “smoking gun” evidence, such as details of executives’
communications. Similarly, contract market regulation could combine structural and
behavioral approaches: structural tools could be used to limit predicted manipulation
incentives, based on formal models of imperfect but non-collusive competition, and
behavioral sanctions could be applied to compel market participants to behave imperfectly
competitively, as specified in our formal models. Formal models of manipulation are also
useful in diagnosing the economic effects of collusion. My results describe how large
manipulation incentives are for a cartel of a given size; if regulators detect a cartel, these
results inform regulators as to how much higher manipulation incentives in the cartel are
relative to imperfect but non-collusive competition.

Formally modelling collusion is a subtle problem, as model outcomes can be very
sensitive to details of assumptions of agents’ ability to coordinate behavior and share
profits, and agents’ potential profits from deviating from cartel behavior. My model
abstracts away from these issues, assuming that the cartel is able to maximize joint surplus
and can efficiently redistribute inventory. This is the best possible case for collusion, so my
model likely produces a high estimate for the extent to which agents are able to collude;
in practice, there are various frictions and commitment issues which make collusion more
difficult than my model suggests. An interesting direction for future research would
be to develop more realistic models of collusive manipulation, accounting for imperfect
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profit-sharing and agents’ incentives to deviate from cartel-specified behavior.

6 Proofs

6.1 Proofs for section 1

6.1.1 Proof of proposition 1

If an agent has utility function u (z) and yc contracts, her expected utility for bidding
z (p) is: ˆ

u (z (p)) − pz (p) + pyc dH (p, z (p))

Integrating by parts, and ignoring the constant term, we have:

ˆ
−
[
u′ (z (p)) z′ (p) − z (p) − pz′ (p) + yc

]
H (p, z (p))dp (36)

The agent chooses z (p) to maximize this. This is a calculus of variations problem. Define
the integrand as:

F
(
p, z (p) , z′ (p)

)
= −

[
u′ (z (p)) z′ (p) − z (p) − pz′ (p) + yc

]
H (p, z (p))

The Euler-Lagrange necessary conditions for zD (p) to optimize (36) are:

d

dp
Fz′ = Fz (37)

Now,
Fz′ = −

[
u′ (z (p)) − p

]
H (p, z (p))

d

dp
Fz′ = −

[ [
u′′ (z (p)) z′ (p) − 1

]
H (p, z (p))+

[
u′ (z (p)) − p

]
Hp (p, z (p)) +

[
u′ (z (p)) − p

]
Hz (p, z (p)) z′ (p)

]
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Fz = −

[ [
u′′ (z (p)) z′ (p) − 1

]
H (p, z (p))+

[
u′ (z (p)) z′ (p) − z (p) − pz′ (p) + yc

]
Hz (p, z (p))

]
Plugging into (37), we have

[
u′′ (z (p)) z′ (p) − 1

]
H (p, z (p))+[

u′ (z (p)) − p
]
Hp (p, z (p)) +

[
u′ (z (p)) − p

]
Hz (p, z (p)) z′ (p) =[

u′′ (z (p)) z′ (p) − 1
]
H (p, z (p)) +

[
u′ (z (p)) z′ (p) − z (p) − pz′ (p) + yc

]
Hz (p, z (p))

Cancelling terms and rearranging, we get:

[
u′ (zD (p)) − p

]
Hp (p, zD (p)) + (zD (p) − yc)Hz (p, zD (p)) = 0

Dividing by Hp (p, zD (p)), and defining G (p, zD (p)) ≡ −
Hz(p,zD(p))
Hp(p,zD(p)) , we can write:

[
u′ (zD (p)) − p

]
+ (yc − zD (p))G (p, zD (p)) = 0 (38)

where, G (p, zD (p)) is the ratio
dp

dz
= −

dH
dz
dH
dp

as desired.

6.1.2 Proof of claim 1

Taking derivatives of (38) with respect to p, we have:

[
u′ (zD (p)) − p

]
+ (yc − zD (p))G (p, zD (p)) = 0

∂

∂p
: −1 + (yc − zD (p))Gp (p, zD (p))

∂

∂z
: u′′ (zD (p)) −G (p, zD (p)) + (yc − zD (p))GZ (p, zD (p))
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Hence,
dzD
dp

=
1 − (yc − zD (p))Gp (p, zD (p))

u′′ (zD (p)) −G (p, zD (p)) + (yc − zD (p))Gz (p, zD (p))

As before, if we disregard the curvature terms Gp (p, zD (p)) and Gz (p, zD (p)), we have:

dzD
dp
≈ 1
u′′ (zD (p)) −G (p, zD (p))

Solving, we have

u′′ (zD (p)) ≈ G (p, zD (p)) +
1

z′ (p)

as desired.

6.2 Proofs for section 2

6.2.1 Optimal contract positions

Utility is:
U (zi, xi,yci,pb) = − exp [−α [πxi + pbyci − µπyci]]

Since contracts are sold at the actuarially fair price of µπ, the agent’s utility is maximized
by minimizing the variance of consumption, πxi + pbyci − µπyci. We can write:

πxi + pbyci − µπyci = π (xi + yci) + (pb − π)yci − µπyci

In equilibrium, π is independent from (pb − π). Hence, with σ2
p ≡ Var (pb − π), the

variance of consumption is:
(xi + yci)

2 σ2
π + y

2
ciσ

2
p (39)

Taking derivatives with respect to yci and setting to 0, we have:

2 (xi + yci)σ2
π + 2yciσ2

p = 0

Hence,

yci = −xi
σ2
π

σ2
π + σ

2
p

(40)
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Plugging (40) into (39) and simplifying, we find that portfolio variance, given xi, is:

x2
i

σ2
pσ

2
π

σ2
π + σ

2
p

6.2.2 Price dispersion in equilibrium

In equilibrium, demand for agent i is:

zDi (p;ydi,yci) =
n− 2
n− 1

ydi +
1

n− 1
yci −

n− 2
n− 1

κ (p− π)

The auction price is:

pb − π =
1
nκ

n∑
i=1

ydi +
1

n (n− 2) κ

n∑
i=1

yci (41)

Substituting equilibrium price into demand and solving, the allocation for i is:

z = ydi

(
n− 2
n

)
+ yci

(
1
n

)
−
n− 2
n− 1

 1
n

∑
j 6=i
ydj +

1
n (n− 2)

∑
j 6=i
ycj

 (42)

To solve for the socially efficient allocation, note that we need marginal values to be equal,
and total allocations to sum to 0:

U′ (z) = π+
ydi
κ

−
z

κ
= λ

∑
z = 0

This implies that the efficient allocation has:

z = ydi −

∑n
i=1 ydi
n

(43)

In the case where agents bid honestly, price is equal to marginal utility. We then have:

U′ (z) = π+

∑
ydi
nκ2
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Which implies that

σ2
p =

σ2
d

nκ2

Now in the inefficient case, with only market power, taking the variance of (41) setting
yci = 0:

σ2
p =

σ2
d

nκ2

If agents’ contract positions also affect bidding, taking the variance of (41) including all
terms:

σ2
p =

σ2
d

nκ2 +
σ2
c

n (n− 2)2 κ2

6.2.3 Allocative efficiency in equilibrium

Agents’ utility, ignoring transfers, is:

u (z) = πz+
ydiz

κ
−
z2

2κ
(44)

Welfare in autarky is calculated by setting z = 0, but u (0) = 0, so gains from trade
are simply equal to the expected value of (44). Using (43) and (42), we can calculate the
distribution of z conditional on ydi; in the efficient case, this is:

z ∼ N

(
n− 1
n

ydi,
σ2
d

n− 1

)

In equilibrium with demand shocks but no contracts, it is:

z ∼ N

(
n− 2
n

ydi,
(
n− 2
n

)2 σ2
d

n− 1

)

In equilibrium with contracts:

z ∼ N

(
n− 2
n

ydi,
(
n− 2
n

)2 σ2
d

n− 1
+ σ2

c

(
1
n2 +

1

n2 (n− 2)2

))

Plugging these into (44) and taking expectations over ydi, we get average welfare in the
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efficient case:
σ2
d

κ

(
n− 1
n

−
1

2 (n− 1)

)
(45)

The equilibrium case with demand shocks and no contracts:

σ2
d

κ

(
n− 2
n

−
(n− 2)2

2n2 (n− 1)

)
(46)

Note that the difference between (45) and (46) is

1
n
−

1
2 (n− 1)

(
1 −

(
n− 2
n

)2
)

=
n− 2
n2

This is positive for n > 3 and decreasing in n, so the equilibrium is less efficient than the
social optimum, as expected. Adding the effect of contracts, equilibrium expected welfare
is:

σ2
d

κ

(
n− 2
n

−
(n− 2)2

2n2 (n− 1)

)
−
σ2
c

κ

(
(n− 2)2 + 1

2n2 (n− 2)2

)
(47)

Which is lower again than (46).

6.3 Proofs for section 3

6.3.1 Microfoundation

We construct a microfoundation of the utility function suppose that agents’ utility is as in
(17) using a model in which agents imperfectly observe their own values. Suppose that
agents’ utility is:

U = πz+
φiz

κ
−
z2

2κ
+ pyc − zp

Assume that
φi = ξ+ ζi

That is, φi consists of a common component, ξ ∼ N
(

0,σ2
ξ

)
, and a private valued com-

ponent, ζi ∼ N
(

0,σ2
ζ

)
. ξ and all ζi are independent. Assume also that agents do not

perfectly observe their own valuations; instead, they observe signals si, where

si = φi + εi
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and εi ∼ N
(
0,σ2

ε

)
, and each εi is independent of ξ, ζi and all other εi.

The agent attempts to predict φi based on her own signal si and the sum of all other
agents’ signals

∑
j 6=i sj. Consider the covariance matrix between φi, si,

∑
sj:

Cov

 φi

sdi∑
sdj

 =


σ2
ξ + σ

2
ζ σ2

ξ + σ
2
ζ (n− 1)σ2

ξ

σ2
ξ + σ

2
ζ σ2

ξ + σ
2
ζ + σ

2
ε (n− 1)σ2

ξ

(n− 1)σ2
ξ (n− 1)σ2

ξ (n− 1)
(
σ2
ζ + σ

2
ε

)
+ (n− 1)2 σ2

ξ


By the projection formula for multivariate Gaussian random variables,

E

[
φi |

(
sdi∑
sdj

)]
=

( [
σ2
ξ + σ

2
ζ

] [
(n− 1)σ2

ξ

] )( σ2
ξ + σ

2
ζ + σ

2
ε σ2

ξ

σ2
ξ (n− 1)σ2

ξ + σ
2
ζ

)−1(
ydi∑
ydj

)

Inverting the middle matrix and multiplying through, this is:

E

[
φi |

(
sdi∑
sdj

)]
=

[
σ2
ε

(
σ2
ζ + σ

2
ξ

)
+ σ2

ζ

(
σ2
ζ +nσ

2
ξ

)]
sdi +

[
σ2
εσ

2
ξ

]∑
j 6=i sdj(

σ2
ε + σ

2
ζ

)(
σ2
ε + σ

2
ζ +nσ

2
ξ

)
The coefficient on sdi is weakly larger than the coefficient on sdj; the coefficients are equal
only in a pure common values model, where σ2

ζ = 0. Now, define

ydi =

[
σ2
ε

(
σ2
ζ + σ

2
ξ

)
+ σ2

ζ

(
σ2
ζ +nσ

2
ξ

)]
(
σ2
ε + σ

2
ζ

)(
σ2
ε + σ

2
ζ +nσ

2
ξ

) sdi

Then, we have

E

φi | ydi,∑
j 6=i
ydj

 = ydi + θ

∑
j 6=i ydj

n

θ =
nσ2

εσ
2
ξ(

σ2
ε + σ

2
ζ

)(
σ2
ε + σ

2
ζ +nσ

2
ξ

) ∈ (0, 1)
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Hence,

E

U | ydi,
∑
j 6=i
ydj

 = πz+
z

κ
E

φi | ydi,∑
j 6=i
ydj

−
z2

2κ
+ pyc − zp

= πz+
ydi
κ
z+

θ
∑
j 6=i ydj

nκ
z−

z2

2κ
+ pyc − zp

as desired.

6.3.2 Proof of proposition 3

From the perspective of agent i, residual supply in equilibrium is:

zRS (p) = (p− π)d+ η (48)

Fix α, so that α ≡ E
[
θ
n

∑
j 6=i yjd | η

]
. To satisfy (21), agent maximizes, pointwise in η,:

U = πz+
αη

κ
z+

ydiz

κ
−
z2

2κ
+ pyc − zp

Take derivatives:

πz′RS (p) −
αη

κ
z′RS (p) +

yd
κ
z′RS (p) −

z

κ
z′RS (p) + yc − pz

′
RS (p) − zRSz (p) = 0 (49)

We have z′RS (p) = d. Also, rearranging (48), we have (p− π) = z−η
d . Thus, (49) becomes:

−
αη

κ
d−

z

κ
d+

ydd

κ
+ yc − (z− η) − z = 0

z

(
2κ+ d
κ

)
= η−

αη

κ
d+

ydd

κ
+ yc

This defines the best-response choice of z for each possible value of η. Since z is linear in
η, the set of best responses can be implemented by submitting a single linear bid curve
zD (p). To find zD (p), rearrange for η:

η =
1

1 − αη
κ

[
2κ+ d
κ

z− yd
d

κ
− yc

]
(50)
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Then, substitute (50) into (48):

z = (p− π)d+
2κ+ d(

1 − αd
κ

)
κ
z− yd

d(
1 − αd

κ

)
κ
− yc

1(
1 − αd

κ

)
Solving for z, we get the bid curve:

zD (p) =
dyd + κyc − d (κ−αd) (p− π)

αd+ κ+ d
(51)

This proves (24). Taking derivatives of demand,

dzD
dp

=
d (κ−αd)

αd+ κ+ d
(52)

Thus far, we have taken the slope of residual supply d as given. Since residual supply is
negative the sum of (n− 1) agents’ demand functions, we have:

d = −(n− 1)
dzD
dp

(53)

Combining (52) and (53), we get:

d =
(n− 2) κ
1 +nα

proving (22).

Now, consider (19). From the demand equation (24), residual supply is:

zRS = −
∑
j 6=i

dyd + κyc − d (κ−αd) (p− π)

αd+ κ+ d

Hence,

η =

∑
j 6=i ydd+

∑
j 6=i κyc

αd+ κ+ d

Thus, using the projection theorem for Gaussian random variables,

E

θ
n

∑
j 6=i
yd | η

 =
θ

n
E

∑
j 6=i
yd | η

 =
θ

n

Var
[∑

j 6=i dyd

]
Var

[∑
j 6=i dyd

]
+ Var

[∑
j 6=i κyc

]η
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Thus, in order to satisfy,

α ≡
E
[
θ
n

∑
j 6=i yjd | η

]
η

we must have

α =
d2σ2

d

κ2σ2
c + d

2σ2
d

θ

n

proving (23).

6.4 Proofs for section 4

First, I characterize the distribution of η, when agent i bids against n− 1 manipulators
with contract positions of variance σ2

c. participating in equilibrium. Sum equilibrium
demand across n− 1 agents to get residual supply:

−

n−1∑
i=1

zD (p) = (n− 2) (p− π) κ−
1

n− 1

n−1∑
i=1

yci

Hence,

η ≡ −
1

n− 1

n−1∑
i=1

yci ∼ N

(
0,

σ2
c

n− 1

)
(54)

Now, we characterize the utility of an agent with demand shocks and forward contract
positions, facing an uncertain residual supply curve. Suppose that residual supply is:

zRSi (p) = d (p− π) + η

Demand functions are:

zDi (p; yci,ydi) =
d

κ+ d
ydi +

κ

κ+ d
yci − (p− π)

κd

κ+ d

Equate these and solving for p, we have:

p− π =
dydi + κyci − η (d+ κ)

d (d+ 2κ)
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Plugging into residual supply, optimal quantity is:

z =
dydi + κη+ κyci

d+ 2κ

Plugging both these expressions into utility:

U (z,p) = πz+
ydiz

κi
−
z2

2κi
− pz+ pyci

Simplifying the result, we have:

(κη+ dydi)
2 − 2κ (η (d+ κ) − dydi)yci + κ2y2

ci

2dκ (d+ 2κ)
(55)

This is complex, but simplifies if we assume that either ydi = 0 or yci = 0. First, assume
that yd = 0, so agents are pure manipulators. Then (55) becomes:

=
η2κ2 − 2ηκ (d+ κ)yc + κ2y2

c

2dκ (d+ 2κ)

Now assuming the equilibrium slope of residual supply, d = (n− 2) κ, this is:

η2 − 2 (n− 1)ηyc + y2
c

2κn (n− 2)

Taking the expectation:

E

[
η2 − 2 (n− 1)ηyc + y2

c

2κn (n− 2)

]
Now, η is a function of other agents’ contract positions, hence is independent of yci.
Moreover, both η and yci have mean 0. Hence the middle term in the expectation
disappears. Hence,

E

[
η2 − 2 (n− 1)ηyc + y2

c

2κn (n− 2)

]
= E

[
η2 + y2

c

2κn (n− 2)

]
=

σ2
c

n−1 + σ
2
c

2κn (n− 2)
=

σ2
c

2κ (n− 1) (n− 2)

This proves (25).

Now, assume instead that yc = 0, so agents are non-manipulative arbitrageurs. Then
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(55) simplifies to:
η2κ2 + 2κdηydi + d2y2

di

2dκ (d+ 2κ)

Agents’ expected utility for participating in auction is:

E

[
η2κ2 + 2κdηydi + d2y2

di

2dκ (d+ 2κ)

]

Again, η is independent of ydi, and both have mean 0,so the middle term in the expectation
disappears. The expectation thus reduces to:

E

[
η2κ2 + d2y2

di

2dκ (d+ 2κ)

]
=
κ2σ2

η + d
2σ2
d

2dκ (d+ 2κ)

This proves (30). For the equilibrium expression, substitute σ2
η =

σ2
c

n−1 , d = (n− 2) κ to get:

κ2 σ2
c

n−1 + (n− 2)2 κ2σ2
d

2 (n− 2)nκ3 =

σ2
c

n−1 + (n− 2)2 σ2
d

2 (n− 2)nκ
=

σ2
c

2 (n− 2) (n− 1)nκ
+
n− 2
2nκ

σ2
d

This proves (31).

6.5 Proofs for section 5

6.5.1 Proof of proposition 4

If agents with κ1 . . . κk have ydi and total inventory z̄, we solve

max
z1...zk

k∑
i=1

πzi +
ydizi
κi

−
z2
i

2κi

s.t.
k∑
i=1

zi = z̄

Taking derivatives,
π+

ydi
κ

−
zi
κ

= λ

So the solution is
ydi
κi

−
zi
κi

= λ− π
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Or,
zi = ydi + κiα

We must have
k∑
i=1

zi = z̄

Hence,
k∑
i=1

ydi + κiα = z̄

α =
z̄−

∑k
i=1 ydi∑k
i=1 κi

Plugging into the objective, we have

k∑
i=1

π

(
ydi + κi

z̄−
∑k
i=1 ydi∑k
i=1 κi

)
+

ydi

(
ydi + κi

z̄−
∑k
i=1 ydi∑k
i=1 κi

)
κi

−

(
ydi + κi

z̄−
∑k
i=1 ydi∑k
i=1 κi

)2

2κi

= πz̄+

k∑
i=1

y2
di

κi
+

k∑
i=1

ydi

(
z̄−

∑k
i=1 ydi∑k
i=1 κi

)
−

k∑
i=1

y2
di

2κi
−

k∑
i=1

ydi

(
z̄−

∑k
i=1 ydi∑k
i=1 κi

)
−

∑k
i=1 κ

2
i

(
z̄−

∑k
i=1 ydi∑
κi

)2

2κi

= πz̄−

∑k
i=1 κ

2
i

(
z̄−

∑k
i=1 ydi∑k
i=1 κi

)2

2κi

= πz̄−

∑k
i=1 κi

(
z̄2 − 2z̄

∑k
i=1 ydi +

(∑k
i=1 ydi

)2
)

2
(∑k

i=1 κi

)2

= πz̄−

∑k
i=1 κiz̄

2

2
∑k
i=1 κi

+
z̄
∑k
i=1 ydi∑k
i=1 κi

−

(∑k
i=1 ydi

)2

2
∑k
i=1 κi
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Now, ignoring the constant term −
(
∑
ydi)

2

2
∑
κi

, utility from holding z̄ is:

πz̄−

∑k
i=1 κiz̄

2

2
∑k
i=1 κi

+
z̄
∑k
i=1 ydi∑k
i=1 κi

This is the same as the utility function of a single agent with demand slope κ̄ =
∑k
i=1 κi

and demand shock ȳd =
∑k
i=1 ydi, for total quantity z̄. The contract position of the cartel

is just the sum of all agents’ contract holdings, ȳc =
∑k
i=1 yci.
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